BIMEROMORPHIC GEOMETRY OF NORMAL GORENSTEIN SURFACES

Saitama University
Fumio SAKAI

The purpose of this note is to provide a "bimeromorphic geometry" in the category of normal Gorenstein surfaces.

Details will be discussed elsewhere.

§1. Normal Gorenstein Surfaces

An isolated singularity y of a surface Y is said to be $\underline{\text{Gorenstein}}$ if there exists a neighborhood U of y satisfying (i) the restriction map $O(U) \longrightarrow O(U \setminus y)$ is bijective (i.e., y is normal), (ii) $^{\Xi}$ a nowhere vanishing holomorphic 2-form on $U \setminus y$.

Example. Hypersurface singularities are always Gorenstein. In particular, the following singularities are called <u>rational</u> double points.

For ring theoretic aspects, we refer to the expository article by S.Goto:On Gorenstein rings(in Japanese), Sugaku 31(1979).

Supported in part by Grant-in-Aid for Scientific Research No.57740010

 $A_n : x^2 + y^2 + z^{n+1} = 0$

 $D_n : x^2 + y^2 + z^{n-1} = 0$ $E_6 : x^2 + y^3 + z^4 = 0$

 $E_7 : x^2 + y^3 + yz^3 = 0$

 $E_8 : x^2 + y^3 + z^5 = 0$

In what follows, by a normal Gorenstein surface we shall mean a 2-dimensional, reduced, irreducible compact complex space with isolated Gorenstein singularities.

Let Y be a normal Gorenstein surface. The singular locus Sing(Y) consists of finite points $\{y_1, \dots, y_s\}$. The sheaf of holomorphic 2-forms Ω^2 on Y\Sing(Y) extends naturally as an invertible sheaf $\omega_{\underline{Y}}$ to Y. This sheaf is nothing but the Grothendieck dualizing sheaf of Y. We denote by K_V a canonical divisor (bundle, in general) of Y corresponding to the sheaf ω_{V} . For positive integers m, we define the arithmetic m-genus by

$$\overline{P}_{m}(Y) = \dim H^{0}(Y, \omega_{Y}^{\otimes m}).$$
 2)

²⁾ We borrowed the bar notation from Wilson, P.M.H.: The arithmetic plurigenera of surfaces. Math. Proc. Camb. Phil. Soc. 85 (1979), 25-31. If there is no danger of confusion, we may omit the bar as in a paper of Brenton, L.: On singular complex surfaces with vanishing geometric genus and pararational singularities. Compositio Math. 43 (1981), 297-315.

§2. Local Properties (For instance, see [8])

Let $\pi: X \longrightarrow Y$ be the minimal resolution in the sense that there exist no exceptional curves of the first kind in $\pi^{-1}(Sing(Y))$. Then there exists a unique effective divisor Δ such that

$$\pi * \omega_{\mathbf{Y}} \cong O(K_{\mathbf{X}} + \Delta).$$

Furthermore if $\Delta > 0$, we easily find the property:

$$\omega_{\Lambda} \cong O_{\Lambda}.$$
 3)

Let $\Delta = \Sigma \Delta_{\mathbf{i}}$ be the decomposition so that each $\Delta_{\mathbf{i}}$ is supported in $\pi^{-1}(\mathbf{y_i})$. We have $\Delta_{\mathbf{i}} = 0$ if and only if $\mathbf{y_i}$ is a rational double point. In case $\Delta_{\mathbf{i}} > 0$, we have $\mathrm{Supp}(\Delta_{\mathbf{i}}) = \pi^{-1}(\mathbf{y_i})$ and we find

$$\dim(R^1\pi_*O_X)_{y_i} = \dim H^1(\Delta_i, O_{\Delta_i}).$$

So y_i is a rational singularity if and only if it is a rational double point.

Remark. The converse process is possible. Let Δ be a connected curve on a non-singular surface X satisfying

- (i) the intersection matrix of irreducible components of Δ is negative definite,
- (ii) $\omega_{\Delta} \cong O_{\Delta}$.

Then Δ can be contracted to an isolated Gorenstein singularity (Laufer[6], Bådescu[4]).

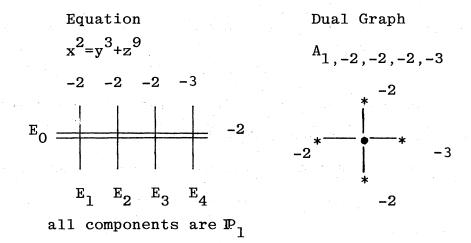
³⁾ By definition $\omega_{\Delta}=\mathrm{Ext}_{O_X}^1(O_{\Delta},\omega_X)$ which is isomorphic to the sheaf $O(K_X+\Delta)\otimes O_{\Delta}$.

The divisors Δ_i can be calculated as follows. Let E_1, \ldots, E_r be the irreducible components of $\pi^{-1}(y_i)$. If $\Delta_i = \sum n_j E_j$, then (n_1, \ldots, n_r) is a solution of the equations:

$$(K_X + \Sigma n_j E_j)E_k = 0$$
 for $k=1,\ldots,r$.

Since the intersection matrix $(E_j E_k)$ is negative definite, the solution is unique. We also get the non-negativeness of each n_j from the fact that the resolution is minimal. Furthermore if y_i is Gorenstein, the solution must be integral.

Example. For a minimally elliptic singularity(i.e., the case where dim $H^1(\Delta_i, O_{\Delta_i})=1$), the divisor Δ_i coincides with the fundamental cycle of $y_i(cf.[6])$.



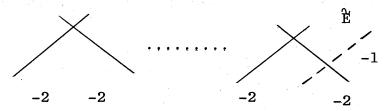
In this example, we have

$$\Delta = 2E_0 + E_1 + E_2 + E_3 + E_4$$

§3. Generalized Blowing Ups

We shall introduce (generalized) blowing ups for normal Gorenstein surfaces. Namely, we define a blowing up Υ of Y at a point y in the following way.

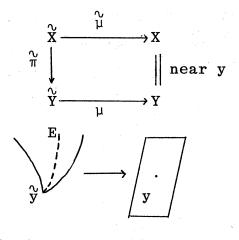
 $\underline{\text{Case}}(i)$. y is a non-singular point. Take a sequence of usual blowing ups n-times so that the exceptional curves form



By contracting the (-2) curves 4) to a rational double point \mathring{y} (type A_{n-1}), we obtain a blowing up $\mu: \mathring{Y} \longrightarrow Y$. In case n=1, this is nothing but the usual one. If \mathring{E} denotes the (-1) curve, then μ contracts the curve $E=\mathring{\pi}(E)$ to y. We find

$$\omega_{\mathbf{Y}}^{\mathbf{Q}} \cong \mu * \omega_{\mathbf{Y}} \otimes O(\mathbf{E}).$$

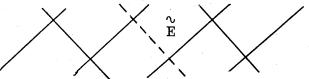
In this case E is a Cartier divisor.



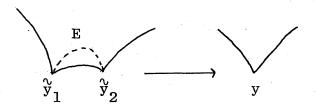
⁴⁾ For simplicity's sake, we use the terminology:

<u>Case</u>(ii), y is a rational double point. Then $\pi^{-1}(y)$ is a union of (-2) curves. Let $\overset{\circ}{\pi}: X \longrightarrow \overset{\circ}{Y}$ be the contraction of these curves except one curve \widetilde{E} . We thus obtain a blowing up $\mu:\overset{\circ}{Y}\longrightarrow Y$ which contracts the curve $E=\overset{\circ}{\pi}(\overset{\circ}{E})$ to y. In this case E need not be a Cartier divisor. We have the formula:

Example. Suppose $\pi^{-1}(y)$ is of type A_7 . Let \widetilde{E} be the central curve.

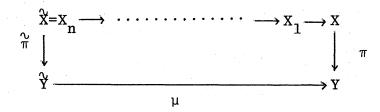


In Y, we have two points \mathring{y}_1 , \mathring{y}_2 of type A_3 .



Case(iii). y is a non-rational singularity. Choose a point x_1 in Δ . Let $\mathring{\mu}_1: X_1 \longrightarrow X$ be the usual blowing up at x_1 . Put $\Delta_1 = \mathring{\mu}_1^* \Delta - E_1$ where the E_1 is the exceptional curve. If the multiplity of Δ at x_1 is greater than or equal to two, we have $E_1 \subset \Delta_1$. Choose again a point x_2 in E_1 and let $\mathring{\mu}_2: X_2 \longrightarrow X_1$ be the usual blowing up at x_2 . We continue in this way so that $v_1 \ge 2, \ldots, v_{n-1} \ge 2$, but $v_n = 1$ where each v_1 denotes the multiplicity of Δ_{1-1} at x_1 . Then $\Delta = \mathring{\mu}_n^* \Delta_{n-1} - E_n$ does not contain $E = E_n$, from which we infer that Δ contains no (-1) curves. By construction $\omega_1 \cong 0 \subset \Delta$. Therefore Δ can be contracted to a Gorenstein singularity Ψ . Thus we obtain a blowing up $\mu: \widetilde{Y} \longrightarrow Y$ where the curve $E = \widetilde{\pi}(\widetilde{E})$ is

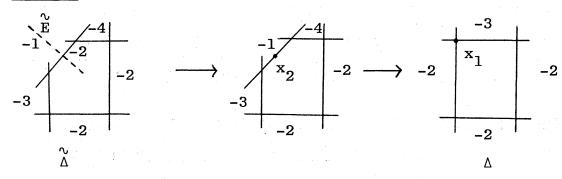
Note that E need not be a Cartier divisor.



Remark. The above defined blowing ups are characterized by the following properties (cf. §4):

- (i) $\overset{\circ}{Y}$ is again a normal Gorenstein surface,
 - (ii) μ contracts an irreducible curve E to a point y such that $\mu: \mathring{Y} \setminus E \longrightarrow Y \setminus y$ is an isomorphism,
 - (iii) $\mu_* \omega_{\widetilde{Y}} \supseteq \omega_{Y}$.

Example.



$$z(xy+z^2)=x^5+y^6$$
 $z=(y+x^2)(y^2+x^8)$

We borrowed the equations from [6]. All curves are non-singular rational curves. In this example, ν_1 =2, ν_2 =1.

§4. Factorization Theorem

Let Y, Y' be two normal Gorenstein surfaces. A bimeromorphic morphism $f:Y\longrightarrow Y'$ is said to be <u>canonical</u> if $f_*\omega_Y^{\underline{\omega}}\omega_Y$.

<u>Proof.</u> We infer from the hypothesis that $\omega_Y \cong f^* \omega_Y , \otimes O(G)$ where the effective Cartier divisor G is contracted to points by f. It follows that $\omega_Y^{\otimes m} \cong f^* \omega_Y^{\otimes m} \otimes O(mG)$, which deduces the required result. Q.E.D.

Corollary. We have $\overline{P}_{m}(Y) = \overline{P}_{m}(Y').$

In order to develop a geometry with invariants \overline{P}_m , it is therefore natural to restrict ouselves to canonical bimeromorphic morphisms. Our main observation is the following

Theorem. Any canonical bimeromorphic morphism between normal Gorenstein surfaces can be factored into a sequence of blowing ups (as defined in §3).

Remark. Between non-singular surfaces, a bimeromorphic morphism is automatically canonical. So the above theorem generalizes the well known fact that any bimeromorphic morphism between non-singular surfaces can be factored into a sequence of blowing ups.

As a consequence, we propose the following

<u>Definition</u>. Two normal Gorenstein surfaces Y and Y' are in the same "<u>bimeromorphic class</u>" if they are connected by blowing ups:

$$\mu_{\mathbf{r}} \circ \cdots \circ \mu_{1}(Y) = \mu_{\mathbf{S}}' \circ \cdots \circ \mu_{1}'(Y'),$$

where μ_i , μ_j^i are blowing ups defined in §3.

Remark. The following conditions are equivalent for bimeromorphic morphisms $f:Y \longrightarrow Y'$ between normal Gorenstein surfaces.

- (i) f is canonical,
- (ii) $R^1 f_* O_V = 0$.

This follows from the Grothendieck duality(Kempf's argument in [5], p.49) via the Grauert-Riemenschneider vanishing theorem for f (See §5).

§5. Generalities

Finally we collect some general results concerning normal Gornstein surfaces. Let L be a line bundle on a normal Gorenstein surface Y.

I Riemann-Roch Theorem ([3])

$$\chi(O(L)) = \frac{1}{2}(L^2 - KL) + \chi(O_Y),$$

II Serre Duality

$$H^{i}(Y,O(K+L)) \simeq H^{2-i}(Y,O(-L))^{\prime}$$

III Kodaira-Ramanujam Vanishing Theorem

If (i)
$$L^2>0$$
, (ii) $LC\geq 0$ for all curves C on Y, then 5)

$$H^{i}(Y,O(K+L))=0$$
 for $i>0$,

IV Grauert-Riemenschneider Vanishing Theorem (cf. [4])

If $f:Y\longrightarrow Y'$ is a surjective morphism between normal Gorenstein surfaces, then

$$R^{i}f_{*}\omega_{V}=0$$
 for $i>0$,

V Classification Theory

In the Moišezon case (i.e., Y has two algebraically independent meromorphic functions, cf.[1]), we have an Enriques type classification. We refer the reader to [8].

$$\pi_*\omega_X \hookrightarrow \omega_Y$$

has a cokernel supported on isolated singularities. Here X denotes the minimal resolution of Y. Hence, for instance

$$H^{i}(Y,\pi_{*}\omega_{X}\otimes O(L))\longrightarrow H^{i}(Y,\omega_{Y}\otimes O(L))\longrightarrow 0$$

for i>0.

⁵⁾ If such a bundle L exists, then Y is a Moišezon surface.

⁶⁾ In general, Vanishing Theorems III, IV are valid for normal surfaces. We can employ the fact that the injective trace map

147

References

- [1] Artin, M.: Algebraic Spaces. Yale Math. Monographs 3, Yale Univ. Press 1971
- [2] Bådescu, L.: Applications of the Grothendieck duality theory to the study of normal isolated singularities. Rev. Roum. Pures et Appl. 24 (1979), 673-689
- [3] Brenton, L.: On the Riemann-Roch equation for singular complex surfaces. Pacific J. Math. 71 (1977), 299-312
- [4] Grauert, H. and Riemenschneider, O.: Verschwindungssätze für analytische Kohomologiegruppe auf komplexen Räumen. Invent.

 Math. 11 (1970), 263-292
- [5] Kempf, G. et al.: Toroidal Embeddings I. Lecture Notes in Mathematics Vol. 339, Springer 1973
- [6] Laufer, H.B.: On minimally elliptic singularities. Amer. J. Math. 99 (1975), 1275-1295
- [7] Reid, M.: Canonical 3-folds. Proc. of "Journées de Géométrie Algebrique" Angers 1979 pp.273-310, Sijthoff and Nordhoff 1980
- [8] Sakai, F.: Enriques classification of normal Gorenstein surfaces. To appear in Amer. J. Math.

Department of Mathematics Faculty of Science Saitama University Urawa, 338 Japan