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On the Axiom of Multiple Choice

By

Nobutaka Tsukada (@ E 'f% ’L—r%")

§ 1. . Introduction

By the axiom of multiple choice (MC) we mean the statement:

MCc VFor every family S of nonempty sets, there exists a function f on S
bsuch that £(X) is a nonempty finite subsét of X for each XeS.

This paber discusses the étreng£h of MC in Zermelo-Fraenkel set theoryv
with atoms(ZFA).Atoms are objects which differ from the empty seﬁ and which
have no elements. The language of ZFA conéists of = and € and of two'consﬁant
symbols O(the empty set) and A(the set of all atoms). Thé axiom of ZFA are
‘as follows: |

_ 0. Empty set. —Ix(x€0).
A. Atoms. - Vz(zé Aemz=0 AT1 J x x€2).

Atoms are the elements of A; sets are all objects which are not atoms.

A1l .\ Extensiodnality. V set X \x' set Y(Vu(ue X & ue¥Y)— X=Y).

A2. Pairing. A3.Complehension. A4, ﬁnion. A5. Power sévt. Ab6. Replacement.v
A7. Infinity.

A8. Rggularity. \/ nonempty set S {x¢ S(xAS=0).

If we add to ZFA the axiom A=0,then we get the usual Zermelo-Fraenkel set
theory (ZF).

For a set S P(S) denotes the power set of S : P(S)=iX]X is a set, X< Sg.

For any set S let PY¥(S) be defined as follows: P°(S)=S,P°M(S)=P°‘(S)v PAXS),
. P°‘(S)=\,’€<¢PQ(S) for limit & j;and let P°"(S)=\1'?‘ecl"‘°‘(8). Then we have V=P¥(A).

Let U=P*(0). Then U is a model for ZF.
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Clearly the Axiom of choice (AC) implies MC. In ZF, MC implies AC.
But in ZFA, MC does not imply even the axiom of choice for pairs (AC2) [ Jech,
Theorem 9.1,9.2,4.3 ]. So at a glance we feel that MC is very week in ZFA.
This feeling is correct in some senge , but not in another. To state these
senses and our resﬁlts, we enumerate notations. In order to make the strength
of MC clearer, we give also some interesting statements not discussed 'in

this paper.

AP, ”Antiéhain P;inciple. Each partially ordered set has a maximal antichain
(i.e., a maximal subset of mutually incomparable elements).

LW. Every linearly ordered set can be well ordered.

PW. The power set of every well ordered set can be well ordered.

CP. Cofinality Principle. Evéry linearly ordered set has a cofinal subset

which is well ordered by the induced ordering.

Reg(®R). ¥ is a regular cardinal.

NW. Every linearly ordered set which is not well ordered has aﬁ:infinite
descending sequence. |

DC. Principle of Depending Choices. If R is a relation on a nonempty set S

" such that for every x€ S there exists yg S with xRy, thére is a ‘séquéﬁce

< X | n<yw) of elements of S such that Y n<w anxn_‘_‘ .

CAC. Countable axiom of Choice. Every countable famiiy of nonémpt§?3ets
has a choice function.

UC.. The union of countably many countable sets is countable.

UC(TR). The union of countably many countable sets of reals is countable.

IC. Every infinite set has a countable subset.

IC{ R). Every infinite set of reals has a countable subset.

CL. Every cluster point of a topological space is the limit of a sequence

of elements of the space.
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CL( R). Every cluster point of a set of reals is the limit of a sequence

ACF.

of élements of the set.
EQery subspace of a separable metric space is separable.
Prime Ideal Theorem for Boolean Algebras. Every Boolean algebra has
a‘maximal ideal.
Order Extension Principle. Every partiélly ordered set can be extended
to a linearly ordered set.
Ordering Principle. Every nonempty set can be linearly ordered.
Axiom of Choice for Finite Sets. Every family of nonempty finite

sets has a choice function.

"ACn. Every family of n-element sets has a choice function.

M(w). P(w ) has a measure which is O on finite sets.

" 2VWM(W ). P(w) has a 2-valued measure which is 0 on finite sets.

. Every set of reals has the Baire property.

Every set of reals is Lebesgue measurable.

. Every linearly independent subset of a vector space can be extended .

i to a basis.

. Nielsen- Schreier Theorem. Every subgroup of a free group is a free

group.
For any field‘F, an algebraic closure of F exists and is unique upto

isomorphism.

Most of our results are shown in the following diagram.



181

Unprovable from MC ! Provable from MC

PI—0E >0P 3ACF > AC

2

NS

/,AL

AC—>VB

\ 7

CAC —IC

N

CL

Arrows —> in the diagram are either found in [Jech] or clear.
x . . ~
Arrows =» will be shown in § 2.
Looking at the diagram, we feel MC is very week in the sense that

MC does not imply weak statements AC, and UC and imp'ortant statements

2
PI, VB, NS, and DC.These results will be obtained in § 3.

Next observe that the most of interesting statements in mathematics
concerns only on sets independent of atoms (i.e.sets in U). Tﬁeorem 2.1
shows that if @ is such a statement and AC —» ¢ is provable in ZF,

MC — CP is provable in ZFA. In this sense MC is strong. Moreover MC

implies CP and CP implies some interesting statements. These are the

contents of § 2.

£ 2. Provable Statements from MC

For a formula @ in the language of ZF(i.e. without the constant

symbol A) let (f’U denote the formula whose quantifiers are restricted to U.

-4
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Theorem 2.1 Let Q be a sentence in the language of ZF such that
(%) AC » ® is provable in ZF

and such that
(x%) ‘{’U - @ is provable in ZFA.
Then PW > "is provable in ZFA.
Pr_oo_f We use the following sentences are provable in ZFA.
(1) WU for each theorem  in ZF.
2) e - Y.
(3) WY — acV.
(1) is because U is a model for ZF. (2) is because P(S)= PY(S) for e U.
(3) Since PW — AC is provable in ZF, from (1) PWY - ACVY is provable

in ZFA.

Now let N be a sentence in the theorem. Then from (% } and (1)
4) acV- <PU— is provable in ZFA.

Combining (2),(3),(4) and (¥%) we have that PW — ¢  is provable in ZFA.

Corollary 2.2 In ZFA, PW implies the following statements:
M Mlw).
(2)  —BP.
(3>  2wM(w).
(&) LM,
(5) Reg(’&&?. o , .
(6)  SM.

Proof. (1)~ (5) are direct consequences of Theorem 2.1,
(6) Let <S,d)> be a separable metric space, and {'xn‘ n< (ot be a
dence subset of S. Since the function f£: S — YR defined by

f(x)= (d(xn,x)l n < > is injective and W[R g U we can apply Theorem2.1;:

Using Theorem 2.1 we can enumerate many other statements which are

provable in ZFA+PW. Here we write only three such statements in contrast

to Theorem 3.3.
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Corollary 2.3 In ZFA, PW implies UC(iR),IC(R) and CL(R).
Theorem 2.4 MC implies CP in ZFA.

P__ro_gg. Since LW — CP is trivial and MC — LW is known, it follows
that MC — CP. But here we give a direct proof. Let < L,<> be a
linearly ordered set. Using a multiple choice function £ on P(L),we can
define 1,¢L by induction on & |

1y = the < -least element of f({ leL | V§<o( lp<d ¢ ).
Then the set { lu{ lo‘is defined } is cofinal subset of {L,<) and
well ordered by < .
Remarks 1. CP -» LW is not provable in ZFA. Since in ZF LW —> AC, if
CP ~ LW in ZFA, then CP— AC in ZF, which contradicts a results of (Morris].
2. PW = CP 1is not provable in ZFA. Since both PI - OE and OEA CP — AC,
are provable, if PW - CP were provable, PW A PI —> AC would be so. But in

medel

the ordered Mostowski\”Pw,\ PINTAC holds [ Jech,Theorem 7.1,9.2() ], a

contradiction.

[ Morris] described without proof a number of implications from CP in

ZF. They hold also in' ZFA eventually with a slightr modification.
Definition WO= the class of all well orderable sets,

wha U W3 if X is limie,

it (DA & | veon ARgeW*Y

w= Uo&éOnwD(
Theorem 2.5 In ZFA, CP implies the following statements:
(1) Each linearly orderable W-set is well orderable;
(2) If for some¢x P*(A) is not well orderable,the least such & is not limit.
(3) Every linearly ordered set has a maximal well orderable initial segment.

(4) No infinit Dedekind finite set is linearly orderable.

(5) For every linearly ordered set L,the least § not < L is a succesor



184

cardinal.
(6) Reg( Kpyy) -
Proof. (1) By induction on X we prove that if‘<L,<L> is a linearly
ordered set and L& WY, then L is well orderable.
This is trivial when ¢ is 0 or a limit, so assume 0(=(3+1.
Let L= \/§<VL§, Liew‘x. By induction on v .
If v =0, L=0 so L is well orderable. If v =H+1,L=(\J§<“L{)\J Ly
By the induction hypothesis on V , \J§-<\&Li is well orderable, and the
induction hypothesis on o L is well orderable, thus so is L.

Let V be limit. Set L'z=u-1<iL’1 for £<\/. By the induction hypothesis

on V each L'i is well orderable. Set
Z = { <L'i W E(\//\(L' ,W > is a well ordered set | -
For <L'§ WY, (L," ,Z) ef set
; T A W Z
! 3 3 = - ¢ =
CLE WY < CLLL27 0§20 v (T ATV =1 A 1< 1)),

where 1? is the {-th element in(Lé,.W). Then{X , <> is a linearly ordered
set. By CP there is a cofinal I:o CJZ such that <‘£O’<> is a well ordered

set. We may assume for each §<y at most one (L': ,W> 1is inZ:O. For
each leL set fl= [\{Z"—J(L' ,W)ei 0 léL'é § . Defi}ne < by
Il & <8y (81780 Alug 1.
Then { L,< > is a well ordered set.
(2) Let ¢ be limit and assume‘,\r\that p8 (A)’ is( well ordered for all | (3<0< .
Set
L={<pf@),wy| @(a,\(Pg(A),W) is a well ordered set such that
W x,y¢ PP(A) (xey - xuy)} .
X is not empty.Recall that every well orderd set (PQ(A),W> induces a
linear ordering W on PBH(A) by
SHT < JT(Vn<i( x‘g‘GS(-e x?:eT IA XW€¢S,\ X‘gf T),

where x‘g is the § - th element of ¢ pf a,wy. For <{PPa),w>, {Pf(A),W e :i

-7-
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e (PP, W) < <R @),y -
> @(Q' v (B=0"A 35<€- ( W and W' agree on PS(A) A ;
I LS xW.= X‘:{ A x{ € P'SH(A)/\ XWW#? M. |
Then (i,‘( > 1is a llnearly ordered set. Applylng CP and t131ng a similar
argument :as‘ in (1) we can cons’truct a well ordering on P¥(A).
(3) Let (L < > be a 11near1y ordered set. Set .
f( ﬂ <1, W) | T_ is an 1n1t1a1 segment of Land <(I,W) 1is a well
ordered set } V. a ‘ | o Lo
For (1w> (1, WS € X set
. '
<1, W>'< T W><~> IC,IV (I—I'/\ 32V’]<§(1 —1r\/\1§< g))..
Then (£, > is a llnearly ordered set. Applylng CP to <£ 5 \> and
using a similar argument as in (1) we can construct a max1ma1 well orderable
initial segment.
4) Let <L,< L) be an 1nf1n1te Ilnearly ordered set.By(3) take IC L
a maximal well orderable initial segment By the maxxmallty Iis not f:xm te.
So we can enumerate the elements of I without repetlrxons as I = { 1;’7} &<ogf
for some X 2\W. Slnce { 1 ‘ €2<o< § C L L is not Dedekind finite.
k (5“) Let < L, <L> be a llnearly ordered set and }(,x be the least aleph
not < L. Consider the set » o
Z = { @ | @ is an imjectidrr trdm an or‘d-ivnazl te L}
Forﬁf?ezvset‘ | . ;
Y < Yo dom((j7)< dom( ') s
{ dom(g)= dom((‘: ") /\—:} y< dom(\f))((?‘ﬂ ="'y /\(.f’ (ky b)‘< L‘-f'(x )))’. -

Then X , <> is a linearly ordered set. By CP there is a cofinal sequence

{ Pel &< (S } . Set Ly =-U~£<_$ rng(‘f’t). For each 1¢Lj let El be the
least ¢ such that 1 ¢ rng(k’f’g‘ For 1, 1'€L set | |

1<,1 c—->€ <$1,v(g 51'/\7; (1)<L<72 1') . Then <Lgy< oY

is a well ordered set. Assume X 1is 11m1t Since every rng(‘fe is embeddable

into L, and for each §§pl< L there is a § such that dom(¥;) Z’K"I’
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the order type of Lys<g > >U f< Fdom((?z) Z X, which is a contradiction,

So X is not limit. '
(6) Assume that cf(}{+)’§ X and let f: ] — K+ be a cofinal map such
that \;’g(gﬁ\f(z)\ iﬁ Set |

{g g is a bljectlon from § to f(f) for some €< R z’
g < 8' & rnglg) < rng(g') v ( rng(g) = rng(g’)

~ Il 81 = g A gD ().

Then (L, g) 1is a linearly ordered set. By CP there is a cofinal sequence
< gg i< éO‘L. We may assume X X X since instead of this sequence
we can take a subsequence such that rng(gg) is an increasing function of S
Let J : XXX—NX ) Ki: {8 —» R (i=} 2)be the standard pairing functions.
Define F : X s}i+ by
| )& i K ()< e
- otherwise.

Then F is surjective,a contradiction.

§ 3. Unprovable Statements from MC

First we fecall simply how to construct permutation models and some
notations and definitions. For details refer { Jech,Chapter 4 } .

We work in the theory ZFA+AC.
(1) Let U be a permutation of the set A. Using ¢ -induction we can define
T(x ) for everykx : X)) = {K(y) | yex } . Under this definition U
becomes an ¢&-automorphism of the universe.
(2) Let 6& be a group of permutations of A. For each finite set E of A
set fix(E) = {Wé%iVeeE 'i['(e)=e}. Let £ be the filter of subgroups of
@1 generated by { fix(E) | E is a finite subset of A} .
(3) For each x let sym(x) = K‘TG% & ’)‘C(x)=x§. When sym(x)€ £ we call

x is symmetric. If x is symmetric,then there is a finite subset E of A

~-0-

S
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such that f£ix(E) ( sym(x). We call such an E a support of x.

(4) Define the class ’%‘ = { xv\ sym’(:x)vé §-\',\k C "L(’t consisting of
all hereditarily symmetric objecté. We calll"rf é pefmutation model
determined by (‘,} . Then 4\ is avtrénsitive model of ZFA and contaiﬁs all

the elements of U and also A

To show that the bermtit'ation ﬁodels used below éatisfy MC it
suffices to prove ﬁhe following lemma,which is a general descriptioﬁ of the
principle used to prove tﬁat the secénd Fraenkel model satiéfies MC tJéch,
Theorem 9.2(?)] .
Lemma 3.1 Assume the set A is divided into disjoint finite sets:
A= UiGtAi‘ Let G}i be a subgroup of the symmeiric groﬁpléf‘Ai,#nd
@} be the direct sum of G}i's. Then the permutation model detérminéd
by (9;, satisfies MC.
Proof. Let X e’\,{ be a set of nomempty sets. .For each x¢X set ,
o(x) = { T(x)| Te sym(X){ . Let yg x,then
(1 {em| ¢ecsymx) e W |
(2) ’T(} Q(y){ pesym(x)f = &Q(y){ @ esym("ﬂ'(x))f.
3 {ew | © € sym(x) ¢ is finite.
(1) vex impliés y gw, so { S (y)t P € sym(x) ;_C_Lg‘ . Since sym(x) € f\
and sym(x) < {Q(y) { P € sym(x) | , {9(}’) [ Pe sym(x) jéw .
(2) follows from a simple computation.

(37) Since each Ai is finite,we can take i ...,in ¢ I such that

»] >
- < - | B i -

Ai1\"' cely Ain is a support of y. If T, 6(9} and agree on Ai1v.,.UAin,

then R(y)= T (y). Thus

0 < T | e smyG)i| < .sgsmy(y) : i‘;{'e(’,’g‘ W‘AiV"'UAi =1k]l
1 n
< | nk=1Aik‘ <w-

Using AC there are choice functions £, g on X, {o(x)l xe X f respectively.

...10..
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From (2) we can define a function on X by
F(’it(g(q(x))))= T{ ¢ £(g(oix))) | Q€ Sym(g(o(x)))t for each xe€ X and
T ¢ sym(X). (2) also implies that F is in M (1) and (3) show each

F(x) is a nonempty finite subset of x for each x¢ X.

It is clear that MCAACF — AC  is provable in ZFA. But we have

Theorem 3.2, MCAYR< W AC_—> AC is not provable in ZFA.
T , - . ,
Proof. Assume that the set A%ountable and let A=U§=°OA'1’ where

_j.n n ) B .
An— { CYRERE ,apn“ sP being the n-th prime number. Lgt 0} be the group

generated by the following permutations of Ai: 7(n=(a?,..',a: ). The
- 4 . . F i L : B n
model Q{\ determined by 0} satisfies \V[ n<<w ACn but not ACF [ Jech,

Theorem 7.(11}} . By Lemma 3.1 ian(\ MC holds. .

Next consider the corresponding statements to Corollary 2.3.
'Theorem 3.3 ° MC does not imply IC,UC,CL in ZFA.
mf_. Let the set A be countable and divide‘it into‘cduntably many
disjoint pairs: A=Ur‘::0An,An= { anO’an” ,an‘O#ani. Let § be the group
~of all those permutation$ of A which preserve the pairs. "The péfmutation
model 4f) determined by this Of is the second Fraenkel model. It is known
that (1) :‘The "sequence A |n <l&2 S is‘in /w_ ,thus ‘the set |{ An\ n < W)

is countable in v’m . - | N

(2) 1f f:w—=> A 1is ring\(\then tng(f) is finite.

(3) MC holds in @
From (1) and (2) IC and UC ire false in “w‘.'Cons’ider Au{0} as a
topological spase letting
| Uiotln<w]

{,{ani‘ | n<wAik2 § {vn< i<u>Ai

as open basis. Then 0& A —{0} but 0 is not a limit of any sequence of

elements of A.

Theorem 3.4 MC does not imply VB,NS,AL in ZFA.

-11-
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Proof. (1) Assume that the set A 1s countable and divide it into

countably many triples: A=\U® A, A= i a®, ,an 3111

n=0"n’ "n -1°%p> . Consider An as

n

o as the zero vector of An,and A as the direct

a vector space over Z3, a
sum Qf An's, Let %n be the automorphism group of An as a vector space

and 93, be the direct sum of @Srn's, In the permutation model/\(\determined
by this (% MC holds by Lemma 3.1.k To show VB is false in ’K\ it suffices to
prove that every linearly independent subset B‘€ ’k/\ of A is finite.

Let E be a common support B and the vector space A. By LE) we denote

the subspace generated by E. Assume be B — LEl. Then there is a least
n such that bn é E , where bn is the n—rth coordinate of b. Let -t be
the permutation of‘A defined by T (bn)= —bn, a1y (_bn)=bn and TC(x)=x
otherwise. Then ’TCG% and T € fix(E). Since bﬁ f[_E] ,bnfO,so T (b)#b.
From q7 € sym(B) W(b)e B,hence { b, W(b){ is linearly independent.

Set b#*=2b+ T(b). Then from the linear independence of l‘b, ’l('(b)x ,also

{ b=, "l\‘(b*')} is linearly independent. But b*+ K(b*)=3(b+ T (b))=0,

which is a contradiction. So B C {E] and B is finite.

(2) Let’ A be countable Consider the commutator subgroup C of the free
group whose generators are the elements of A. 1In [ Jech,Theorem 10.12)

it is shown that C is not free in the basic Fraenkel model. The proof

is based on the following facts: |

(*) For any finite subset E of A,there are two distinct elements u,v of
A — E and a permutation W€ @f of A such that T(u)=v, TT(v)=u and TC(a)=a
otherwise,

In the seconci Fraenkel ,too, (*) is the case. So C is not free alsok in -
the second Fraenkel model.

(3) In [Jech,Theorem 10.13] it is shown that 1in the basic Fraenkel
model the field F of fractions‘ of the polynomial ring R [A] has no

algebraic closure. The proof is again based on (%), so in the second

-12-
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Fraenkel model F has no algebraic closure.

The following theorem implies thatin ZFA MA adds no
generalrestriction to the order of cardinals.

Theorem 3.5 Assume that A is infinite. Let { I,<X>

be a partially ordered set with | A}l = |{I| and I¢ U.
Then there is a permutation model in which MC and the following
statement hold:

s 1e1y Viie 10igi &[5\ S|s;) )
Proof. Divide A into I X) disjoint pairs:

= . / . .
A= Vier Uncy{anios aniis
Let @Jr be the group of those permutations of A which preserve
the pairs. In the model /Lf] determined by this (90( , MC holds
by Lemma 3.1. Since iGI-——égjéI\ jilg is an order
monomorphism, it suffices to represent {P(I), _(_7 in the
order of cardinals. For each pe¢ I sét .
sp={aink\iep,\n<w,\k<2}. S, 1 pCIDCH is
easily checked. If p ¢ q < I, then S < S and so
=" = P~ q :
\SP\ < \\Sq\ in¥. Assume p ?_ g and take i¢p — q. Let
g: Sp — Sq be a function in Y . We show that g is not
injective. Let E be a support of g. Since E is finite we
can take an n such that {ainO’aind ~ E=0. Lét, X be a
permutation of A such that Tt(aino)=ain1,'T((ain1)=ain0 and
TC(a)=a otherwise. Since TC € fix(E), qé&sym(g). Since
i T ; = . by th hoice

g(a ini) € Sq and i & ¢ ll(g(aln1)) g(anﬂ) y e choic

))=1Tg(ain1)=g(ai ).

nt

of TC . So g(ain0)=(’T\g)(7f(ain1

-13-
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