ooooboooao
480 0 1983 0O 142-157

142
Combinatorial Set Theory and its Applications to Topology1

Franklin D. Tall2

University of Toronto

1. This ig a‘somewhat expahded versioh of a talk given at the
7th annual Japan Symposium on the Foundations of Mathematics,
October 27-30, 1982 in Kyoto. Portions of this paper were
written during the author's stay at Kobe, Nagoya and Sichuan
Universities. The author thanks those intuitions and especially

Professors Kakuda and Tugué and Dr. Zhou for their hospitality;

2. The author gratefully acknowledges support from the National
Sciences and Engineering Research Council of Canada, Grant A-7354

and travel and international scholarlyvexchange grants.



143

Combinatorial set theory - although a beautiful subject’
in its. own right - has become increasingly important in recent
years as a "bag of tricks" ‘for solving problems in a variety
of mathematical fields. Outside of logic, this phenomenon
has been most evident in point-set topology, although- - infinite
abelian group theory is not far behind, and there have been
important applications to measure theory and functional
analysis as well.  Although I presume many Japanese logicians

have heard of forcing, Martin's Axiom, and », -1 suspect ‘most
g P

are unaware of the more sophlstlcated technlques of comblnatorlal
set theory that have recently become 1mportant In thlS survey,
I shall mentlon these technloues and glve references for those
who wish to pursue them further. As 1llustratlons of the
applicahility of'combinatorial setrtheory,rI shail also mentionEi
Vvarlety of topologlcal problems that these technlques have‘ o
solved. However I shall empha51ze the set theory, since 1t 1sv
appiicable to many flelds of mathematlcs. ‘ B
Set theory flourlshed in the 1930 s, as 1s‘ev1dent to any
reader of Fundamenta Mathematlcae. In the 1940 s and 50 s,
the subject stagnated. uItswincrea31ng formalization, perhaps
brought on by Godel's proof of the consistency of the contlnuum
hypothe51s or the general empha51s in logic on proof theory
at that point, tended to isolate 1t from the rest of mathematics,
while formal developments failed to improve Godel. Cohen's
invention of forcing in 1963 gave the field a fresh impetus,
and vigorous activity has continued unabated for twenty years.

The early 1960's also saw. the full development of the partition
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calculus by its Hungarian practitioners, as well as the
beginning of the modern theory of large cardinals. By the

late 1960's and early 1970's, combinatorial set theory burst
upon the topological scene with the invention of Martin's Axiom
and ¢, so let me pause now to be specific about the set-
theoretic technigues and topological applications current at

that point in time.

1. Partition Calculus.

This subject is concerned With generalizations and
variations of Ramsey's theorem, and is known for its « —4>(k)3
notation. I believe most logicians are somewhat aéquainted
with this area so I won't pause for definitions. The best
sources ( in ascending order of comprehensiveness ) are [Kl], {wi]
and [EHMR]. There were a number of clever applications of patition
calculus by Hajnal and Juhdsz to various problems concerning

cardinal invariants of topological spaces. For example one

calculates the cardinality of Hausdorff spaces in terms of the
supremum of cardinalities of discrete subspaces, or in terms
of numbers of disjoint open sets and cardinalities of local
bases, etc. The best sources here are the two books of

Juhész, [Jul], [Juz].

2. Combinatorial Principles in the Constructible Universe L.

Jensen's ¢ and its more sophisticated relations are

powerful induction principles that enable one to e.g. handle
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2 1 objects in wq steps. Recall < says that there are sets

{a}

o a<w1' Aa 1’

is uncountable, indeed stationary. Jensen invented it to

c a, such that for each A c w {a :Ar1a==Aa}

isolate the combinatorics in I that yield a Souslin tree (for

this proof, see e.q. [KZ])’ and it has had many other applicationms.
The most typical topological one is Ostazewski's construction

from < of a countably compact perfectly normal space which

is not compact, via an inductive construction of the topology.

Good places to read about this are [Rz] and [Vi.

3. Combinatorial Properties of Sets of Natural Numbers.

Ro

A typical such principle is P{c): Suppose {Aa} A2 7,

a<i’
are infinite subsets of w such that each finite collection of
Aa's has infinite intersection. Thén there is an infinite

A c w such that for all a, A-—Au is finite.

There are many other such principles, but this is the
most useful and powerful. It enables diagonal constructions
which normally work for countably many steps, to be extended
for <c steps. For example P(c) implies the product of fewer
than 2xo sequentially compact spaces is sequentially compact
(Booth), and it implies that sets of reals of power less than
230 have the property that in the subspace topology they
inherit from the reals, every subset is an Fg (Rothberger}.

There are several sources where this material is dealt with,

e‘g° [VD]I [Tl]l {Tzll {R2]l iKz}-
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4, Trees.

Combinatorial set theory has long considered Aronszajn,
Souslin, and Kurepa trees and generalizations of them. A tree
of height wq with countable levels is Aronszajn if it has no
uncountable branches, is Souslin if it has no uncountable
branches and no uncountable antichains, and is Kurepa if it
has more than Nl uncountable branches. Aronszajn trees exist
in ZFC; the existence of Souslin trees is consistent and
independent; the existence of Kurepa trees is consistent, while
their non-existence is equiconsistent with the existence of
an inaccessible cardinal. See [Kz] or [To] for all this.
Interesting topological applications include that if there is
a Souslin tree, there is a regular hereditarily separable
non-LindelSf space [Rl], and that the existence of a Lindeldf

w,-metrizable space of cardinality -ZXZ is equivalent to

1
the existence of a Kurepa tree with no Aronszajn subtree [JW].

5. Forcing.

Until the late 1970's there were only a few applications
of forcing to topology; thé lack of suitable texts made it
difficult to learn the subject., Some early noteworthy examples
include of course Souslin's Hypothesis-if one wishes to consider
this as topology, the author's work on the normal Moore space
problem [Tl], and some results on hereditarily Lindeldf and

hereditarily separable spaces by Hajnal and Juhész, e.g. [HJ].
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6. Martin's Axiom.

Topologists were pleased with Martin's Axiom because
they could enjoy part of the power of forcing without actually
learning it. Recall that Martin's Axiom asserts that if P is

a partial order which satisfies the countable chain condition

(L.e., every collection of pairwise incompatible elements is
countable), and P is a collection of < 2xo dense subsets of
f, then thefé is a filter on @ meeting each element of .%.

There are literally hundréds of applications of Martin's
Axiom to topology. Some can be found in [Rl], [K2], [T3],
and the all—enCompassing [Frl. To mention some noteworthy
ones, MA —P(c) (Booth, see [RZ]); MA-&—ZQZ0 > Kl —> Souslin's
Hypothesis (Solovay-Tennenbaum, see [RZD; MA-+2R0 > Kl —_
countably compact perfectly normal spaces are compact (Weiss
[W] or see [V]).

Also worthy of mention are some older techniques such as

the next two:

7. Stationary sets.

It can be argued that "stationary" is to w, as "infinite"
is to w. The concept thus appears frequently in éxamples and
pgéofs in topology, especially Fodor's Theorem, which aéserts
that a function which is regressive on a stationary set S is
constant on a stationary S' ¢ S. Fleissner brought thé concept
into prominence in connection with the normal Moore space

problem - see e.g. the exposition in [T4].
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8. Independent families; almost disjoint families; A-systems.

There are several useful properties that a collection of
subsets of a cardinal Kk can have; the three I have singled out
are frequently useful in set theory and topology. All three

are discussed in [KZ]. A family QA of subsets of K is independent

if for every finite Rca, hﬁ{As :A e 8}| = «, where A is
either A or k -A. It can be shown that for every K, there is
a family of 2K independent subsets of K. This is essentially
equivalent to the fact that the product of 2% copies of the
discrete space with 2 points has a dense set of power «.

20

Hausdorff used independent sets to show there are 22 ultra-

filters on w,.

A family & of subsets of K is almost disjoint if any two

have intersection of power <«k. The question‘of the cardinality
of almost disjoint families is nét =To) simple: see [Bl]. Such
families can arise from and are useful in constructing Hausdorff
spaces, since e.g. convergent sequences have almost disjoint |
ranges. See e.d. {Tl}.

The simplest case of a A-system involves finite subsets
of wq. A collecfion 0 of such subsets is said to form a

A-system with root r if ANA' =r for all distinct A, A'e (L.

The A-system lemma asserts that given uncountably many finite

..

subsets of Wy uncountably many form a A-system. This lemma

is frequently useful in reducing finite support problems to
finite problems, for example showing that if every finite

product of countable chain condition topological spaces satisfies

the countable chain condition, so does every product.
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During the 1970's, point-set topologists - who now called
themselves "set-theoretic topologists"-—busied themselves
applying the above techniques, but with very few exceptions
avoided learning forcing. The little bit of logic involved was
too much for them. Fortunately, Kunen's book is now changing
that situation. The set-theorists however continued to develop
new techniques and that is what I shall discuss now. There is
not much new in items 1, 3, 4, 7, 8 above, but 2, 5 and 6 have
had many exciting develo?ments, as has 9: large cardinals.

Let me first consider 2). Jensen developed a whole series
of powerful combinatorial‘propositions in L. The best source
for Jéﬁsen's work in L is Devlin's forthcoming [D2], of which
[Dl] can be considered a very early‘version. The most difficult
of Jensen's combinatorial principles involve morasses, which in
their simplest form are devices for constructing objects of size
82 in Kl steps, using countable subobjects. The canonical
example of such an object is a Kurepa tree, and indeed a morass
can be thought of as a Kurepa tree with additional structure.
There are only a few people in the world who are comfortable
with morasses, but there have recéntly been great simplifications
of the theory, due to Velleman [Ve] and to Shelah and Stanley
[SSJ, who find forcing axioms eqﬁivalent to the existence of
morasses, axioms that are much easier to work with, alﬁhough
still difficult.

We should also mention Jensen's profound Covering Lemma,

which says that either

a) for every uncountable set X of ordinals, there is
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an uncountable constructible Y such- that XcY and.]XI = IY[

#

or b) "O" exists" (which implies the consistency of the

existence of inaccessible cardinals).

A generalization due tovJensen and Dodd [DJ] uses the i
Core Model K 1nstead of L, and gets the con51stency of (many)
measurable cardinals in b) An 1mportant topological application
due to Fleissner is that the normal Moore space. con]ecture
implies the con31stency of the ex1stence of measurable cardinals,
and hence that 1ts consistency cannot be proved [F1.

The theory of forcing has advanced significantly in the
past several years, culminating in the development ofiiteration
axioms mnch stronger than Martin's Axiom. The princ1pal figures
here have been Shelah and Baumgartner. Iterated forCing is
simply»repeated forcing. It is useful for proving the consistenCy
of universal statements, because one takes care of each object
in gquestion, one after another. E.g, if one wants to show -
as did Shelahv[S]-that there is no P-point in RN - N, one |
systematically‘forces to kill all possible candidates for
P-points. Among the difficulties is to have control over the
end result of the iteration, knowing the individual steps.

For eéample; are cardinals preserved ? There have been hnndreds
of sophisticated applications of iterated forcing techniques

in the past few years; theﬂbest introduction isvth]. The most
promising new technigue in iterated forcing is that of proper

forcing, introduced by Shelah.

Definition. P A = {xcx: x| <., €c PKX is closed
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if every chain in ¥ of length <K has an upper bound in €.

¢ is unbounded if (¥Xe P A) @Y el)(XcY). & <P A i's
stationary if it meets every closed unbounded set. A partial‘
order is proper if forcing with it preserves stationary subsets

of Pﬁlk, for all X.

The Proper Forcing AXiom (PFA) is Martin's Axiom with

the countable\éhain‘cohdition‘replaced by "proper". It is not
difficult to show that both countable chain condition and
countably closed partial orders are proper. What does féquire
effort is to show tha£ proper is presefved by iterations ~see
e.9g. [D3]; Most applications of proper forcing so far have in
fact used finite ﬁixed iterations of countable chain condition

and countably closed partial orders.

Theorem (Baumgartner-Shelah). Con(there is a supercompact

cardinal) —> Con(PFA + 23{0 = X 2.)’ .

» L - : [\
For a proof, see e.g. [D3]. It is not known whether 2 0

can be greater than..s’\’2 here. The best sourée t6 learn ‘about
PFA is Baumgartner's article [B3]'in the Handbook:of Set-
theoretic topology. (See aléo [D3] and [S].) This forthcoming
compendium of more than 20 survey articles will set the tone
for Set-theoretic topology for years to come. (There are three
additional articles of set-theoretic interest in this volume:
K1, M1, [To].)' Some typical applications of PFA are

1) there is a Boolean algébra of cardinality 280 not
embeddable in P(w)/(finite sets) ,

2) every real-valued function from an uncountable set

-10-
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of reals is monotonic on an uncountable set,

3) every T3 hereditarily separable space is hereditarily
Lindelof.

Actually, these particular ones do not need large cardinals,
PFA + 23“0 = Kz does however imply

4) there are no Kurepa trees,
so in fact it does have large cardinal strength. For more
details, see [B3] where many other topological and set-theoretic
applications are given. |

Finally, I wish to talk briefly on the subject of large
cardinals. It has become clear in the past few years that these
cardinals cannot be ignored, since they have cohsequences forv(
small cardinals such as ﬁl and 280. This has become evident

not only in topology, but in measure theory and the structure

theory of ideals [BTW] as well. The best reference on large

cardinals is the survey [KM], although [J] often needs to be
consulted for details. 1In general -and speaking loosely - large
cardinals have the property that if a proposition‘G’ holds

for all A <k, then %(x) holds; and for "very" large cardinals,
¢ holds for all A>k. (A typical large cardinal is a weakly
compact one; a typical\very large cardinal is a supercompact
one.) To make these cardinals relevant to "ordinary" mathematics,
one forces to collapse them, say to ﬁl or Rz, or else adds

K many subsets of some smaller cardinal, e.d. ﬁo, and argues
that enough power of the large cardinal remains to get e.g.
(VA<<§2)?(X) —> (YA)¥(A). For example, in the proof of

X
Con (PFA + 250==32), one only has to find generic sets for partial

- 11 -
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ordeis of cardinality less than the supercompact (which becomes
§2), so that the proof is much like that for MA. Putting it
another way, a typical iterated forcing argument allows one

to take care of objects of cardinality <k in k stages; if «

is very large, one argues by reflection that objects of unbounded
cardinality have been taken care of as well. Thus large cardinals
plus iterated forcing can be used to prove the consistency of"
universal statements without cardinal bounds. For a typical

topological example, see [TW], where it is shown that

Theorem Con(there is a supercompact) —> Con(every normal

Moore space is metrizable).

I should also touch briefly on two other areas of combinatorial
set theory: the structure theory of ideals and the Axiomrof
Determinancy. The former is an outgrowth of the study of
saturated ideals. As yet its topological applications are few;

a noteworthy one is to a problem of Katetov concerning topological
spaces without isolated points on which every real-valued function
is continuous at some point. See [KST]. The only topological
application of AD can also be found there, as Woodin's inner

model for ZFC is used.

AI have treated the subject of combihatorial set theory and
its ép?lications to topology all too briefly, but this is after
all supposed to be a concise survey rather than a book. Let me
close by expiessing the hope that there will be more Japanese

work in these areas in the future.

-12 -
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