ooooboooao
4820 19830 115-128

115

Polynomial Time Inference of Extended Régular Pattern Languages

Takeshi Shinohara

Computer Center, Kyushu Unlver51ty 91,
Fukuoka. 812 Japan

ABSTRACT

VA‘pattern is a string of constant symbols and variable symbols.
The language of a pettern) is the set of all strings obtained by
substituting any non-empty constant string for each variable symbol
in p. A regular pattern has at most one occurrence of each variable
symbOI; The ciassﬂof pattern languages was introduced and discussed
by Angluin[Z]; In the previous paper [Shinohara, 9] we have studied
polynomlal time inference from positive data about the class | of

"'regular pattern languages.

In thls paper we consider this problem in case of extended
regular pattern languages which are sets of all ‘'strings obtained
by substituting any (possibly empty) constant string instead of
non—eﬁpty string. Our inference procedufe uses MINL calculation,
introduced By Angluink[2], which finds a minimal language containing
a given finite set of strings. The relation between MINL calculation
for the class of extended regular pattern languages and the longest

common subsequence problem is also discussed.

There have been known two kinds of inferences, deductive
inference and inductive inference. Many studies on deductive
inference cover a w1de range from theoretical problems’ to practlcal
problems. Although some theories of inductive 1nference have been
developed, few of them have reached practical applications to
computer soffwares. This study presents an approach to practical

applications of inductive inference and give its theoretical basis.

i

116

Inductive inference of languages, we consider in this paper,
is called "polynomial time inference from positive data." The direct
motivation of this research is to develop a data entry system with
learning function, proposed by Arikawa[4]. The system must infer
or learn the structure of input data from the user. The informationm,
the system can use, is only the lnput data. Hence we should consider
inference from positive data. The computat10na1 complex1ty problem
is another important point in dlscuss1ng such practical problems as
the learning data entry system. Polynomial time inference is an
inference carried out by a machine which makes every guess in

polynomial time.

It has been considered of little interest to study inference
 from positive data; since Gold[5] proved a strong theorem which
assents that any class of languages over an alphabet is not
inferrable from positive data if it contains all finite languages
and at least one infinite 1anguage. Hence, for example, the class
of regular sets is not inferrable from pos1t1ve data. Recently
Angluin[2,3] gave new life to the study of inference by characterlzlng
the class of . languages inferrable from positive data and presenting
interesting classes. The class of pattern languages is one of her
classes. ‘/ ’

A pattern is a string of constant symbols and varlable symbols.
and the language of a pattern p is the set of all strings obtained
by,substituting any nenremptx constant string for each variable
symbol in p. Shlnohara[9] has shown that two subclasses of pattern
languages, named regular pattern languages and noONn-Ccross pattern
languages, are polynomial time inferrable from positive data.

A regular pattern is a pattern in which each variable symbol occurs

at most once.

In this paper we first point out some problems of our previous
version of inference method and then we give a solution to them by
considering polynomial time inferrability of extended regular pattefn
languages. Our extension is to allow the substitntions to erase
some variable symbols. For example, the extended language of a
pattern 0xl can contain string "01" while the language by Angluin

can not. The erasing variables requires a new discussion.

117

The inference, we deal with here, is carried out by using MINL
calculation introduced by Angluin[2]. Hence our main attention is
paid to the time complexity of MINL calculation for the class of
extended regular pattern languages. MINL for extended regular pattern
languages finds a regular pattern which represents a minimal extended
regular pattern language containing a given non-empty finite set of
strings. We also refer to the relation between MINL caléulation for
extended regular pattern languages and the longest common subsequence
problem. We propose an algorithm which calculates MINL for extended
regular pattern languages in polynomial time. By using this fact,
the class of extended regular pattern languages is shown to be

polynomial time inferrable from positive data.

2 liminari

. We begin with a brief review of our previous results.

2.1. Patterns and Their Languages

Let T be a finite set of symbols -containing a£ least two
_éYmbolsiand let X = {xg, xé, ees } be a countable set of symbols
disjoint from I, Elements in I are called constants and elements
in X are called yariables. A pﬁ;;gxn is any string over I U X.

The set (T u X)* of all patterns is denoted by P,

We say that a pattern p is regular if each variable in p
occurs exactly once in p. ' ,

Let £ be a non-erasing homomorphism from P to P. If f(a) = a
for any constant a, then f is called a substitution. If f is a
substitution, f(x) is in X, and £(x) = f(y) implies x = y for any
variables x and y, then f is called a renaming of variables. We
use a notation [a;/vy, ... » ay/vy] for the substitution which maps
each variable symbol v; to a; and every other symbol to itself. We

i
define two binary relations on P as follows:

1) p ="' q iff p = £(q) for some renaming of variables f,

2) p<tgq iff »p

£(q) for some substitution f.

The language of a pattern p, demoted by L(p), is the set
{wve E* | w <" p}. These syntactic relations =' and <' are

characterized by the followihg lemma.

-3-

118

Lemma 1. [Angluin, 2]

1) For all patterns p and g, p = q iff L(p) = L(q).

2) For all pattefns p and q, if p <' q then L(p) € L(q),
but the converse is not true in general.

3) 1If p and q are patterns such that fpl = lql,
then p <' q iff L(p) ¢ L(q).k - '

2 _Pol ial

Inference machine is an effective procedure which requires
inputs from time to time and produces outputs from time to time.
Let s = sy, sé.;.. be an -arbitrary infinite sequence, and let
g T 815 Zpseee be a sequence of outputs produced by an inference
machine M when inputs in s are successively given.to M on request.
Then we say that M on input s converges to g0 iff g is a finite
sequence ending with go or all but finitely many elements of g
are equal to g0 ; :

Let L[= Ly» Lgysec. be an indexed family of recursive
languages, and let s = s;s S9s... *be an arbitrary enumeration of
some language,Li. Then we say that a machine M infers I from
positive data if M on input § comverges to an index j with Lj'= L;.
We say that a family L is inferrable from positive data if there

exists a machine which infers [from positive data.

Ihggxgm_l; [Angluin, 2] 1If a class L = L;, Lé,..,‘satisfies
the following condition, then L is inferrable from positive data.
andigign: For any non-empty finite set S of strings, the

set {L]S cL, L= L; for some index i} has finite cardinality.

Lemma 2. [Angluin, 2] The class of pattern languages satisfies

Condition of Theorem 1l.

Hereafter we omit the phrase "from positive data", hence
for example "inference" means "inference from positive data."
An inference by a machine M is copsistent iff a language Lgi'
contains all inputs given so far whenever M produces output 8;-
An inference is conservative iff an output g5 from M is never

changed unless L__ fails to contain some of the inputs. These

&i
two properties natural and valuable in inference problem. It is,

4=

119

however, known that inferrability does not always mean consistency
and conservativeness [Angiuin, 2. _ ‘ »

A class [is polypomial time inﬁgzzgﬁLg iff»there,exists an
inference machine M which infers I consistently and comnservatively,
and requests a new input in polynomial time (with'respéct to the
length of the inputs read so far) after the last input has been
received.

- MINL calculation for a class [= Ly, Lys... is defined by
Angluin [2] as follows:

MINL(S) = "Given non-empty finite set S of strings, find an

index i1 such that S < L.

. . "o
i and for no 1n§ex js S & Lj G Li'

The following theorem shows the importance of MINL calculationm.

 Theorem 2. [Angluin, 2] If a class L = Ly, L,,... satisfies
Condition of Theorem 1 and MINL for I is computable, then the

procedure Q below infers L consistently and conservatively,

procedure Q;
g1 := "none" ; S :
for each input 55 do
s :=5su {s;};
:.f.sieLgiLhan

8i+l % &i

g

end

Corollary 1. If a class [= Ly, Lgs... satisfies Condition of
Theorem 1, and the membership decision and MINL calculation for L
are computable in polynomial time, then the class L is polymomial
time inferrable (from positive data).

”

-5~

120

Angluin [2] showed that the membership decision of pattern
languages is NP-complete and {-MINL calculation, a special case of

MINL for pattern languages, is NP-hard.

£-MINL(S) = "Given non-empty finite set S of strings, find a
pattern of maximum possible length which represents a minimal

pattern language containing S."
The following summarize the results of our previous study.

Lemma 3. For any regular pattern p and any string w, whether
w € L(p) is decidable in O(lpl+Ilw]) time.

Theorem 3. The following procedure computes {-MINL(S) for
regular pattern languages in 0(w?n) time, where m = max{|wl; w € S},
n = card(S), and w = aj...a; (a; € I) is one of the shortest strings
in S.

begin
P T XpeeeXp
for i :=1 to k do
begin

q := pjla;/x;1 3
(=

vii S € L(q) them p;4y = q
else pj4y = p; 3
end ;
Ieturn Py4)

end

Theorem 4. The classes of regular pattern languages is

polynomial time inferrable (from positive data).

3. Some Problems on £-MINL Calculation for Regular Pattern Languages
There are some difficulties in the £-MINL calculation when the

polynomial time inference of regular pattern languages is applied to

practical use. The main reasomns are in

1) restriction on the length of pattern, and

2) prohibition against substituting empty string for amy variable.

We present some examples to explain these problems.

-6~

121

Example 1. Let S be the set {ABCdeFGh, ABCiFGjk}. Then every
answer of £-MINL is eight symbols long because the length of the
shortest words in S is eight. Let p be any pattern of the form
plFGPZ’ where P and p9 are any regular patterns. Assume S < L(p).
Then, clearly, ABCi € L(p;) and h € L(p,), therefore

Ipl = Ipgl + IFGI + Ipyl < 4 +2+1 =7 <8,

Hence the string "FG" does not appear in any answer of £-MINL(S).
However the pattern q = ABCx;FGx, is a possible answer of MINL(S).
Thus MINL(S) may have an answer which contains more constant

symbols than any answer of Z-MINL(S)..
Example 2. Let § = {aBcdf, GHcdBiii}. Then béth patterns
P} = X1Bxyx3x%, and
py = xlxzcdx3

" are correct answer of £-MINL{(S). Our K—MINL‘algorithm of
Theorem 2 returns p; for S. If we change the order of substitutions

in the algorithm, we can get p, as the answer of £-MINL(S).

- Example 3. Let S = {ABC, AC}. Then MINL(Q) does not have
any answer containing both symbols A_and'C because we can mot

substitute empty string for any variable.

To solve these problems, we extend the definition of pattern

languages to allow erasing substitutions.

4, Extension of Pattern Languages

We givévnew’definitionsAof patﬁern languéges to allow ’
substitutions to erase variables and we show some their propérties.
The definitions of patterns and regular patterns are the same ones
as in Section 2.

A substitution is any (possibly erasing) homomorphism from
P to P which maps éach constant symbol to itself. A special
substitution which ﬁaps each variable to émpty string is demoted
by c. TFor example, if £ = {0, 1, 2} and X = {X, ysee. }, then .

c(0xly2) = 012. We define two binary relations <' and =' as follows:

122

1) p <' q iff p = £(q) for some substitution f,
2) p ='q iff p s' q and q <' p.

The language of a pattern p» denoted by L(p), is the set
{weI* | ws'p}. Hereafter we use the term "pattern languages"

in the sense just defined above.

Proposition 1.

1) p<s'q ==> L(p)'
2) p ='q ==> L(p)

In

L(q)
L{q)

We say that a pattern ﬁ is in gangnigal form iff ’

''q ==> [Pl < lql for any pattern q, and

> TU>

P contains exactly k variables X;, Xgse..s X, for some integer k
and the leftmost occurrence of X5 is to the left of the leftmost

" occurrence of Xi41 for i =1, ...s k-1,

Theorem 5. There exists a unique canonical pattern 6
equivalent (=') ‘to p for any regular pattern p.

- Proof. Let b = woxll...xlilw1x21...w -lxnl"'xninwn (WO’ v, € &,
wi'é zt (i=l,...5n-1)). Then p = ﬁoxlwlxz...wn_lxnwn is in canomical
form and ﬁ =' p. Any pattern equivalent to p is of the form
wovlwlvé;.. Vo-1Vn¥n (v; € X*). Therefore the uniqueness of such

canonical pattermn is obvious. , . 1]

Lemma 4. 1If S is a canonical regular pattern, then
I8l < 21c(P)1 + 1.

Theorem 6. The class of (extended) regular pattern languages
satisfies Condition of Theorem 1 and it is inferrable from positive

data.

Proof. Let S c I be any non-empty finite set of strings and
let w be one of the shortest strings in S. Assume S [L(f). where
$ is any canonmical regular pattern. Then Iwl 2 [c(f)| because
w € L(P). By Lemma 4, IPl < 2lc(P)| + 1 < 2]w] + 1. Therefore

the number of such patterns p is finite. ' - 0

123

Theorem 7. For any regular pattern p and any string w,

whether w € L(p) is decided in O(lpl+liwl|) time.

Proof. We can construct a deterministic finite automaton
recognizing L(p) in O0(lp|) time by using the method of pattern
matching machines [Aho, et al., 1]. o

5, MINL calculation for Regular Patterp Languages

To show polynomial time inferrability of regular pattern
languages, we need discussions on MINL calculation. In this section
we also refer to the relation between MINL calculation and the
longest common subsequence (LCS for short) problem.

First we give some definitions on subsequences:

1) For any strings w = aj...a, (a; € I) and s; € =5,
s Sw(orwzs) iff s = ail...a- (1 €i;< ... <i sk).
We say that s is a subsequence of w (or w is a supersequence of s)

if s £ w (or w 2 s).

2) The set of common subsequences to a set § of strings is
cs(s) = { s ¢ 8*_[s £ w for any string w € S }.

3) The set of maximal common subsequences ‘to S is :
MCS(S) = { s € C5(S) | s = s' or s £ s' for any s' € CS(S) }.

4) The set of the longest common subsequences to S is
1.CS(S) = { s € ¢S(S) | Is]l 2 Is'| for any s' € CS(S) }.

1) w e L(p) ==> w 2 c(p)

2) L(p) € L(q) ==> c(p) 2 c(q)
3) L(p) = L(q) ==> c(p) = c(q)
4) s c L(p) ==> c(p) e CS(S)

We need three notations in the discussions below:

1) For any string w = aj...a; and any integers i and j,

1 J

w<ij> = {a-...a~ (if 1 <i<js lw)
€ (otherwise), and

w<i> = a; (i = 1,...0wl).

124

2) For any syﬁbol a and any integer i,
a' = { € (if i £0)
aal™l (otherwise).
3) For any variables Visesesvy € X and any constant strings
WisesesWy € ¥, [wy/v{sesesw /vy] denotes the substitution which

maps each variable v,

j to w; and every other variable to itself.

Theorem 8. Let p and q be any regular patterms and card(I) 2 3.
Then L(p) € L(q) implies p <' q.

Proof. We may assume, without loss of generality, that p and q
are canonical regular patterns. -We also assume card(Z) 2 3,
L(p) € L(q). but p £' q. Let q = WpXjWj...w, X W), Where wy, w € ¥,

i
and p £' q, there exist integers i, j, and k such that

and w. € 5F (i=l,...,n-1). Since c(p) is a supersequence of c(q)

0<i<n,1<3j<k<=< |pl, and
p<l:j> p<j+l:k-1> p<k:|p|>, where

P

c(p<l:j>) € L(wpxjeeax;_1W;_1)s &
c(p<l:j*>) £ L(wpxy...x;_qw;_1) for any integer j' < j,
p<j+l:k-1> # rw;r' for any patterns r and r',
c(p<k:|pl>) € Llw;41Xi490 <X ¥,)» and

c(p<k':|pl>) £ L(w;,1%;49--+x %) for any integer k' > k.

Let p; = p<l:j>, py = p<j+lik-1>, and,p3‘= p<k:ipl>.

Then L(pz) L(x Wl i+

Let a be any comstant symbol except w;<l1> and w;<|w;|[> and let

1) because L(p) < L(q) and‘C(pl)pzc(p3)‘S' P.

Vis ees s vy be all variables in py. Then

lw: | fw: | :
pla * /vl.....a i /vyl € L(py) - L(x W x1+1) This contradicts

L(py) & Lx;wix;4q). _ ' 0

The following lemma says that the condition card(Z) = 3 is

necessary in Theorem 8.

Lepma 5. When card(Z) = 2, there exist regular patterns p and q
such that L(p) < L(q), p £' q» and q £' p.

Proof. Let & = {0,1}, p = x101x2033. and q = x;0x,10x5.
Then, clearly, p #' q» q #' p, but L(p) = L(q). O

..10_

125

Hereafter we assume that the constants alphabet I contains at

least three symbols.

Theorem 9. For any maximal common subsequence s € MCS(S),
there exists an answer p of MINL(S) for regular pattern languages

such that c(p) = s.

Proof. Let s = aj...a; € MCS(S). Then the pattern q;,; defined

as follows is an answer of MINL(S):

qi :=,{ xlal...akxk+1 (i=0)
if S € L(q;_y[&/x;1) then q;_;[€/x;] else q;_; (i=l,...,k+1).

We must show that L(qy,;) is a minimal regular pattern language
containing S. Assume that there exists a regular pattern q' such
that S € L(q') ¢ L(qy4;). Then c(q') 2 c(qy4;) = s. Since s is a
maximal common subsequence to S, c(q') = c(qy,;) = s. By Theorem 8,
q' €' qp4; and q' #' qk+1; There exists a substitution f which maps
qy+] to q'. The substitution f maps at least one variable to empty
string because q'vi' qy+1+ Let j be an integer such thét‘xj‘appea;s
in qy4p» f(xj) = €, and f(xj,) = X5 for any integer j' < j. Then
q' ' qj_l[E/xj]. Therefore S ¢ qj_l[E/xj] and q; = qj_l[ﬁ/xj].
Hence the variable x; can not appear im Q] This contradicts the

gelection of j. ; i}

Here we should note that we can get an answer of MINL(S) in
0(nZn) time from any maximal common sequence to a set S of strings,

where m = max{|wl; w € S} and n = card(S).

We may prefer the longest common subsequences to the maximal
common subsequence. However the problem to find ome of the longest
common subsequences to a set of strings is known to be NP-complete
[Maier, 8]. Therefore finding an answer of MINL(S) containing
constants as many as possible does not seem to be done in polynomial
time. To find an answer of MINL(S) for regular pattern languages,
is it necessary to select one of the maximal common subsequenées to §?

The following theorem asserts that it is not the case.

-11-

126

Theorem 10. There exists an answer p of MINL(S) for regular

pattern languages such that c(p) ¢ MCS(S) for some set S of strings.

Proof. Let S = {01020, 0212}. Then 02 ¢ MCS(S) because
012 € CS(S). However the pattern p = x;02x, represents a minimal

regular pattern language containing S. . O

In the proof of Theorem 10, the pattern q = 0x11x22x3 is a
possible answer of MINL(S) and c(q) = 012 € LCS(S). In some cases
q is not always better answer of MINL(S) than p because the pattern
P contains a longer comstant string "02" than q. Finally, from
this obsevation, we get a MINL,algoritﬁm by using a method to find
common strings in length decreasing order. The correctness is easily
shown by Theorem 8 and the computing time is 0(m4n), where

m = max{|wl; w € S} and n = card(S).
In our MINL algorithm we use some notations for simplicity:

Let O = Wys.ess W, be a sequence of strings. The notation L(O)
denotes the regular pattern language L(x;wyXj...w X ,1)» 10| denotes
the number of strings in O, and [[Oll denotes the sum of lengths of

strings in O.

-12-

127

Procedure MINL(S);

(* Input S: non-empty finite set of strings *)
(* Output p: a pattern representing a minimal

(extended) regular pattern language containing S *)

begin
s := one of the shortest strings in S 3
C := €3 (* sequence of common strings *)
n := |sl ; (* length of candidate string *)

while n > 0 do begin
fori=ltolsl-n+1do
more: for j := 0 to lo] do
if 8 ¢ L(o<l:j>,a<isi+n-1>,0<j+1l:]0|>)
then begin ‘
O := o<l:j>,a<i:i+n-1>,0<j+l:|0]>) ;
g0 to more
end ;

n := min(|s|-llol, n-1)

P = x10<lm2c'00<10l>x'0l+1 H
€ L(ple/x 1) then p := ple/x;] ;-
if 5 ¢ L(p[e/x)g}4;1) then p := PEE/XIGHIJ :

return p 3

F

end -

Theorem 11. The class of (extended) regular pattern languages

is polynomial time inferrable (from positive data).

oo L

We have discussed polynomial time inference for the class of
the extended regular pattern languages and we have seen thét MINL
calculation for the‘class plays an important role in inference from
positive data. We have also discussed the relation between the MINL
calculation and the longest common subsequence problem. |

It should be noticed that our MINL algorithm for the extended
regular pattern languages is consistent to the NP-completeness of the
LCS problem. The MINL algorithm finds common strings to a set in
length decreasing order. It should also be noticed that our method

in the algorithm is natural. i3 3

128

Since our evaluation of the time complexity is not so acute,
the exponent of the maximum length of strings might be reduced.
The MINL algorithm is originally designed for the learning data
entry system, and it should have other practical applicatioms.

A little modification may be needed for some problems.

ACKNOWLEDGMENTS

The author wishes to acknowledge'Professor S. Arikawa for his
helpful suggestions and encouragement. He would also like to thank
Mr. S. Miyano for his useful comments in the course of starting this
‘study. ‘ 4
\J

REFERENCES
[1] Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974), The
Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, Mass.
[2] Angluin, D. (1979), Finding Patterns Common to a Set of
Strings, in Proceedings, llth Annual ACM Symposium on Theory
of Computing, pp. 130-141.
[3] Angluin, D. (1980), Inductive Inference of Formal Languages
from Positive Data, Inform., Contr. 45, 117-135.:
[4] Arikawa, S. (1981), A personal communication.
[5] Gold, E.M. (1967), Language Identification in the Limit,
Inform. Contr. 10, 447-474. ‘
[6] Hirschberg, D.S. (1977), Algorithms for the Longest Common
Subsequence Problem, JACM 24, 664-675 ' S
[7] Hopcroft, J.E. and Ullman, J.D. (1969), Formal Languages

and their Relation to Automata, Addison-Wesley, Reading, Mass.

[8] Maier, D. (1978), ThekComplexity of Some Problems on
Subsequences and Supersequences, JACM 25, 322-336.

[9] Shinohara, T. (1982), Polynomial Time Inference of Pattern

Languages and its Application, in Proceedings, 7th IBM Symposium

on Mathematical Foundation of Computer Science.

[10] Wagner, R.A., and Fischer, M.J. (1974), The string-to-string

Correction Problem, JACM 21, 168-73.
-14-

