TITLE:
On topological Blaschke conjecture I: Cohomological complex projective spaces

AUTHOR(S):
SATO, Hajime

CITATION:

ISSUE DATE:
1983-02

URL:
http://hdl.handle.net/2433/103362

RIGHT:
On topological Blaschke conjecture I

Cohomological complex projective spaces

東北大理 佐藤繁
(Hajime SATO)

By a Blaschke manifold, we mean a Riemannian manifold (M,g) such that, for any point $m \in M$, the tangential cut locus C_m of m in T_mM is isometric to the sphere of constant radius. There are some equivalent definitions (see Besse[2, 5.43]). The Blaschke conjecture is that any Blaschke manifold is isometric to a compact rank one symmetric space. If the integral cohomology ring of M is equal to the sphere S^k, or the real projective space RP^k, this conjecture is proved by Berger with other mathematicians [2, Appendix D]). We consider the case where the cohomology ring of M is equal to that of the complex projective space CP^k.

We obtain the following theorem.

Theorem. Let (M,g) be a $2k$-dimensional Blaschke manifold such that the integral cohomology ring is equal to that of CP^k. Then M is PL-homeomorphic to CP^k for any k.

Blaschke manifolds with other cohomology rings will be treated in subsequent papers.
If \((M, g)\) is a Blaschke manifold and \(m \in M\), Allamigeon [1] has shown that the cut locus \(C(m)\) of \(m\) in \(M\) is the base manifold of a fibration of the tangential cut locus \(C_m\) by great spheres. We study the base manifold of such fibration by great circles. We apply the Browder-Novikov-Sullivan's theory in the classification of homotopy equivalent manifolds (see Wall[4]). Calculation of normal invariants gives our theorem. In Appendix, we give examples of non-trivial fibrations of \(S^3\) by great circles. The author thanks to M.Mizutani and K.Masuda for the discussion of results in Appendix.

Detailed proof will appear elsewhere.
§1. Projectable bundles

In the paper [3], we have obtained a method of calculating the tangent bundle of the base space of an S^1-principal bundle. We will briefly recall that.

Let X be a smooth manifold and let $\pi : L \to X$ be the projection of an S^1-principal bundle.

Definition. A vector bundle $p : E \to L$ over L is projectable onto X, if there exists a vector bundle $\hat{p} : \hat{E} \to X$ over X such that $\pi^* \hat{E} = E$. The map π induces the bundle map $\pi_! : E \to \hat{E}$, which we call the projection. The bundle \hat{E} is called the projected bundle.

Let x be a point in X. For any $a, b \in \pi^{-1}(x) = S^1$, we have a linear isomorphism

$$\phi_{ab} : p^{-1}(a) \to p^{-1}(b)$$

of vector spaces defined by $\phi_{ab}(u) = v$, where $\pi_1(u) = \pi_1(v)$.

Then we have, for $a, b, c \in \pi^{-1}(x)$,

$$\phi_{bc} \phi_{ab} = \phi_{ac}.$$ (1)

Let $\pi^* L = \{(a, b) \in L \times L, \pi(a) = \pi(b)\}$ be the induced S^1-bundle over L from L. We have two projections π_1,

$$\pi_2 : \pi^* L \to L$$

defined by $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$.

Let $\pi_i^* E$ ($i = 1, 2$) be the induced vector bundle. The map

$$\phi : \pi^* L \to \text{Iso}(\pi_1^* E, \pi_2^* E)$$

defined by $\phi(a, b) = \phi_{ab}$ is a continuous cross section of the bundle $\text{Iso}(\pi_1^* E, \pi_2^* E)$ over $\pi^* L$.
We call ϕ the projecting isomorphism associated with the projectable bundle E.

Proposition 1. Suppose given a vector bundle E over L and a cross section ϕ of the bundle $\text{Iso}(\pi_1^*E, \pi_2^*E)$ satisfying (1). Then we have a vector bundle \hat{E} over X such that $\pi^*\hat{E} = E$ and the projecting isomorphism is equal to ϕ.

Now let TL and TX be the tangent bundles of L and X respectively. Let $\rho : S^1 \times L \to L$ be the free S^1-action. For each $t \in S^1$, the diffeomorphism $\rho(t) = \rho(t, \cdot)$ induces a bundle isomorphism $\rho(t)_* : TL \to TL$.

Proposition 2. The collection $\bigcup_{t \in S^1} \rho(t)_*$ induces a projecting isomorphism on the bundle TL such that the projected bundle TL is isomorphic to $TX \oplus 1$.

Proof. Choose a bundle metric on TL. Let TL_1 be the subbundle of TL consisting of tangent vectors normal to the S^1-action. Then TL_1 is projected to TX. The line bundle tangent to the S^1-action is projected to the trivial line bundle on X.
§2. Pontrjagin classes

Let \(S^{2k-1} \) be the unit sphere in \(\mathbb{R}^{2k} \) and let \(\pi : S^{2k-1} \to B \) be a fibration of \(S^{2k-1} \) by great circles. Thus, for each \(b \in B \), \(\pi^{-1}(b) \) is the intersection of \(S^{2k-1} \) with a 2-plane in \(\mathbb{R}^{2k} \). We write the 2-plane by \(P(b) \). Let \(\rho : S^1 \times S^{2k-1} \to S^{2k-1} \) denote the free \(S^1 \)-action.

Let \(V(2k,2) \) and \(G(2k,2) \), respectively, be the Stiefel and the Grassmann manifold consisting of orthogonal 2-frames or oriented 2-planes in \(\mathbb{R}^{2k} \). Then the natural mapping \(\lambda : V(2k,2) \to G(2k,2) \) defines a principal \(S^1 \)-bundle.

The mapping \(\theta : B \to G(2k,2) \) defined by \(\theta(b) = P(b) \) is a smooth embedding. Let \(\theta^*(\lambda) \) denote the induced bundle of \(\lambda \) by \(\theta \). Since \(\pi \) is also the induced bundle of \(\lambda \) by \(\theta \), there exists a natural bundle isomorphism between \(\pi \) and \(\theta^*(\lambda) \) inducing the identity on \(B \). Thus we obtain;

Lemma 3. We may suppose that the free \(S^1 \)-action \(\rho \) on \(S^{2k-1} \) is equal to the restriction on \(\pi^{-1}(b) \) of the linear action on \(P(b) \) for every \(b \in B \).

In the following, we always assume that \(\rho \) is the linear action on each fibre. For each \(x \in S^{2k-1} \), let \(Kx \) denote the point \(\rho(1/4)x \) in \(S^{2k-1} \), where we identify
S^1 with $[0,1]/[0] \sim [1]$. Define a mapping $\Psi : S^{2k-1} \to V(2k,2)$ by $\Psi(x) = (x, Kx)$. This is a smooth embedding and is a bundle map inducing θ on the base manifolds. For an orthogonal 2-frame $w = (x,y)$, let $\bar{\psi}(w)$ denote the vector $(x/\sqrt{2}, y/\sqrt{2})$ in $\mathbb{R}^{2k} \oplus \mathbb{R}^{2k}$. Then the map $\bar{\psi} : V(2k,2) \to \mathbb{R}^{4k}$ is a smooth embedding of $V(2k,2)$ in $S^{4k-1} \subset \mathbb{R}^{4k}$. We identify $\mathbb{R}^{2k} \oplus \mathbb{R}^{2k}$ with \mathbb{C}^{2k} such that the first summand \mathbb{R}^{2k} is the real part and the second pure imaginary. On \mathbb{C}^{2k}, we have the free action ρ_0 of S^1 as the multiplication by the complex number of norm one. Then $\bar{\psi}$ is S^1-equivalent and we write by ψ the induced map $\psi : G(2k,2) \to \mathbb{C}P^{2k-1}$.

Let $I : S^{2k-1} \to S^{4k-1}$ be the composition $I = \psi \theta$ and $f = \psi \theta : B \to \mathbb{C}^{2k-1}$. The map I is given by $I(x) = (x/\sqrt{2}, Kx/\sqrt{2})$ for $x \in S^{2k-1}$.

We define a map $\bar{\Phi} : \mathbb{R}^{2k} - 0 \to \mathbb{C}^{2k} - 0$ by $\bar{\Phi}(tx) = t\bar{\phi}(x)$ for $t > 0$ and $x \in S^{2k-1}$. The map $\bar{\Phi}$ is a smooth embedding. Let E denote the restriction of the tangent bundle $T(\mathbb{R}^{2k} - 0)$ of $\mathbb{R}^{2k} - 0$ on S^{2k-1}, and we write p for the projection $E \to S^{2k-1}$. Then $\bar{\Phi}$ induces an injective bundle map $\bar{\Phi}^* : E \to \bar{\Phi}^*(E) \subset T(S^{2k-1})$.

Now define a map $\bar{\Gamma} : \mathbb{R}^{2k} - 0 \to \mathbb{C}^{2k} - 0$ by $\bar{\Gamma}(tx) = (tx/\sqrt{2}, -tK/\sqrt{2})$ for $t > 0$ and $x \in S^{2k-1}$.

...
Then \tilde{G} is also an embedding and \tilde{G} induces an injective bundle map

$$G_* : E \to \mathcal{C}_*(E) \subset T(\mathcal{C}^{2k-1} - 0) \big| \tilde{G}(S^{2k-1}).$$

If ρ_0 denote the conjugate action of S^1 on $\mathcal{C}^{2k} - 0$. Then G is S^1-equivariant concerning to this conjugate action.

For any $y \in \mathcal{C}^{2k}$, we naturally identify the tangent space $T_y \mathcal{C}^{2k}$ with \mathcal{C}^{2k} itself. For $x \in S^{2k-1}$, let E_x denote the fiber $p^{-1}(x)$. Then $\tilde{F}_*(E_x)$ and $\tilde{G}_*(E_x)$ are subvector spaces of \mathcal{C}^{2k}.

Since $\tilde{K} : S^{2k-1} \to S^{2k-1}$ is a diffeomorphism, we obtain:

Lemma 4. The vector spaces $\tilde{F}_*(E_x)$ and $\tilde{G}_*(E_x)$ are transversal. Thus they span \mathcal{C}^{2k}.

Let T denote the restriction of the tangent bundle $T(\mathcal{C}^{2k})$ on $\tilde{F}(S^{2k-1})$. Then we have the direct sum decomposition by trivial vector bundles

$$T = \tilde{F}_*(E) \oplus \tilde{G}_*(E).$$

Notice that $\tilde{G}_*(E)$ on $\tilde{G}(S^{2k-1})$ is identified with the subbundle in T over $\tilde{F}(S^{2k-1})$ by an orientation reversing diffeomorphism of S^{2k-1}.

For any $t \in S^1$, we have the induced bundle isomorphisms $\rho_*(t) : E \to E$ and $\rho_{0*}(t) : T \to T$.

- 7 -
Lemma 5. The isomorphism $\rho_0^*(t)$ is equal to the direct sum

$$\rho^*_x(t) + \rho^*_s(t).$$

By Proposition 1, we obtain that the projected bundle \hat{T}, defined by the projecting isomorphism $\rho^*_x(t)$, is isomorphic to the Whitney sum;

$$\hat{T} \cong \hat{E} \oplus \hat{E}.$$

On the other hand, by Proposition 2, we obtain the following.

Lemma 6. The bundle \hat{T} has the complex structure. As a complex vector bundle, \hat{T} is isomorphic to the Whitney sum

$$T(\mathbb{C}P^{2k-1})|_{f(B)} \oplus 1.$$

Lemma 7. As a real vector bundle, \hat{E} is isomorphic to the bundle $T(B) \oplus 2$.

Consequently, we obtain that

$$T(B) \oplus T(B) \oplus 4 \cong (T(\mathbb{C}P^{2k-1})|_{f(B)} \oplus 1)|_{\mathbb{R}}.$$

Since the cohomology groups $H^*(B;\mathbb{Z})$ has no torsion element, by the product formula of Pontrjagin classes, we obtain the following.

Proposition 8. The Pontrjagin classes of the smooth manifold B is equal to that of $\mathbb{C}P^{k-1}$, for any k.

- 8 -
§3. \(\mathbb{Z}_2 \)-invariants and proof of Theorem

Let \(\mathcal{S}(\mathbb{C}P^{k-1}) \) denote the set of PL-homeomorphism classes of closed PL-manifolds homotopy equivalent to \(\mathbb{C}P^{k-1} \). The following results are due to Sullivan (cf. [4, §14 C]).

Suppose that \(k > 3 \).

Proposition 9. For any \(N \in \mathcal{S}(\mathbb{C}P^{k-1}) \), there are invariants \(s_{4i+2}(N) \in \mathbb{Z}_2 \) and \(s_{4j}(N) \in \mathbb{Z} \), for all integers \(i,j \) satisfying \(6 \leq 4i+2 < 2(k-1) \), \(4 \leq 4j < 2(k-1) \). The invariants define a bijection of \(\mathcal{S}(\mathbb{C}P^{k-1}) \) with

\[
(\oplus \mathbb{Z}_2) \oplus (\oplus \mathbb{Z})
\]

The invariants \(s_{4j} \) satisfy the following relations.

Proposition 10. If all the Pontrjagin classes of \(N \) in \(\mathcal{S}(\mathbb{C}P^{k-1}) \) coincide with that of \(\mathbb{C}P^{k-1} \), then

\(s_{4j}(N) = 0 \) for all \(j \).

Concerning \(\mathbb{Z}_2 \)-invariants \(s_{4i+2} \), the following holds. Let \(\mathcal{S}(\mathbb{R}P^{2k-1}) \) denote the set of PL-homeomorphism classes of closed PL-manifolds homotopy equivalent to \(\mathbb{R}P^{2k-1} \). This set is known to be equal to the isomorphism classes of homotopy triangulations of \(\mathbb{R}P^{2k-1} \). Any \(N \in \mathcal{S}(\mathbb{C}P^{k-1}) \) is the base manifold of a PL free \(S^1 \)-action on \(S^{2k-1} \). By restricting the action to \(\mathbb{Z}_2 = S^0 \subset S^1 \), we obtain a manifold homotopy equivalent to \(\mathbb{R}P^{2k-1} \).
This defines a map
\[\pi^b : \mathcal{J}(\mathbb{C}P^{k-1}) \rightarrow \mathcal{J}(\mathbb{R}P^{2k-1}) . \]

The following holds ([4, §14D.3]).

Proposition 11. Let \(N \) be an element in \(\mathcal{J}(\mathbb{C}P^{k-1}) \) such that \(\pi^b(N) \) is PL-homeomorphic to \(\mathbb{R}P^{2k-1} \). Then
\[s_{4i+2}(N) = 0 , \]
for all \(i \).

Now let \(B \in \mathcal{J}(\mathbb{C}P^{k-1}) \) be the base manifold of the fibration of \(S^{2k-1} \) by great circles. Then, obviously, the image \(\pi^b(B) \in \mathcal{J}(\mathbb{R}P^{2k-1}) \) is PL-homeomorphic to \(\mathbb{R}P^{2k-1} \).

Combining the result of §2 with Propositions, we obtain:

Proposition 12. The base manifold \(B \) of a fibration of \(S^{2k-1} \) by great circles is PL-homeomorphic to \(\mathbb{C}P^{k-1} \) if \(k \neq 3 \).

Now let us prove Theorem. Since the integral cohomology ring of \(M \) is equal to that of \(\mathbb{C}P^k \), \(M \) is simply connected ([2, 7.23]). Thus \(M \) is homotopy equivalent to \(\mathbb{C}P^k \). By Allamigeon's theorem, we know that \(M \) is PL-homeomorphic to the union of the disc \(D^{2k} \) with the \(D^2 \)-bundle associated with the fibration of \(S^{2k-1} \) by great circles. We write \(B \) for the base manifold of the fibration. If \(k = 3 \), by Proposition 9, \(M \) is
PL-homeomorphic to \(\mathbb{CP}^3 \) if and only if \(s_4(M) = 0 \).

The invariant \(s_4(M) \) is calculated from the first Pontrjagin class \(p_1(B) \) of \(B \). By Proposition 8 of §2, \(p_1(B) \) is equal to \(p_1(\mathbb{CP}^2) \). Thus we have \(s_4(M) = 0 \) and \(M \) is PL-homeomorphic to \(\mathbb{CP}^3 \). Now suppose that \(k \neq 3 \). According to Proposition 12, \(B \) is PL-homeomorphic to \(\mathbb{CP}^{k-1} \). The Euler class of the \(S^1 \)-bundle is equal to a generator of \(H^2(\mathbb{CP}^{k-1}; \mathbb{Z}) = \mathbb{Z} \). Thus the total space of the \(D^2 \)-bundle is PL-homeomorphic to the tubular neighborhood of \(CP^{k-1} \) in \(CP^k \). Any orientation preserving PL-homeomorphism of \(S^{2k-1} \) is isotopic to the identity. The attached manifold \(M \) is PL-homeomorphic to \(CP^k \), which completes the proof of Theorem.
§4. Appendix

If \(\pi : S^{2k-1} \to B \) is a fibration by great circles, we get the embedding \(\theta : B \to G(2k,2) \). Since the planes \(\theta(b) \) for all \(b \in B \) give a foliation of \(S^{2k-1} \), we have the following property.

(*) For two different points \(b \) and \(b' \) in \(B \), the planes \(\theta(b) \) and \(\theta(b') \) are transverse.

The converse holds.

Lemma 13. Let \(\pi : S^{2k-1} \to B \) be a principal \(S^1 \)-bundle induced from the \(S^1 \)-bundle \(\lambda : W(2k,2) \to G(2k,2) \) by a smooth embedding \(\theta : B \to G(2k,2) \). Suppose that, for any different points \(b \) and \(b' \) in \(B \), the planes \(\theta(b) \) and \(\theta(b') \) are transversal. Then the bundle \(\pi \) is a fibration of \(S^{2k-1} \) by great circles.

Proof. Consider the union \(\bigcup_b (\theta(b) \cap S^{2k-1}) \).

Then it covers \(S^{2k-1} \) and give a fibration by great circles.

Now we consider the case where \(k = 2 \). For the following discussion, see [2, p.55]. Let \(\Lambda^2 \mathbb{R}^4 \) denote the space of skew-symmetric 2-tensors. The Grassmann manifold \(G(4,2) \) is naturally identified with the set of decomposable elements of norm one in \(\Lambda^2 \mathbb{R}^4 \). We have the Hodge operator \(* \) from \(\Lambda^2 \mathbb{R}^4 \) onto itself. The space \(\Lambda^2 \mathbb{R}^4 \) is decomposed to two orthogonal subsets \(E_1 \) and \(E_{-1} \) associated to the eigenvalue 1 and -1 of \(* \).
let S^2_1 and S^2_{-1} be the sphere in E_1 and E_{-1} of radius $1/\sqrt{2}$. Then $G(4,2)$ is equal to the product $S^2_1 \times S^2_{-1}$. Define a bilinear map $\zeta : \Lambda^2 \mathbb{R}^4 \times \Lambda^2 \mathbb{R}^4 \rightarrow \mathbb{R}$ by $\zeta(a,b) = \|a \wedge b\|$, where $\|\|$ is the norm on $\Lambda^2 \mathbb{R}^4 \cong \mathbb{R}$. Two planes P_1 and P_2 in $G(4,2)$ are transversal if and only if $\zeta(P_1, P_2) = 0$. Represent P_1 and P_2 by (x_1, x_2) and (y_1, y_2), where $x_1, y_1 \in S^2_1$ and $x_2, y_2 \in S^2_{-1}$. Then we have

$\zeta(P_1, P_2) = \langle x_1, y_1 \rangle - \langle x_2, y_2 \rangle$,

where $\langle \ , \ \rangle$ is the inner product of the vector space E_1 or E_{-1}.

For a smooth map $\theta : S^2 \rightarrow G(4,2)$, we define a smooth function $Z(\theta)$ on S^2 by $Z(\theta)(x) = \zeta(\theta(x), \theta(x'))$, by fixing x' in S^2. Thus the principal S^1-bundle $\pi : S^3 \rightarrow S^2$ induced by an embedding $\theta : S^2 \rightarrow G(4,2)$ is a fibration by great circles if $Z(\theta)(x) = 0$ only when $x = x'$. Obviously $Z(\theta)(x) = 0$ at $x = x'$. We have;

Lemma 14. For a smooth map $\theta : S^2 \rightarrow G(4,2)$, the function $Z(\theta)$, for fixed $x' \in S^2$, is critical at $x = x'$.

Proof. Fix P_2 in $G(4,2)$. The function $\zeta(P_1, P_2)$ on $G(4,2)$ is critical at $P_1 = P_2$. Thus $Z(\theta)$ is also critical at $x = x'$.

Now consider the Hopf fibration $\pi_0 : S^3 \rightarrow S^2$.

- 13 -
The associated map \(\theta_0 : S^2 \to G(4,2) = S^2_1 \times S^2_{-1} \) is given by \(\theta_0(x) = \left(\frac{1}{\sqrt{2}} x, \alpha_0 \right) \), where \(\alpha_0 = \left(\frac{1}{\sqrt{2}}, 0, 0 \right) \). For two points \(x = (x_1, x_2, x_3) \) and \(x' = (x_1', x_2', x_3') \) in \(S^2 \), we have
\[
\zeta(\theta_0(x), \theta_0(x')) = \langle x, x' \rangle - \frac{1}{2} \sum (x_i - x_i')^2.
\]
Thus the function \(Z(\theta_0) \) is critical if and only if \(x = x' \). The symmetric matrix \(\frac{\partial^2 Z(\theta_0)}{\partial x_i \partial x_j} \) is positive definite.

Let \(\text{Emb}(S^2, G(4,2)) \) denote the set of smooth embeddings of \(S^2 \) in \(G(4,2) \) with \(C^2 \)-topology. Since \(S^2 \) is compact, we obtain the following.

Proposition 15. There exists a neighborhood \(U \) of \(\theta_0 \) in \(\text{Emb}(S^2, G(4,2)) \) such that the function \(Z(\theta)(x,x') \)
\[
= \zeta(\theta(x), \theta(x'))
\]
is equal to zero if and only if \(x = x' \), for any \(x, x' \in S^2 \) and \(\theta \in U \).

Corollary 16. In each direction in \(\text{Emb}(S^2, G(4,2)) \), there is a deformation of fibrations of \(S^3 \) by great circles starting from the Hopf fibration.
The group of diffeomorphisms of S^2, denoted by $\text{Diff } S^2$, acts naturally on $\text{Emb}(S^2, G(4,2))$. We denote by $\text{Diff } S^2 \setminus \text{Emb}(S^2, G(4,2))$ the quotient space. Let $\pi : S^3 \rightarrow B$ be a fibration of S^3 by great circles. The B is diffeomorphic to S^2. Thus we have the class $\{0\}$ in $\text{Diff } S^2 \setminus \text{Emb}(S^2, G(4,2))$.

Let π_1 and π_2 be two fibrations of S^3 by great circles, and let $\{\theta_1\}$, $\{\theta_2\} \in \text{Diff } S^2 \setminus \text{Emb}(S^2, G(4,2))$ be the associated classes. We say that π_1 and π_2 are isometric if there exists a bundle map F from π_1 to π_2 such that F is an isometry of S^3 onto itself.

The group $O(4)$ acts naturally on $G(4,2)$ and on $\text{Diff } S^2 \setminus \text{Emb}(S^2, G(4,2))$. We denote by $\text{Diff } S^2 \setminus \text{Emb}(S^2, G(4,2))/O(4)$ the quotient space.

Proposition 17. Two fibrations π_1 and π_2 of S^3 by great circles are isometric if and only if the classes $\{\theta_1\}$ and $\{\theta_2\}$ in $\text{Diff } S^2 \setminus \text{Emb}(S^2, G(4,2))/O(4)$ are equal.

Remark that we can choose the neighborhood U in Proposition 15 such that U is invariant by the actions of $\text{Diff } S^2$ and $O(4)$. The space $\text{Diff } S^2 \setminus U / O(4)$ is of infinite "dimension".
REFERENCES

