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Introducticn.

How semantics of data base is composed ? Semantics of the
telatienalpdata.baseAmodel is .composed of basic relations in
relational algebra. Relational algebra is the set of relations
which have a sort of algebraic structure. We can regard it as a
sort of category(z). Topos is the category which has a one to one
correspondence to higher order intuitionistic logics(3). In this
paper, we construct a topos with sets of tuples. Suppose a
relation is a set of tuple. Then, by a one to one correspondence
to higher order intuitionistic logics, a relation corresponds to a
predicate in higher order intuitionistic logics. Therefore, we can
regard semantics of the relationalydata base model as predicate
calculus in higher order intuitionistic logics. ‘

As semantics of natural language, Montague semantics is well
known. In this, semantics of a sentence is translated into a

(4)

formula in intensional logics by the Principle of

. . 4
Compositionality. When we ignore intentional operators( ), we can
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jdentify formulas in intentional logics with those in higher order
jptuitionistic logics. Therefore, a part of semantics of natural
l1anguage corresponds to predicate calculus in higher order
jntuitionistic logics, namely semantics of the relational data
pase model, by topos. Also, we can make the correspondence from
a part of semanticé of the relafional data base model to semantics
of natural language, by. topos. |

In this paper, we try to construct topos with sets of tuples

so that it is possible to make the above correspondence.
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Definitions.

" OQur aim in this section is to define tuples and relations.
At first, we define symbols as follows.
1) Sequence converter.

Let (tl""'tn) be a list. ' The segquence of (tl,...,tn) is

defined as tl,...,th'and'denoted by‘(tl,...,tn);
2) Length of a list, index list.

Let (ty,...,t ) be a list. The length of (fl,...,tn) is
defined as n and denoted by len((t;;...,t )). Let ord(n) be {m;

m is a natural number and m < n}. We define index lists of
(tl,...,tn) as sequences that:are  -composed of elements in ordftlen(.
(tl,...,tn))) without using the same elément twice. Namely, if
o is a 1list (il""‘in)’ 1< ij < len((tl,...,tn)), j=1,...,m and
-ii,¢..,im'are di;joint, a is a index list of (tl,...,tn). Let o
be an index list of a list t. We define & as an index list that
is composed of elements in ord(len(t)) in ascending order except
those of «.

3) Projectioh.

Let t be a list. Let o be an index list of t such that o =
(il,...,im). The projection of t with.o is defined as (til,...,tim)
and denoted by t|a.

4) Selection set.

We define {T,F} as the select set. S denotes it.
5) Alphabet set.

X denoges an alphabet set.

We define tuples, type of them and relations, types of them

as follows.
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1) Let a be an element of E+. :Let s be an element of S.
(a) and (s) are tuples of type (1) and (0), respectively.

2) Let»tl and t2 be tuples of type Ty and Tye respectively.
(El,EZ) is a tuple of type (EI'EZ)‘ (tl'tz) is a tuple of type
(rl,rz).

3) Let R be a set composed of tuples of type t. R is a
relation of type - t. |

4) Let R -be a relation of ‘type t. If there is an index list

a of t such that R gives the mapping

{r]a; r € R} > {r|¥3; r e R},

then (R) is a tuple of type tlat‘a.

We define D, as the: set.of all tuples whose types are t.

t
Especially, § denotes D(O)' Let 'R and o are a relation of type t

and an index list of t. R}a denotes {r|a; r ¢ R} . TS
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TOpOS .
Let Re be a couple of objects and morphisms which are definegd
as follows.
1) Object.
Relations are objects.
2) Morphism.
Let R, and R, be objects of type tl and type t2' If there

1 2
is an object R so that (R) is a tuple of type tlt2 and there

exists an index 1list o so that
R|a=Rl, R|&=R2,
~then (R) is-a morphism.

Since a morphism is a mapping, we define the composition of
morphisms as the same of mappings. Then, the associative law is
satisfied in these.-compositions and there exists an identity
mapping. = Therefore, Re is a category.

In a category Re, f:A —>B or A —£—>B denotes a morphism
from a object A to a object B. Especially, an identity mapping

d . .
>A, and an inclusion

mapping from A to B (st AC B) be done by i:A—>B or A _l >B.(5)

t,

from A to A is denoted by id:A—>A or A =

And for each tuple (F) of type ty + A morphism-£:A __ _> B denotes

(F) and for each aecA, f(a) denotes a value correspondent to a

with f.
Next, we prove that Re is a topos.
Lemma 1. Let Rl and R, be objects of Re. A product of Ry and R,

exists in Re.

Proof. Let A and B be objects of Re. Let AxB be the following
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relation.
{ (a,b); ac A, beg B }.

Then, the fdllowing relations II; and [I, are subsets of Riszle

and RlxRZXRz, respectively. (Hl) and (II,) are morphism 7,:R fo‘

and wz RlXRz———>R2, respectlvely.

1

_—->R1

I = { (F),F,,F)); ryeRy, I eR, b
.Hz = { (rl.rz.rz). 1€R1, r,eR, }.
Suppose there are an object R and morphlsms f: R—-——>R1 and

g:R—>R Then, the follow1ng relatlon <F,G> is a subset of

2°

RXRIXR2 and (<F G>) is a morphlsm <f,g> R————>Rl

<F,G> = { (T¥,T(Y), _T“)) rsR }.

sz
For each element reR,

f(r),

g(r).

n1°<f,g>(r)

]

ma °<f, g>(r)
Therefore, w1°<f,g> = f, m,°<f,g> =g

and the following diagram is commutative.

Suppose there is another morphlsm k R

>Ri§R2 éucﬁ‘that
w1°k £ and w2°k g. :

Then, since for each reRfa“ RS R

'<n1°k n2°k>(r) <m %k (T) , 7, °K (L) >

x(r),

- <1 %k, T;%k> = k.
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Since <ﬂl°k,n2°k> = <f,g>, k = <f,g>.

Therefore, R1><R2 is a product of Rl and R2. QED.
Lemma 2. Re has a terminal object.
Proof. Let R be a relation. Rx{(T)} is the unique morphism froh
R to {(T)}. Therefore, {(T)} is a terminal object.
Lemma 3. Let A and B be objects of Re. A power object of B with
A exists in Re.
Prrof. Let E and F be any objects ef'Re. Let E' be the following
relatiéh. |

{({(Z,F(¥)); reA}); f is a morphism A —>B}.
Let (—)A be the functor satisfying the following conditions.
i) For each object C of Re, (—)A(C) = CA.

ii) For each morphism g;C —>D of Re, (—)A(f) isﬁmorphism

C >DA, and

(-)2 (q) (({ (F,ETE)): real)) = {(T,57E(E)); rea)
for each element ({(T,T(xr));reA}) of c™.

By Takeuchi's (3), if (-)A is a right adjoint functor of
(-)yxa, BA is a power object. And if the following is provable,

A

(-)” is a right adjoint functor of (-)xA.

There exists a natural isomorphism, namely

B,C
171 A
| Re(BlXA(CI) » 0_1 >R.e(Bl,Cl )
. - B.C
l Fl 171 F2
"y 932c2 A
Re(BZXA,Cz) =T >Re(Bz,C2 )
B,C is commutative
272 .
where eBici is an'inverse mapping of eBiCi,ai‘= 1,2 and Fl and FZ are

mappings such that for morphisms fczclé——>c2 and fB:Bl———>Bz, and
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=F

elements"geRe(BlXA,cl) and haRe(Bl,C A
O~O (. .
fc ge°( )XA(fB) and

Fi(g) |
— - A o 0
Fyh) = ()R(EQ) Chogy
Suppose for each element geRe(BxA,C) and each element beB
B c, (9) ) = ({(r,g(b,x)); reA }) , i = 1,2.
since g(b,r)ec for elements reA and beB, ({(r,g(b,r)); reA }) is

an element of CA. From the above definition,

({(f,(fc°g(fB(b)),?)); reA }) and

1 B c(g)(b)

l l i
eB CcoFp(9) (b) = (L(F,TES G () AT ) (B,)) s red 1)
272 2 2
= ({(x, (f °g° (fy (b) r)); reA }).
2 2
for each element beB2 . Therefore, the above dlagram is
commutative as to eBlcl and QBZCZ.
Suppose © B c. (g) ((ba)) = £f(a) and g(b) = ({(a,f(a)); aer })

ii
for each element geRe(Bi iA)' baBi, atR, i = 1,2 . ‘Then,

B c (g) ((b,a)) = g(b)(a)

= f(a) “¢ and-

B C‘(g)(b)(a) =g(b)(a), i = 1,2 for each agA.

From the above deflnltion,

og—1 L] = £ ©
F1°0g ¢ (9 (B/R) = £:°07 1 (@°(-)xalfy) ((B,@))
| £.°0~ Blcl(g) ((£5(B),2))
Suppose g(f (b)) be ({(a,f'(a)); acA }). ‘Then,
F,°0 5 o (9) ((B,3)) = £.°f' (a) © and -
e ! 1
2) B,C, F (g)((b,a)) = 6 2 (-) (f )°g° f ((b,a))
= 6k, "o (£0) °g ((£5(b) ,3))
2
= Ofl(a)

Therefore, the above ‘diagram is éommutatlve. QED.
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Lemma 4. Re has a subobject classifier .

Proof. By Takeuchi's(3), if a morphism t: {(T)}—>Q satisfies

the following conditions, t is a subject classifier.
(1) For each morphism f: A —>Q of Re, there exist morphisms

g, ‘h and ah'bbject B such that
(1) B—2  sa
g j’ l £
, R /
(Tyr—mm>0 . is pull back.

>A, there exists uniquely

(2) For’each;monomorphiémmf:A'
the mofphism g such that
e
t C
{(T)}—0 4 S is pull back.

Suppose t((T)) = (T). -

First, we consider the condition (1). Letyﬁ be {a; f(a) =
(T).}. Then, there exists a relation {(a,f(a)); aeB} and it is a
subset of {(a,g(a)): aeA }. ({(3,f(a)); aeB }) is a monomorphism
B —>A . Let,h_be:avmorphism”({(E,fTE)); aeB 1). Since {(T)} is
a termigal‘ijggt,atpeigyexisps,a morphism B —>{(T)} . Let g be‘
the morphism.  Then, diagfényﬁfl? is'ccmmutative.

Suppose there existian;objegt‘c apd morphisms j and m such

{T)}———>Q . is commutative. .

Then, cC={c; ceC,>f°j(c) = (T) } .

-9 -
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Let j(C) be { j(c); ceC } . Then, JF(C)E{ a; f(a) = (T) }
and - jC)e B.
| Therefore, j is a morphism C —>B and from definitions of h
and the terminal object,
h%3=3 and
g°j =m..
Suppose there exists a morphism k such that h°k = j and
g°k = m . Then, from the definition of h'and,the above proof,
k=3 - ,
Therefore, (D1) is pull back.
Next, we con51der the condltlon (2). Let f(a') be {f(a'); a'eA"'
} .‘ There exists the relatlon K such that o o

“f .
= { (3" ,T), f(a )ef (A" )}"{(a'.F), f(a" )qu(A )}

Ke =
(Kf) is a morphism Xg ¢ A —>Q such that for each aeA,
xg(a) = [ (D) if acf(A'),
(F) otherw1se.'

Let g be Xge Then, (D2) is commutative.
Suppose there exist an object B and morphisme m'and_nﬁsﬁeﬁr

that B n

A'__L_>A : -
KT}————————>Q is commutat:lve.’”~

. Let n(B) be {n(b), beB } . Then n(B)Cf(A ) .o
Since f is a monomorphlsm, f is a 1nto—mapp1ng. Thefefore, there

ex1sts the relatlcn {(a ,a), aéf(A ), a‘er’, f(a ) = e } and it is

the 1nto—mapp1ng f l; f(A ) >A' such that for each a f(A )

~10--
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£(a') = a and £ Y(a) = a°

Let k be a morphism's composition f_l°n . Then, f°k =n .
Similarly to (1), if there exists k' such that h°k' = j and
g°k' = m , then k = k' . Therefore, (D2) is pull back.

Suppose there exists the morphism g’ éuch that (D2) is pull

back. Let Ag' be { a; atA, g{a) = (T)} . Then,

Y Al 5__..__f___>A
l | s
{{?)}———>0 is commutative.

From the definition of pull back, there exists only one morphism

k such that f°k = i . Since f°k(Ad) = i(Ag,) = Ag, ’
f(A')>A .
gl
Since f(ar) Ag '
f(a*) = Ag' . | :
Therefore, g = x; - QED. .

Therem 1. Re is a topos.
Proof. By Takeuchi's (3), the category which has products
of any objects, the terminal object, power objects and a subobject;?
classifier is a topos. . QED.:
Let Ry,...,R be objects of Re. We define Re(Rl,...,Rn) as a'f
couple of the following objects and morphisms. :
(1) (Object).
a) Rl,...,Rn,¢ and @ are objects.
b) Surpose R is an object. Any‘subsets of tuples in R

are cbjects. Let t and o be a type of R and an index 1list of

_ll -




167

t . Then, R|a is an object.
c) Suppose R and U are objects. Then, RxU, RYU, RAU and
R-U are obijects.
'd) Suppose R is an object. If (R) is a morphism of Re,
{(R)} is an object.
(2) ‘(Morphism). :ft“fé'ﬁhe‘Same'as’the*mérphism“offgetf
Ahyimérpﬁigﬁé?wﬁiéﬁ are used to prové ‘above lemmas satisfy -
above conditions. Theréf&ré, as-to PRé(Rl,.;.;Rh), abovg lemmas
are provable.
Cor 1. ‘P}ie(Rl‘;.'.‘.,Rn)* is a top’cgs.n
Also, PRe(Rl,.,.,Rﬁ}’ié*a'éubéategory of Re. Rules of
(object)“b)'and c) éf PRé(Rl[L:.;Rﬁ)‘are those of operatiocns of

relational algebra(l)i The rule of (object) d) and (morphism)

are not contained in relationalkalgebra(l). Theses rules are
necessary for -higher order intuitionistic logics, namely topos.
In these, as mappings must be relations constructed by ruieswa),
b), ¢), and d), constructions of relations which are mappings must
be explicitly expressed. Therefore, PRe(Rl,...,Rn).iS”constructed
by relations which are generated from base relations Rl,...,Rn by
rule d) and operations of relational algebra.

Similarly to PRe(Rl,...,Rn), as to Re, we can find base

relations. They are relations D, for any types t because any

t
objects of Re are those which are generated from them by rules a)

d).

- 12 -
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Relations and Intuitionistic logics.

Topos here is one of those which are defined in the previous
section. By Takeuchi'(3), the relation A which is an object of
topos has one to one correspondence to type A predicate set in
higher order intuitionistic logics. Let t bé a type of relation
A. Let ﬁt be the union of all relations which are objects of

topos. Then, the following relation K

A is a subset of Dth.

KA =~{(-EIT,); rEA}U{(;IF)'; r¢A] .
Since Bt and ﬁtXQ are objects of topos, KA is an object of topos.
Also, since (KA) is a mapping ﬁf"‘>9' it is a tuple of type 0t

and is an element of an object QDt of topos.

Since {(T,(KA))} is a subset of {(T)}XQBt, it is an object of
topos and is a;mapging {(T)}———>96t . Therefore, ({(T,(KA))}) is
a morphism of topos. By correspondence to higher order

intuitionistic logics, the morphism corresponds a predicate of

type Dt .

Let (G) be any elements of QDt. (G) is a morphism g:ﬁt———>9.

The following relation Kg is made from g.

Kg = {(¥,T); reﬁt, g(r) = (T)}.
Since Kg is a subset of Bt , it is an object of topos and
K = (G).
g (6 -

Therefore, each element of a relation QDt is determined by each
relation A of type t. Each predicate of type QDt in higher order
intuitionistic logics has a one to one correspondence to each

relation of type t. Accordingly, the following theorem is

provable.

- 13 -
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Theorem 2. Each relation which is an object of topos has a one
to one correspondence to each predicate in higher order
intuitionistic logics.

(1) that Dr, Codd proposed construct

Relational algebra
relations from the other relations. By the previous section,
topos contain relational algébra. We consider here what of
relational algebfa correspond to hiher order intuitionistic iogics.

At first, we translate eachboperation of relational algebra
by our notation and consider the morphism Correspondent to it.
(Relational algebra).

1) (Cartesian product). Let A and B be relations. AxB is
the cartesian product of A and B.
AxB = {(3a,b); aeA, beB }.

2) (Union, intersection, difference). Let A and B be
relations of the same type. The-union, the intersection and the
difference of A and B are AYB, A.B and A-B, respectively and

AYB = { a; acA or aeB },
A~B = { a; aeA, acB } and
A-B .= { a; aeA, a¢B } .
3} (Projection). Let A and a be a relation of type t and an

index 1list of t, respectively. The projection of A on a is Ala

and Alo = { ala; aeA }.
4) (Join). Let 6 , be a predicate on D, xD, ', namely a
morphism ﬁt th —>0. Let A and B be relations of type4t1 and t2
« tg CEYPE T L

yrespectively and do o and B be index list of tl and t2 such

that ta = tl}q and t8'='t2l§ p respectlvgly. The Gas—join of A

- 14 -
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on oo with B on B is A[a@aBB]B and

Alad ,B8]B = {(a,b); achA, beB, 8 ,(a[a,B[8) = (T)}.

B

5) (Restriction). ZLet 6 ., be a predicate on ﬁt Xﬁt , namely

B
- = . a 8
a morphism D_ xD_ —>Q. Let A, o and B be a relation of type t

ta tB

and index lists of type t such that ta = t|a and tS = t|8 ,

-restriction of A on o and R is A[aﬁu

respectively. The B, B8]

B
and A[aeaﬁs] = {a3; aea, @aB(ETa,ETB) = (T)} .

B

Since the operation division is constructed by the other
operations, we don't consider it here.

The following lemmas make a correspondence from above
4operations 1), 2) to morphisms and algebraic structures in topos.

Let A be an object of type t of topos. The following relation
K, is a subset of D, xQl. Therefore, it is an object of topos.

A t

Ky = {(@,T); aear } {(a,F); acD,~A }.

Also, (KA) is the following mapping Xav namely morphism.

Xp * (T) if rea ,

: ﬁt———>Q such that for each rsﬁt, Xa (¥)
(F) otherwise.

XA(I)

is the classifier of the inclusion

By the proof of lemma 4, Xa
mapping iA : A >5t and the following diagram is pull back(3).
i_.
A ————é—m——>5t
e
{(Th——>Q .
According to theorem 2, Xa corresponds - to the,predicate which

corresponds to an object A of topos.
Let I and NI be relations {{(T,T,T)} and {(T,F)}, respectively.

I and NI are subsets of {(T)1}x0xQ and {(T)}xQ, respectively and

- 15 -
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are objects of topos. Also, (I) and (NI) are morphisms {(T)}——>
ax and {(T)}xQ, respectively. By Takeuchi's (3), there exist

classifiers of (I) and (NI)(3}’ (5).

A and -7 denote classifiers
(I) and (NI), respectively. ‘

Let UQ be the relation {(r,F), (F,7), (T,T)}. UQ is a subset
of OxQ and is an object of topos. There exists the inclusion
mapping i : UQ—>0xQ and it is a morphism of topos. Topos have :
the classifier of i(3)"(5). V denotes it.

By the definition of classifier, each of A, 7 and V is onily

one morphism such that each of the following diagrams is pull

‘back.

(my3—3  soxg ()1 — 1) oxg Ug—— 2t 50xQ
l i R l ’ j’v 1 i j ¥
{(T) }——————>Q , {(MM}—>0 and {(T)}——>Q.

Let A and KA be an object of type t of topos and the
following relation, respectively.
Ky = {(a,T); acA }V{(F,F); aeD,—A } .

Then, K, is the mapping Et—*‘>9- Xp denotes a morphism (X, .

Lemma 6. Let A and B be objects of topos. Then, AxXB is an object
of topos.
Proof. Trivial. \
Lemma 7. Let A and.B be objects of the same type t of topos.

XAnB =A°{Xpr Xg) o

XavB =V°(XA’ XB) and
Xp-g = A°(Xpr 7%xg) -
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Proof. 1) Suppose acAnB. Then,

xAnB(a) = (T) and
A°(xy(a), xg(@)) = A°((T,T)) = (T).
Suppose aeﬁt—AnB. Then,

XAnB(a) = (F) and

A °(XA(a): XB(a)) ={A°((T,F)) = (F).
AC((F,T))
N°((F,F))

Therefore, XAﬂB = AO(XA' xB) .

2) Suppose acAYB. Then,

XAuB(a) = (T) g and

Ve (X (@), xg(a)) = IVO((T'F))]
Ve ((F,T))

(T).

Suppose aeﬁt—A—B. Then,

XAuB(a) = (F) and

Ve (x(a), xgla)) = Ve ((F,F)) = (F).
Therefore, Xavp = V°(xA, XB)
3) Suppose atcA-B. Then,
XA_B(a) = (T) , and
At Xy (@), 7%xg(@)) = A°((T,T)) = (T).

Suppose aeﬁt—(A—B). Then,
Xp_p(a) = (F) . and
A°(XA(a): 7°XB(a)) ={Ac((T,F)){ = (F).
Ao((F,T))
A°((F,F))
Therefore, Xap = AO(XA' 7°XB) QED

-17 -
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Lemma 8. Let A and o be an object of type t of topos and an

index 'list of t. Then, there exists th: morphism such that

A >Ala.

proof. Since {(a,aJa); acA } is a subset 6f AxAla, it is an object

of topos. Also, the relation is the mapping A—>Ala. QED.
Let A and B be cbjects of type tl and t2 cf topos,

respectively. Let a énd B be index 1ist of tl and t2,

respectively. Let 0 be the following.

{(ETGIHBIT); ach, beB, eCtB (aTu:HB) (T)}
{(ETGIF]_BIF); acA, beB, eOtB (E-I_QIBTB)

Then, 0 is a subset of A]axB|BxQ and is an object of topos. (©)

(F)} .

>Q. eT denotes this morphism.

is a morphism of topos A|axB|B8
By definitions, A[a@aBB]B is a subset of AxB.

Therefore, A[a@aBB}B is an object of topos and there exists the

morphism i : A[u@aBB]B———>AxB in our topos.

Lemma 9. The following diagram.is pull back.

i
(D1) A[aeuBB]B —_  >AXB

l | o

M} —— 2 .

Especially, suppose 0 is "=" and morphisms P, : Ala=g]B >A,

B :
Py :Ala=B]B——>B, P_ : A—>alaxB|B and Py B—>A|axB|B are
(.{(&5b,3); (3a,B)eala=B]B }), ({(a,B,B); (a,blerla=8]B }),
({(a,aTa); aeAr }) and ({(b,b[B); beB }), respeciivély; VThen, s}ﬁce
the type of Ala is the same type of BIB, morphisms PA' PB' Pa and PB

are those of our topos and make the following diagram be pull back.

-18 -
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PA
(D2) Ala=g1B >A
PB E POL
i
B >A{axB|B . .
Proof. 1) The proof of (Dl). By definitions of i and GT, this

diagram is commutative. Suppose there exist an object C and

morphisms m and n such that the following diagram is commutative.

C n
Ala8 4818 i B
m
| | o
{(m} >0

Let i(A[a8 gB]B) be { i(@,b)); (E,E)eA[aeaBs]B }. Then,
since i is an into mapping, there exists an inverse mapping of i

i1, i(afas  B1B)

8 >A[a8uSB]B in our topos. Similarly to the

proof of lemma 4, there exists only one morphism k such that
i’k = n . ‘
2) The proof of (D2). By Goldbatt's (5), it is trivial. QED.%
Let A, o and B be an object of type t of our'topos and index
list of t. Let © be the following. :
{(3,T); aed, 6 ,((ala,a[B)) = (MIV{(E,F); ach, 6 ((alx,al8))
= (M} . ;
Then, Since @ is a subset of AxQ , it is an object in our topos
and (0) is a morphism A ——>§ in

our topos. BT denotes this
morphism.

Lemmma 10. The following diagram is pull back.

i
A[a@aBB]B —_—>A
| | o
{(T)} ' >0 .

- 19 -
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Proof. Similarly to the pre&ious lemma, it is provable. QED.

By lemma 6 v 10. Each operation of relational algebra
corresponds to a morphism or an algebraic structure of our topos.
Next, by taking theses correspondences, we make correSpondences
from operations of relational algebra to higher order intuitionistic
logics. |

(1) (Product). Let A and B be objects of type t1 and t2 of
our topos, respectively. Similarly to lemma 7, XaxB =‘v°(xA,xB)
is provable. Therefore, by theorem 2 and the coorespondence(3)
from our topos to higher order intuitionistic logics, if predicates
correspondent to Xa and Xg areAPA(a) and.PB(b), respectively. ’XAXB
corresponds :to

P,(a)VP (0 .
(2) (Union, intersection, difference). By lemma 7 and the

(3), (5) ffom our topos to higher order intuitionistic

correspondence
logics, if predicates correspondent to Xa and,XB are PA(a) and PB(a),
respectively, Xave’ XaaB and Xp B correspond to »

PA(aﬁ/PB(a), PA(a)APB(a) and pA(aLV7PB(a) ;respectively.

(3) (Projection). By Takeuchi's (3), we define a morphism
(3A)f : Y —>0 for each morphism f : AxY —>Q, in our topos. Let
Fa : A —>Q be ({(@,F): aeA }). Then; F, is a morphism of our
topos and for each aeh, _FA(a) = (F) . By the definition of topos,

A (3)

there exists the morphism fFA‘ 1 Y —>Q such that the following

diagram is commutative.

. AXY
idx fFA\ i FoxY
AXQA ev > 0
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In Takeuchi's (3) if f and g are morphism A >B and A —>C,
respectively,

<f,9> = ({(£(2),g(3)); aca }).
We define (3A)f as follows.

(3A) £ =7°(=QA)°<§,fFA\>(3),
By Takeuchi's (3), (=QA)°<%,fFA‘> is a morphism of our topos.
Therefore, (3A)f is a morphism of our topos.

In Takeuchi's (3), Va) £ (3) corresponds to the universal
quantifier and the existential quantifier is constructed by VQ‘—>
and A. In topos, this composition of Vﬁ —> and A coincides with
~(3a)f. Therefore, we can make~(3A}f correspond to the existential
guantifier.

Let A and a be an object of type t of our topos and an index
sequence of t. Then, the following lemma is provable.

Lemma 11.
Xajo =@BD)x, -
Proof. Suppose aloecA|o. By Takeuchi's (3),

(‘Btl@)°XA(ala) ='7°(=Qﬁtl&)°<xA,’F5t1&1>(a)a)

-3 1 (P
7 ° (=D [8)° (xp FDtl&):
= (T)

-Suppose alaeﬁtla—A . By Takeuchi's (3),

(Bl xala) = 7°(Bla) o<y, 75 2> (ale)

°(=.D,|d)°(F= | ,F= =~
7 QDtla) (FDtla ‘Dtla)
= (F) - . QED.

If the predicate correspondent to Xa is PA(a), (Projection)

corresponds to

3'pr((x,a)) (3)

Xala
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4) (Join) .
Lemma lé.

= o o
Xalab gB1B ~ A <A (XA'XB)’SOLB> :
Proof. Suppose aead and beB. o

Xa a6 B]Bua B)) = 6., (@[a,B[8)) and
AC<A® (XA'XB)'GU.B>((a’b)) = /\°(/\°((T,T)),eds((‘é—ra,BTB))
| o = 0,5(@Ta,BT8)) .
Suppose a¢A or b¢B. ‘ ’
XA[aQ B]B((a /b)) = (F) | r'>ana
n2<n Ui g 18,5 (EB)) = A°(F,8_, ((aTo,BT8)))
= (F) . QED.

1f predicates correspondent to Xpr XB and 6 B are P (a), P (a)
and P ((ala b{B)), respectlvely XA{ue B]B corresponds to

P, (2)a Py (b)AP ((Ta,—rs))

r5)r(Restriction). ‘Similarly to lemma 13,
- o

: XA [ad. BB] A <xA,9 B> , 1s provable

If predicates correspondent to x, and 6 ug 2F€ P (a) and P, ((—Ta b[B))

' respectlvely, XA[ae B] corresponds to

Py (a)AP ((_Ta,_TB))

Predlcate of 1) n 2) satisfy the 5ollow1ng condltlons 1n hlgher

order intuitionistic logics.

Ppla), Py(b) |— P,(a)VPy(b) .
Py(a), Pg(a) |- Py(aVPy(a)
P,(a), Pg(a) |— PA(a)APB(a) ’
P,(a), 7Pg(a) |- P,(aA+Pg(a) ,
- Pp((@Ta,alB)) |- Fxp, (@ETarx)
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Py(a), Pp(b), Po((ala,BB)) |— P,(a) Py(D)AP,((E]a,bB)),
and

Po(@), Py((afa,alB)) |~ P,(a)aPy((afa,alp)) .
‘In above reductions, if pemises are satisfied, we can gain
operations of 1) ~ 5). Namely, relatiocal algebra is expressed by
above reductions.

Let s be the following term in higher order intuitionistic
logics.

{PyreeesPe0 [[U(P) eee ) —V(Ry,eeP ) IaQ = V 30,

By Takeuchi's (3),

-3 .
Let Al""'An and B be types of XyveeerXy and y. If
I—-V'xl...xna'!y S(Xyreeerx sy) ====(a),
there exists the morphism AIX...XAn-—>B (3). Above reductions
satisfy (o) when U and V are the premise and the conclusion, |
respectively. Since/the quantifierja'!y means that there exists a

certain function, this function is the conclusion V(Pl,...,Pn),
namely each operation of relational algebra.

Besides above reductions, we can many sorts of reductions and
show that for each reduction, there exists the function (3).

Therefore, by taking reductions, we can consider constructions of

relations, namely semantics of relational data bases.
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According to the Principle of Compositionality in Montague
~" is the following term (3).

semantics, the expression of ". of

{ 7,0 | 0(aIA?"x(Q(xX)aP(a,x))} .

By taking this term, we can express "parent of parent" as follows.

{ P,0 | 0(a)a3"x(Q(a)aP(a,x))} (FM, 3 "zFM(b,z))

3’zFM(a,zL§'x(3Tsz(X,Z)AFM(a,X))

By previous sections, we can abstract operations from

reductions which are made in the higher order intuitionistic

logics correspondent to PRe(R). Namely, from the reduction

FM(b,a) |- 3 xFM(b,x) ,
“we can gain the relation Rla-
"name of parent" and "parent of parent" are conclusion of
the following reductions. _ v
N(a), FM(a,b), N(b) bk N(a)a3'x(N(x)AFM(a,x))

FM(a,b), FM(b,c) L-g‘zFM(c,z)Aa'x(a'zEM(x,zb\FM(c,x))

and

These reductions are constructed by those of (intersection),

(join) and (projection) in previous section. Therefore, we can

gain relations correspondent to "name of parent" and "parent of
parent" after using ¥hese operations on R|a R|d and R|d according
to each correspondent reduction in the previous section.

ﬁy taking the composition of each attribute of R and "~ of ."

, we can construct the new relation from R whose attributes are
"name of parent" and "parent of parent" (2).

{ P,0 | O of P} denotes {P,Q | 0(a)a3'x(Q(x)aP(a,x))}. In

higher order intuitionistic logics, this is a term of type

QQD(l)XRD(l)XD(l) and the following reduction is provable.
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Relation and natural language.

In this section, we use Montague semantics as semantics of
natural language and consider it in higher order intuitionistic
logics. Formulas which are conéidéred here correspond to objects
of topos, namely relations. By this correspondence, we can
ihtroduce semantics of natural language to that of relational
data bases, namely constructions of felations by operations.
Here, as an example, we consider semantics of ". of .".

Now, we consider the following relational data base R.

R : name parent

rr
o
o

1 - 71

t_ a b
n n

Since PRe(R) consturcts the higher order intuitionistic logics

whose types are objects of PRe(R) (3)

, we can consider Montague
semaﬁtiéé’in this logics. 1In this semantics, attributes of R
“hame" and "pafent" are translated into predicates in this logics.
N(a) éh&tP(a) denote predicates which express "name" and "parent"

‘respectively. Semantics domains of Ni{a) énd P(a) are k]a”R]& and

L e o , _ _R|a'R|G
Rlaf respectively. Therefore, types of N(a) and P(a) are Q

and QRIa, féspectively. By taking a predicate FM(a,b) such that

a is a "barent"Tdffb'in R, P(a) is expressed by 3-xFM(a,b) and the
v ~ PR ~

type of it is QRla R|axR}a R!u.

By taking the above, the’sentence in natural language "name

of pérent" is expfessed‘as follows.

N(a), Fx (N(x)AFM(a,x)).
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N(a) FM(a,b) ,w N(b) FM(b,c) |- N of FM (b) FM of FM (c) .
This is constructed by reductions of N(a) and FM(a,b), namely
reductions of 1) ~ 5) in the previous section. Therefore, this
reduction show,how to make the relation whose attributes are
"name of parent" and "parent of parent" from R.

In stead of N and FM, for any predicate of type Qt and tht P
this reduction is prdVéble. Therefore, if predicates_of these
types P,(a) and Pz((E,B)) express attributes of any relation R,
we can gain the relation whose attributes are expressed by
Pl of P2 5

it. In this case, we can construct it by operations of relational

(1)

(a) and P, of P, ((a,b)) from R and show how to construct
algebra
By taking the above way, we can introduce a part of semantics
of natural language to those of relational data base.
Topos in this paper have not a correspondence to a intensional

(4)

operators which is used in Montague semantics. Therefore, we
can't irtroduce all of Montague semantics to those of relational

data bases in this model.
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