On topological Blaschke conjecture I

Cohomological complex projective spaces

東北大理 佐藤肇 (Hajime SATO)

By a Blaschke manifold, we mean a Riemannian manifold (M,g) such that ,for any point $m \in M$, the tangential cut locus C_m of m in $T_m M$ is isometric to the sphere of constant radius. There are some equivalent definitions (see Besse[2, 5.43]). The Blaschke conjecture is that any Blaschke manifold is isometric to a compact rank one symmetric space. If the integral cohomology ring of M is equal to the sphere S^k , or the real projective space RP^k , this conjecture is proved by Berger with other mathematiciens [2, Appendix D]). We consider the case where the cohomology ring of M is equal to that of the complex projective space CP^k .

We obtain the following theorem.

Theorem. Let (M,g) be a 2k-dimensional Blaschke manifold such that the integral cohomology ring is equal to that of ${\sf CP}^k$. Then M is PL-homeomorphic to ${\sf CP}^k$ for any k .

Blaschke manifolds with other cohomology rings will be treated in subsequent papers.

If (M,g) is a Blaschke manifold and $m \in M$, Allamigeon [1] has shown that the cut locus C(m) of m in M is the base manifold of a fibration of the tangential cut locus C_m by great spheres. We study the base manifold of such fibration by great circles. We apply the Browder-Novikov-Sullivan's theory in the classification of homotopy equivalent manifolds (see Wall[4]). Calculation of normal invariants gives our theorem. In Appendix, we give examples of non-trivial fibrations of S^3 by great circles. The author thanks to M.Mizutani and K.Masuda for the discussion of results in Appendix.

Detailed proof will appear elsewhere.

§1. Projectable bundles

In the paper [3], we have obtained a method of a calculation of the tangent bundle of the base space of an S^1 -principal bundle. We will briefly recall that.

Let X be a smooth manifold and let $\pi:L \longrightarrow X$ be the projection of an S¹-principal bundle.

<u>Definition</u>. A vector bundle $p: E \longrightarrow L$ over L is projectable onto X, if there exists a vector bundle $\hat{p}: \hat{E} \longrightarrow X$ over X such that $\pi^*\hat{E} = E$. The map π induces the bundle map $\pi_!: E \longrightarrow \hat{E}$, which we call the projection. The bundle \hat{E} is called the projected bundle.

Let x be a point in X . For any a , b $\in \pi^{-1}(x) = S^1$, we have a linear isomorphism

$$\Phi_{ab}: p^{-1}(a) \longrightarrow p^{-1}(b)$$

of vector spaces defined by $\Phi_{ab}(u)=v$, where $\pi_!(u)=\pi_!(v)$. Then we have, for a , b , c $\pi^{-1}(x)$,

(1)
$$\Phi_{bc} \Phi_{ab} = \Phi_{ac}$$

Let $\pi^*L = \{(a,b) \in L \times L, \ \pi(a) = \pi(b)\}$ be the induced S^1 -bundle over L from L. We have two projections π_1 , $\pi_2 : \pi^*L \longrightarrow L$ defined by $\pi_1(a,b) = a$ and $\pi_2(a,b) = b$. let π_i^*E (i = 1,2) be the induced vector bundle. The map $\Phi : \pi^*L \longrightarrow \operatorname{Iso}(\pi_1^*E, \pi_2^*E)$ defined by $\Phi(a,b) = \Phi_{ab}$ is a continuous cross section of the bundle $\operatorname{Iso}(\pi_1^*E, \pi_2^*E)$ over π^*L .

We call $_{\Phi}$ the projecting isomorphism associated with the projectable bundle $\,\mathtt{E}\,$.

Proposition 1. Suppose given a vector bundle E . over L and a cross section $_\Phi$ of the bundle $\operatorname{Iso}(\pi_1^*E,\pi_2^*E) \text{ satisfying (1) . Then we have a vector bundle } \hat{E} \text{ over } X \text{ such that } _\pi^*\hat{E} = E \text{ and the projecting isomorphism is equal to }_\Phi \text{ .}$

Now let TL and TX be the tangent bundles of L and X respectively. Let $\rho: S^1 \rtimes L \longrightarrow L$ be the free S^1 -action. For each $t \in S^1$, the diffeomorphism $\rho(t) = \rho(t, \cdot)$ induces a budle isomorphism $\rho(t) * TL \longrightarrow TL$.

Proposition 2. The collection $\bigcup_{t \in S^1} \rho(t)_*$ induces

a projecting isomorphism on the bundle TL such that the projected bundle TL is isomorphic to TX \oplus 1.

Proof. Choose a bundle metric on TL . Let ${\rm TL}_1$ be the subnundle of TL consisting of tangent vectors normal to the ${\rm S}^1-$ action. Then ${\rm TL}_1$ is projected to TX . The line bundle tangent to the ${\rm S}^1-$ action is projected to the trivial line bundle on X .

§2. Pontrjagin classes

Let s^{2k-1} be the unit sphere in \mathbb{R}^{2k} and let π : $s^{2k-1} \longrightarrow B$ be a fibration of s^{2k-1} by great circles. Thus, for each $b \in B$, $\pi^{-1}(b)$ is the intersection of s^{2k-1} with a 2-plane in \mathbb{R}^{2k} . We write the 2-plane by P(b). Let $\rho: s^1 \times s^{2k-1} \longrightarrow s^{2k-1}$ denote the free s^1 -action.

Let V(2k,2) and G(2k,2), respectively, be the Stiefel and the Grassmann manifold consisting of orthogonal 2 frames or oriented 2-planes in \mathbb{R}^{2k} . Then the natural mapping $\lambda: V(2k,2) \longrightarrow G(2k,2)$ defines a principal S^1 -bundle.

The mapping $\theta: B \longrightarrow G(2k,2)$ defined by $\theta(b) = P(b)$ is a smooth embedding. Let $\theta*(\lambda)$ denote the induced bundle of λ by θ . Since π is also the induced bundle of λ by θ , there exists a natural bundle isomorphism between π and $\theta*(\lambda)$ inducing the identity on B. Thus we obtain;

Lemma 3. We may suppose that the free S^1-action ρ on S^2k-1 is equal to the restriction on $\pi^{-1}(b)$ of the linear action on P(b) for every $b \in B$.

In the following, we always assume that ρ is the linear action on each fibre. For each $x\in S^{2k-1}$, let Kx denote the point $\rho(1/4)x$ in S^{2k-1} , where we identify

 $s^1 \quad \text{with} \quad [0,1]/ \quad [0] \sim [1] \quad \text{Define a mapping} \quad \tilde{\theta} :$ $s^{2k-1} \longrightarrow \text{V}(2k,2) \quad \text{by} \quad \tilde{\theta}(x) = (x, Kx) \quad \text{This is a}$ smooth embedding and is a bundle map inducing θ on the base manifolds. For an orthogonal 2-frame w = (x,y), let $\tilde{\psi}(w)$ denote the vector $(x/\sqrt{2}, y/\sqrt{2})$ in $\mathbb{R}^{2k} \oplus \mathbb{R}^{2k}$. Then the map $\tilde{\psi}: \text{V}(2k,2) \longrightarrow \mathbb{R}^{4k}$ is a smooth embedding of V(2k,2) in $s^{4k-1} \subset \mathbb{R}^{4k}$. We identify $\mathbb{R}^{2k} \oplus \mathbb{R}^{2k}$ with \mathbb{C}^{2k} such that the first summand \mathbb{R}^{2k} is the real part and the second pure imaginary. On $\mathbb{C}^{2k} - 0$, we have the free action ρ_0 of \mathbb{S}^1 as the multiplication by the complex number of norm one. Then $\tilde{\psi}$ is \mathbb{S}^1 - equivalent and we write by ψ the induced map $\psi: \mathbb{C}(2k,2) \longrightarrow \mathbb{CP}^{2k-1}$.

Let $f: S^{2k-1} \longrightarrow S^{4k-1}$ be the composition $f = \tilde{\psi}\theta$ and $f = \psi\theta$: $B \longrightarrow \mathbb{C}^{2k-1}$. The map f is given by $f(x) = (x/\sqrt{2}, Kx/\sqrt{2}) \quad \text{for} \quad x \in S^{2k-1}.$

We define a map $\tilde{F}: \mathbb{R}^{2k} - 0 \longrightarrow \mathbb{C}^{2k} - 0$ by $\tilde{F}(tx) = t\tilde{f}(x)$ for t > 0 and $x \in S^{2k-1}$. The map \tilde{F} is a smooth embedding. Let E denote the restriction of the tangent bundle $T(\mathbb{R}^{2k} - 0)$ of $\mathbb{R}^{2k} - 0$ on S^{2k-1} , and we write p for the projection $E \longrightarrow S^{2k-1}$. Then \tilde{F} induces an injective bundle map $\tilde{F}_{\star}: E \longrightarrow \tilde{F}_{\star}(E) \subset T(\mathbb{C}^{2k} - 0) |_{\tilde{F}(S^{2k-1})}$

Now define a map $\tilde{G}: \mathbb{R}^{2k} - 0 \longrightarrow \mathbb{C}^{2k} - 0$ by $\tilde{G}(tx) = (tx/\sqrt{2}, -tK/\sqrt{2})$ for t > 0 and $x \in S^{2k-1}$.

Then \tilde{G} is also an embedding and \tilde{G} induces an injective bundle map

$$G_{\star} : E \longrightarrow G_{\star}(E) \subset T(C^{2k-0} - 0) \mid \tilde{G}(S^{2k-1})$$

If $\bar{\rho}_0$ denote the conjugate action of S^1 on \mathbb{C}^{2k} - 0 . Then G is S^1 -equivariant concerning to this conjugate action.

For any $y\in \mathbb{C}^{2k}$, we naturally identify the tangent space $T_y\mathbb{C}^{2k}$ with \mathbb{C}^{2k} itself. For $x\in S^{2k-1}$, let E_x denote the fiber $p^{-1}(x)$. Then $\tilde{F}_*(E_x)$ and $\tilde{G}_*(E_x)$ are subvector spaces of \mathbb{C}^{2k} .

Since $K: S^{2k-1} \longrightarrow S^{2k-1}$ is a diffeomorphism, we obtain;

Lemma 4. The vector spaces $\tilde{F}_{\star}(E_{_{X}})$ and $\tilde{G}_{\star}(E_{_{X}})$ are transversal. Thus they span $C\!\!\!C^{2k}$.

Let T denote the restriction of the tangent bundle $T(\mathbb{C}^{2k}) \quad \text{on} \quad \widetilde{F}(S^{2k-1}) \quad \text{.} \quad \text{Then we have the direct sum decomposition by trivial vector bundles}$

$$T = \tilde{F}_{\star}(E) \oplus \tilde{G}_{\star}(E) .$$

Notice that $\tilde{G}_{\star}(E)$ on $\tilde{G}(S^{2k-1})$ is identified with the subbundle in T over $\tilde{F}(S^{2k-1})$ by an orientation reversing diffeomorphism of S^{2k-1} .

For any $t\in S^1$, we have the induced bundle isomorphisms $\rho_*(t)\,:\, E\longrightarrow E\quad\text{and}\quad \rho_{0*}(t)\,:\, T\longrightarrow T\ .$

Lemma 5. The isomorphism $\rho_{0*}(t)$ is equal to the direct sum

$$\rho_*(t) + \rho_*(t) .$$

By Proposition 1, we obtain \hat{T} , defined by the projecting isomorphism $\rho_{\star}(t)$, is isomorphic to the Whitney sum;

$$\hat{T} \stackrel{\sim}{=} \hat{E} \oplus \hat{E}$$
.

On the other hand, by Proposition 2, we obtain the following.

Lemma 6. The bundle \hat{T} has the complex structure. As a complex vector bundle , \hat{T} is isomorphic to the Whitney sum $T(\mathbb{CP}^{2k-1})|_{f(B)} \oplus 1$.

Lemma 7. As a real vector bundle, $\hat{\mathbf{E}}$ is isomorphic to the bundle $T(B) \oplus 2$.

Consequently, we obtain that

$$T(B) \oplus T(B) \oplus 4 = (T(CP^{2k-1})|_{f(B)} \oplus 1)_{\mathbb{R}}$$
.

Since the cohomology groups $H^*(B;\mathbb{Z})$ has no torsion element, by the product formula of Pontrjagin classes, we obtain the following .

Proposition 8. The Pontrjagin classes of the smooth manifold B is equal to that of $\mathbb{C}\text{P}^{k-1}$, for any k .

$\S 3.$ Z_2 -invariants and proof of Theorem

Let $\mathcal{S}(\mathsf{CP}^{k-1})$ denote the set of PL-homeomorphism classes of closed PL-manifolds homotopy equivalent to CP^{k-1} . The following results are due to Sullivan (cf. [4, §14C]).

Proposition 9. For any $N \in \mathcal{S}(\mathbb{CP}^{k-1})$, there are invariants $s_{4i+2}(N) \in \mathbb{Z}_2$ and $s_{4j}(N) \in \mathbb{Z}$, for all integers i,j satisfying $6 \le 4i+2 < 2(k-1)$, $4 \le 4j < 2(k-1)$. The invariants define a bijection of $\mathcal{S}(\mathbb{CP}^{k-1})$ with

$$\begin{array}{cccc} (\ \oplus & \mathbf{z}_2) \ \oplus \ (\ \oplus \ \mathbf{z} \) \\ & \mathbf{i} & & \mathbf{j} \end{array}$$

The invariants s_{4i} satisfy the following relations.

Proposition 10. If all the Pontrjagin classes of N in $\mathcal{N}(\mathbb{CP}^{k-1})$ coincide with that of \mathbb{CP}^{k-1} , then $s_{4j}(\mathbb{N})=0$ for all j.

Concerning $\mathbf{Z}_2\text{-invariants}$ \mathbf{s}_{4i+2} , the following holds. Let $\mathcal{S}(\mathtt{RP}^{2k-1})$ denote the set of PL-homeomorphism classes of closed PL-manifolds homotopy equivalent to \mathtt{RP}^{2k-1} . This set is known to be equal to the isomorphism classes of homotopy triangulations of \mathtt{RP}^{2k-1} . Any N $\in \mathcal{S}(\mathtt{CP}^{k-1})$ is the base manifold of a PL free $\mathtt{S}^1\text{-action}$ on \mathtt{S}^{2k-1} . By restricting the action to $\mathtt{Z}_2=\mathtt{S}^0\subset\mathtt{S}^1$, we obtain a manifold homotopy equivalent to \mathtt{RP}^{2k-1} .

This defines a map

$$\pi^{b}: \mathcal{S}(CP^{k-1}) \longrightarrow \mathcal{S}(RP^{2k-1})$$
.

The following holds ($[4, \S14D.3]$).

Proposition 11. Let N be an element in $\mathcal{S}(\mathbb{CP}^{k-1})$ such that $\pi^b(\mathbb{N})$ is PL-homeomorphic to \mathbb{RP}^{2k-1} . Then

$$s_{4i+2}(N) = 0 ,$$

for all i.

Now let $B \in \mathcal{S}(\mathbb{CP}^{k-1})$ be the base manifold of the fibration of S^{2k-1} by great circles. Then, obviously, the image $\pi^b(B) \in \mathcal{S}(\mathbb{RP}^{2k-1})$ is PL-homeomorphic to \mathbb{RP}^{2k-1} .

Combining the result of §2 with Propositions, we obtain;

Proposition 12. The base manifold B of a fibration of S^{2k-1} by great circles is PL-homeomorphic to CP^{k-1} if $k\neq 3$.

Now let us prove Theorem. Since the integral cohomology ring of M is equal to that of ${\sf CP}^k$, M is simply connected ([2, 7.23]). Thus M is homotopy equivalent to ${\sf CP}^k$. By Allamigeon's theorem, we know that M is PL-homeomorphic to the union of the disc ${\sf D}^{2k}$ with the ${\sf D}^2$ -bundle associated with the fibration of ${\sf S}^{2k-1}$ by great circles. We write B for the base manifold of the fibration. If k = 3, by Proposition 9, M is

PL-homeomorphic to ${\rm CP}^3$ if and only if ${\rm s_4\,(M)}=0$. The invariant ${\rm s_4\,(M)}$ is calculated from the first Pontrjagin class ${\rm p_1\,(B)}$ of B . By Proposition 8 of §2, ${\rm p_1\,(B)}$ is equal to ${\rm p_1\,(CP}^2)$. Thus we have ${\rm s_4\,(M)}=0$ and M is PL-homeomorphic to ${\rm CP}^3$. Now suppose that $k\neq 3$. According to Proposition 12, B is PL-homeomorphic to ${\rm CP}^{k-1}$. The Euler class of the ${\rm S}^1$ -bundle is equal to a generator of ${\rm H}^2({\rm CP}^{k-1};{\rm Z})={\rm Z}$. Thus the total space of the ${\rm D}^2$ -bundle is PL-homeomorphic to the tubular neighborhood of ${\rm CP}^{k-1}$ in ${\rm CP}^k$. Any orientation preserving PL-homeomorphism of ${\rm S}^{2k-1}$ is isotopic to the identity. The attached manifold M is PL-homeomorphic to ${\rm CP}^k$, which completes the proof of Theorem.

§4. Appendix

If $\pi: S^{2k-1} \longrightarrow B$ is a fibration by great circles, we get the embedding $\theta: B \longrightarrow G(2k,2)$. Since the planes $\theta(b)$ for all $b \in B$ give a foliation of S^{2k-1} , we have the following property.

(*) For two different points b and b' in B , the planes $\theta(b)$ and $\theta(b')$ are transverse.

The converse holds.

Lemma 13. Let $_{\pi}: s^{2k-1} \longrightarrow B$ be a principal s^1 -bundle induced from the s^1 -bundle $_{\lambda}: W(2k,2) \longrightarrow G(2k,2)$ by a smooth embedding $_{\theta}: B \longrightarrow G(2k,2)$. Suppose that, for any different points b and b' in B, the planes $_{\theta}(b)$ and $_{\theta}(b')$ are transversal. Then the bundle $_{\pi}$ is a fibration of s^{2k-1} by great circles.

Proof. Consider the union \bigcup_{b} ($\theta(b) \cap S^{2k-1}$) .

Then it covers s^{2k-1} and give a fibration by great circles.

Now we consider the case where $\,k=2$. For the following discussion, see [2 , p.55] . Let $\,\Lambda^2\,\mathbb{R}^{\,4}\,$ denote the space of skew-symmetric 2-tensors. The Grassmann manifold G(4,2) is naturally identified with the set of decomposable elements of norm one in $\,\Lambda^2\,\mathbb{R}^{\,4}\,$. We have the Hodge operator * from $\,\Lambda^2\,\mathbb{R}^{\,4}\,$ onto itself. The space $\,\Lambda^2\,\mathbb{R}^{\,4}\,$ is decomposed to two orthogonal subsets E_1 and E_1 associated to the eigenvalue 1 and -1 of * .

let S^2_1 and S^2_{-1} be the sphere in E_1 and E_{-1} of radius $1/\sqrt{2}$. Then G(4,2) is equal to the product $S^2_1 \times S^2_{-1}$. Define a bilenear map $\zeta : \Lambda^2 \mathbb{R}^4 \times \Lambda^2 \mathbb{R}^4 \longrightarrow \mathbb{R}$ by $\zeta(a,b) = ||a_\Lambda b||$, where || || is the norm on $\Lambda^2 \mathbb{R}^4 \cong \mathbb{R}$. Two planes P_1 and P_2 in G(4,2) are transversal if and only if $\zeta(P_1, P_2) = 0$. Represent P_1 and P_2 by (x_1, x_2) and (y_1, y_2) , where $x_1, y_1 \in S^2_1$ and $x_2, y_2 \in S^2_{-1}$. Then we have

$$\zeta(P_1, P_2) = \langle x_1, y_1 \rangle - \langle x_2, y_2 \rangle$$
,

where $\left\langle \ \ \right\rangle$ is the inner product of the vector space \mathbf{E}_1 or \mathbf{E}_{-1} .

For a smooth map $\theta\colon S^2 \longrightarrow G(4,2)$, we define a smooth function $Z(\theta)$ on S^2 by $Z(\theta)(x) = \zeta(\theta(x), \theta(x'))$, by fixing x' in S^2 . Thus the principal S^1 -bundle $\pi: S^3 \longrightarrow S^2$ induced by an embedding $\theta: S^2 \longrightarrow G(4,2)$ is a fibration by great circles if $Z(\theta)(x) = 0$ only when x = x'. Obviously $Z(\theta)(x) = 0$ at x = x'. We have;

Lemma 14. For a smooth map θ : $S^2 \longrightarrow G(4,2)$, the function $Z(\theta)$, for fixed $x' \in S^2$, is critical at x=x' .

Proof. Fix P_2 in G(4,2). The function $\zeta(P_1,P_2)$ on G(4,2) is critical at $P_1=P_2$. Thus $Z(\theta)$ is also critical at x=x'.

Now consider the Hopf fibration $\pi_0: s^3 \longrightarrow s^2$.

The associated map $\theta_0: S^2 \longrightarrow G(4,2) = S^2_1 \times S^2_{-1}$ is given by $\theta_0(x) = (1/\sqrt{2} \ x \ , \alpha_0)$, where $\alpha_0 = (1/\sqrt{2} \ , 0, 0)$. For two points $x = (x_1 \ , x_2, x_3)$ and $x' = (x_1', x_2', x_3')$ in S^2 , we have

$$\zeta(\theta_0(x), \theta_0(x')) = \langle x, x' \rangle - 1/2$$

= -1/2 $\Sigma(x_i - x_{i'})^2$.

Thus the function $Z(\theta_0)$ is critical if and only if x = x'. The symmetric matrix $(\theta_0^2 Z(\theta_0)/\theta_1^2 X_j^2)$ is positive definite.

Let $\mathrm{Emb}(\ \mathrm{S}^2,\ \mathrm{G}(4,2))$ denote the set of smooth embeddings of S^2 in $\mathrm{G}(4,2)$ with C^2 -topology. Since S^2 is compact, we obtain the following.

Proposition 15. There exists a neighborhood U of θ_0 in Emb(S^2 , G(4,2)) such that the function $Z(\theta)(x,x')$ = $\zeta(\theta(x),\theta(x'))$ is equal to zero if and only if x=x', for any $x,x'\in S^2$ and $\theta\in U$.

Corollary 16. In each direction in ${\rm Emb}(\ S^2\ ,\ G(4,2))$, there is a deformation of fibrations of $\ S^3$ by great circles starting from the Hopf fibration.

The group of diffeomorphisms of S^2 , denoted by Diff S^2 , acts naturally on $\operatorname{Emb}(S^2,G(4,2))$. We denote by Diff $S^2 \setminus \operatorname{Emb}(S^2,G(4,2))$ the quotient space. Let $\pi:S^3 \longrightarrow B$ be a fibration of S^3 by great circles. The B is diffeomorphic to S^2 . Thus we have the class $\{\theta\}$ in Diff $S^2 \setminus \operatorname{Emb}(S^2,G(4,2))$.

Let π_1 and π_2 be two fibrations of S^3 by great circles, and let $\{\theta_1\}$, $\{\theta_2\} \in \text{Diff } S^2 \setminus \text{Emb}(S^2, G(4,2))$ be the associated classes. We say that π_1 and π_2 are isometric if there exists a budle map F from π_1 to π_2 such that F is an isometry of S^3 onto itself. The group O(4) acts naturally on G(4,2) and on Diff $S^2 \setminus \text{Emb}(S^2, G(4,2))$. We denote by Diff $S^2 \setminus \text{Emb}(S^2, G(4,2)) / O(4)$ the quotient space.

Proposition 17. Two fibrations π_1 and π_2 of s^3 by great circles are isometric if and only if the classes $\{\theta_1\}$ and $\{\theta_2\}$ in Diff $s^2\setminus \text{Emb}(s^2,G(4,2))/O(4)$ are equal.

Remark that we can choose the neighborhood U in Proposition 15 such that U is invariant by the actions of Diff S^2 and O(4). The space Diff $S^2 \setminus U / O(4)$ is of infinite "dimension".

REFERENCES

- [1] A.Allamigeon, Propriété globales des espaces de Riemann harmoniques, Ann.Inst.Fourier, 15 (1965), 91-132.
- [2] A.Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Math., 93 (1978), Springer.
- [3] H.Sato, On the manifolds of periodic geodesics, this volume.
- [4] C.T.C.Wall, Surgery on compact manifolds, Academic press (1970), London.