ooooboooao
4820 19830 73-97

73

Hardware Algorithms and Logic Design Automation

_— An Overview and Progress Report -
Shuzo YAJIMA and Hiroto YASUURA
Faculty of Engineering

Kyoto University

1. Introduction

Advances in the fabrication technology of VLSIAéiréui£s wil1
soon make it feasible to implement highly ﬁarallei computing
sfstems conéisting of hundreds 6r of thousands of coﬁputing
élements; These highly parallel systems will operate
cobperativelyb with isoftﬁare and achieve tremendous speed
improvements of digital computing éystems. Many reseafches have
been carried out to establish effective design methods for éither
general or special purpose highly paréllel Systemstll. o

Design of efficient algorithm for parallel cdmpﬁtati6n is'
the key problem of design of highly parallel hardware 3ysteﬁs as
well as software. In this article, we will discuss the design
problem of parallel algorithﬁs, called hardware algorithms. |

Various hardware aldorithms have been proposed for séveral‘
practically important problems such as SOfting, arithmetic
[2]1-[61]

operations, matrix arithmetics and patterd matching To

analyze these algorithms, several theoretical discussions

74

have been going on and a new complexity measure of parallel
computation suitable for VLSI, called area, has been proposed
[7][8]. VLSI and hardware algorithms make a new area of

theoretical research on computational complexity. A theory of

design and analysis of hardware algorithms for VLSI systems will

be established!in several years ahead.

Logic design automation systems will be indispensable tools
for design ofv large highly parallel systems. A silicon
compilation system will be developed which generates mask
patterns for VLSI fabrication from a high level hardware

algorithm description[gl. Design verification tools are also

impogtgnt components of designvautomatiQnAsystems, since highly
parallel computation is inherently too-;omplicated féf'déS?gne:s
to think without any tools such as,siﬁﬂiéfo: and verifier.

In_this article, we will briefly survey topics of researchesn
on hardware ialgqrithms and ldesign automation systems. ~ Section
2 gnd 3 are an»oﬁerview and progress report of the researqh_on
ha;dware algqrithms. Section 4 is the progress report of
de&elopment of: an interactive iogic design and verificatioh
support system ISS.

In fhe.next sécgion, “hardware algofithms of integer multi-
plication and sorting are presented as examples of hardware(algo—
riihms. A general consideration of hardware algorithms for VLSI
is -also discussed. 'In section 3, some results of theoretical
researches on the complexity of hardware algorithms are presented.
Design automation systems and éomputer aided design will be
discussed in section 4. As an example of design verification

tools, 1ISS developed by our group is presented.

2. Design of Hardware Algorithms

2.1 Integer Multiplication

Integer multiplication is widely used as a basic operation
in general purpose computers, in process controllers and signal
processors. Many high speed algorithms for integer multiplication
in software and hardware have been proposed and used practically.
in table 1, several hardware algorithms for integer
multiplication are ﬁompared. |

' In applications not required so much high speed computation,

add-and-shift multiplication is generally used. The speed of

computation is improved, when’ a carry look-ahead . adder is
"ﬁdopfedtlol. ~Serial multiplication is implemented in signal
'procesging in which operands are input serially[ll]. These

abéve algorithms are implemented by sequential circuits.
For high-speed multiplication by combinational c¢ircuits,
~array multiplication andvmatrixw geﬁeration—reductionVschéme*are
developed and implemented forvpracﬁical use. Array multiplication
is attractive for their .compactﬁésé and regularity of its
iterative array structure using one basic circuit‘type, but their
speed of operation increases linearly with the operand length and

(10}

thus slow for large words Matrix generation-reduction

scheme is much faster for large operands since their speed of

operation = increases with the logarithm of vthe

[(12]

operand 1length The basic idea of this algorithm was

proposed by Karatsuba and Ofman, and the most popular circuit

(1310141

based on it is known as Wallace's tree Several

papers discussed about multiplief based on this algorithm with

76

speed of
algorithm size area
computation
add-and-shift multiplication 2
n n n
(ripple carry adder)
add-and-shift multiplication
n nlogn nlogn
(carry look-ahead adder)
serial
n n n
multiplication
arfay 2 2
n n n
multiplication
matrix generation-reduction 2 2
n n-logn logn
multiplication : :
f‘Brént—Kung‘%_i
o = nlogn vnlogn
algorithm
Shonhage-Strassen's . ‘ .
n(log n(log log n)) - logn
algorithm B

n: the length of operands

Table 1. Hardware algorithms for Integer Multiplication

n 8 16 32 64
matrix v _ : .
generation- 22/672 24/2516 30/9064 34/35207
reduction - ' '
array 29/528 61/2336 125/9792 253/40064
(depth/size) 4-input NOR/OR gates
Table 2. Depth and Size of Multiplier

77

higher performance[lol[lzl.

In table 2, an evaluation of the size (the number of gates)
and the depﬁh (the speed of computation) of circuits designéd
according to these two algorithms. Gates usedvin the design are
4-input NOR/OR gates. The circuit based on matrix generation-
reduction algo;ithms is realized as a combination of Booth's
aigorithm, Wallece's tree and a carry look-ahead adder. The
depth of the ‘circuit is extremely smaller than the array
multiplier for large n. This example shows that the design
of a good hardware algorithm results in tremendous improvement
on efficiency.

Although the size of circuits of these two algorithms are

the same order, namely O(nz), the upper boundsAof the area on
VLSI have quite different order, , O(nz) for airay
multiplication and O(nzlog n) for matrix generation-
‘reduction one. This differehce is caused by the difference of
complexity of interconnection in the circuits. In the next
section, we will discuss a new circuit complexity analysis

technique using the measure, called area.

Brent-Kung's algorithm in table 1 achieves the best upper

bound of the area-time product[al. Shonﬁage—Stféssenis one is

the best . upper bound of the number of Boolean operations

required to n-bit integer multiplication[lsl.

18

2.2 Sorting

Sorting is one of the most important operations in data
processing. Many sequential and parallel sorting algorithms have
been developed and practically used. In table 3, several sorting

algorithms are compared.

Algorithm T the number of ~ the épeed of
: processing elements - computation

Bubble sort - o(1) " o)

Heap sort - o(l) ' , 0o(n log n)

Bitonic sort 0(n) v O(logzn)v

Rebound sort O(n) O(n)

Parallel

enumeration sort - 0(n) , : O(n)

"Parallel merge

sort ' 0(log n) 0(n)
Parallel heap

sort N 0O(log n) .. 0(n)
Sorting on

mesh o ‘ O(n) O(nl/z)
Parallel | O(n) O{(log n)
distributive sort : . s R
Sorting by 2 -
combinational circuit 0(n“) O(log n)

n: the number of sorted element

Table 3. Algorithms for Sorting

79

Bubble sort and Heap sort are softwawe algdrithms and have
time complexity O(nz) and O(n log n), respectively[lsl. Heap sort
is one of the fastest algorithms of software, because it is
easy to show that the lower bound of time comélexity of
software algorithms is @(n log n).

Many hardware = algorithms for sorting have been proposed and
some of them are implemented. Muller and Preparata showed that
sorting of n elements can be performed by a combinational circuit
with depth 0(log n) - and size O(nz)[lsl. Several ' hardware
algorithms on multiprocessor systems have been proposed such as
algorithms on 'mesh connected processors by'Thompson~Kung[l7} and

byvNassimi-Sahni{lSJ. [19])

and Wilsow-Cho 120] arg'élso this kind.l

" Parallel distributive sort by Magkawa
When we consider a sorting circuit which is attached to
conventional computer systems, we will assume. that data are

transmitted one by one between the sorting circuit and memory

devices. Rebound sort by Chen et. al.[Zl]; Parallel enumeration
sort by Yasuura and Takagi[zzl, Parallel merge sort by Todd[23]}
[24]

and Parallel " heap. sort by Tanaka are all developedfundér the
following assumptions; (1) a sorting circuit is sebaratéd from
memory devices and (2) data transmiséion'betweenbthé tircﬁit and
memory devices is serial. Under these assumptions, proéessiné for
sorting cannot be faster than data transmission. Since the time
required for sorting in these algorithms is linearly proportional
to the number of sorted elements, = these algorithms achievé

optimum order on time. In these algorithms, processes of sorting

are efficiently overlapped with the input/output time.

80

Rebound sort and Parallel enumeration sort require O(n)
processing elements, but each element has <constant size -and
realized by a very simple circuit. Circuits for these algorithms
have linear array structure and simple communication structure.
Rebound sort is suitable for implementation by magnetié bubble
circuits. Parallel enumeration sorting is implemented on the Bus
Connected Cellular Array structure detail of which is discussed
in the next subsection.

Parallel merge sort and Parallel heap sort require only
O(log n) processing elements. However, each processing element
should possess O0O(n) memory. Since memory can be integrated in
higherﬁdens{ty,than logic circuits, several circuits have been

implemented based on these algorithms using commercial LSI's.

2.3 Hardware Algorithms for VLSI

Kung and his group proposed the systolic algorithms which is

suitable for VLSI implementation{4]-[6]

(el

. Systolic algorithms have
the following properties

(1) The algorithm éan be implemented by only a few different
types of simple cells.

(2) The algorithm's data and contrpl flow is simple ahd.regular,’
so vtﬁatk cells can. be cohnected by a network with local and
regular interconnections. . '

(3) The algorithm uses extensive pipelining and multiprocessing.

Typically, several data streaﬁs move at constant velocity over
fixed paths in the network, interacting at cells where they meet.

In this way a large number of cells are active at one time so

81

that the computation speed can keep up with the data rate.

The first property reduses the cost of design and test,
since a designer only designs and tests a few different, simple
cells. Regular interconnection in the second property implies
that the design can be made modular and extensible. This also
means that the area for wiring on a chip will be reduced and
propagation delay caused by these wires will decrease. By
pipelining and multiprocessing, one can meet the performance
requirement of a circuit. Pipelining makes it possible to cverlap
processing and input/output effectively.

Kung and his coauthors developed many systolic algorithms on
one dimensional cellular arrays, two dimensional square meshes
and hexégonal meshes. ‘ .

We developed hardware algorithms which are realized on Bus
Connected Cellular Array (BCA). Algoritﬁms on BCA pdssess the
- following properties added to (1)-(3) of systolic aigorithms
[22][25]‘

(4) The algorithm uses grobal communications through buses. The
communication control of the grobal communication is simple and
distributed.

(5) Input and output sqheme is Fimple and it is.eaéy to.attach
to 6ther cifCuits ih a‘gystem. bne can extend the circuit dnly
connecting chips whiéh include smaller circuits without changing
input/output scheme.

(6) The restriction on performance of the algorithm shold be
relaxed as much as possible. Processing time should depend on

only the size of problem not on the size of the circuit.

82

The grobal communication using buses improves the speed of

algorithm drastically and reduces the complexity of
communication. Algorithms must be designed under realistic
assumption of input/output protocols. Highly parallel input and

output increases infeasiblly the complexity of communication of
the outside of the algorithm, though the algorithm seems to
achieve high performance. Hardware algorithms are inherently
restricted their ability of processing by the size of circuits.
However, algorithms should process problems smaller than their
ability in time proportional to the size of problems. On BCA
algorithms, these properties can be easily realized wusing
_grobal bus communication. |

iWe: propésed 'é.sorting. algorithm on BCA, called Parallel

enumeration sort[22].

This algorithm can be introduced to
conventional computer systems without changing their
architecture. The processing time is linearly proportional to the

number of data for sorting. The sorting circuit consists of a

linear array of one type of simple cells each of which includes

two registers, a comparator and a counter. These cells are
connected by two buses. Since the circuit is extensible only by
connecting the same circuit, we can _implement a large circuit

connecting chips including the circuits.
We have also developed BCA algorithms for pattern matching,
matrix multiplication, very long integer multiplications dndﬁjoin;

opration in relational databases.

10

83

3. Analysis of Hardware Algorithms

3.1 Time Complexity

Combinational logic ciréuits are the most fundamental
circuits in digital systems, which can realize the most highly
- parallel computation. Many researches have been carried out on
depth and size of circuit required to realize Boolean functions
[2][25][26]. Results of these researches can be applied to
"analysis of hardware algorithms.

The delay complexity of . Boolean function 1is the smallest
depth of circuits which realize f. Boolean functions which depend
essentially on n variables have delay complexity Q2 (log n).
Functions in several important classes such as linear functions,
éy&metric functions and threshold functions have delay complexity
proportional to 1log n. It is also well known that there’are
functions required O(n) depth of circuits for their realization

[26].

Integer addition and multiplication can be performed by
circuits with depth O(log n), where n is the length of operands.
For division and square rooting, algorithms with depth O(logzn)
were developed. But it is not known whether these operations can
be computed by circuits with depth 0(log n) or not.

B Unger:- proposed a method . to construct a circuit with the
logarithmic depth for a class of functions which cén be computed

by sequéntial circuits in linear time[27].

This class of
functions includes many practical functions such as binary
addition, comparison, counting and so on. We showed a method to

reduce the depth of a circuit as a generalization of Unger's

11

84

method[28]°

Moreover, we proved an ‘interesting general result on
relation between complexity of software algorithms and of
hardware algorithms as follows.

[291] A function which can be computed by a T(n)-time

Theorem
bounded and S(n)-tape bounded deterministic Turing machine can be
computed by a combinational c¢ircuit whose depth is proportional
to S(n)log T(n).

In the proof of this theorem, we obtained a construction method
of the combinational circuit. - Thus we can construct a

k+ln) for a function which

combinational circuit with depth O(log
~is computed . iq,;logknJ space by a, polynomial time software
éigorithm;” This result shows an upper bound of speed up ratio of

hardware algorithm and software-one.

3.2 Area Complexity

In VLSI circuits, it is well known that the area of a cir-
cuit depends on not only the number of logic elements included in
the circuit but also the area for the wiring and input/output

terminalst4l. Thompson[7] (8]

and Brent-Kung proposed mathematical
models of VLSI circuits and 5provided several techniques to
evaiuaté4.the area of circuits theoretically. On these
mathematical models-of VLSI, many works have been.carried out to
estimate performance of VLSI circuits by a measure, aféa}timg

product[3]. Leiserson[30] and Valiant[3l] discussed the area
required for layouts of tree and planer graph circuits into the

VLSI model.

12

85

A VILSI model 1is defined as follows:
(1) A circuit 1is embedded into a convex planer region R.
(2) Wires have minimal width)\ (a positive constant).

(3) At most Vv (v

v

2, a positive constant) wires can
overlap at any point of R.

(4) Logic elements each contain a A x A square and their
shapes and area are given for each sort of elements.

(5) No logic element overlaps other logic elements and wires
in R.

(6) Input and output of the «circuit is performed through
wires on the boundary of R..

The 1last condition of the definition of VLSI model was
introduced by us and called the boundary conditions[32]. The
boundary conditions is very realistic assumption of actual ‘VLSI"
circuits. We can show that the area required for embedding of ‘a
binary tree cifcuit with n nodes is 0(n log n) under the boundary
condition, though it is just O(n) on the model except the
boundary condition.

It is very important. to estimate the area of a circuit’ at
the stage of logic design before layout. of the circuit. ~-Several
results have been obtained on evaluation methods of the area from
féature of the circﬁit such as depth, width, 'size and structure
which are easily measured»from the logic design.

Trade-off between time and area is the most interesting
subject of theoretical researches. Many results have been

presented on area-time products of practical functions such as

integer multiplication, integer addition, comparison, sorting,

13

86

FFT, matrix multiplication and so on[31. On combinational

circuits, trade-off between depth 4 and area A for an n-variable
function is shown as follows;

A log d = Q (n log n)[32].

4. Logic Design Automation

4.1 Computer Aided Design and Design Automation

Computer Aided Design (CAD) or Design Automation (DA)
technology is almost indispensable in large, complicated logic
design. A goal of researches on CAD/DA systems is to develop a

silicon compilation syStemIg]

. In the silicon compilation system,
a designg; describes a design of a hardware algorithm in a high-
level hatdware.algbrfthms‘descriptiqn language which is free from
manyvconstraints caused by physical implementation. The designer
also specifies several conditions on-realization of the algorithmi
by silicon. devices such ' as speed, area,- technology used for
implementation and .so ' on. The silicon compilation system
generates a 1logic design which realizes the "algorithm and
satisfies the specified conditions. Moreover, the system
translates the. design. into several information to control
fabrication processes of VLSI. One can make his own VLSI chips
only writing a specification of hardware algorithm in a high-
level language - as well as software in high-level 1languages.
There are still many problems that should be resolbed?for
implementation of the silicon compilation system.

Many kinds of CAD techniques and systems for logic design

have been developed and are 1in use: hardware description

14

87

language, logic diagram editor, logic function minimization
programs, optimum circuit generation programs, logic simulator,
logic design verifier, test pattern generator, etc. These
systems arekdeveloped to relievé logicrdesigners from troublesome,
laborious work in logic design and verification. However, they
are not utilized to a full extent because designers can not use
them in an integrated way. Since the 1logic design stage is a
repetition of design and verification, a logic design system
should be an integrated one including a design language, editing
system, design-aid programé, a design verification tool, etc. on
a standardized data management. A 'CAD system for logic design
usually needs some-intéraction by man for processing. An inter-
active sophisticated user interfacé is keenly needed for CAD
systeﬁs.'

‘We have developed Interacti?é‘Simulation System (ISS) --- an
interactive logic design and verification support system for

structured logic design (331

. One can carry out logic design in a
structured way by utilizing functions of ISS all interactively.
ISS has the following features.
(1) Interactive and Integrated Logic Design System

EDITOR, TRANSLATOR, LINKER, Interactive Simulator (IS) and
other peripheral programs can be utilized easily by terminal
commands (See Fig.l). A designer performs logic design and its
verification alternately without bothering about management of
many kinds of design data.

(2) Interactive Simulator(I1S)

IS is wused for design verification in ISS. A designer can

15

88

User Terminal

ISS
MANAGER
Interactive Peripheral
EDITOR | TRANSLATOR| LINKER ’ - . L
Simulator Programs

Fig.

(1S)

-----) LODE

1 Configuration of ISS

16

J

89
control the simulation steps interactively td find out design
errors at an early stage of design cycle. IS can simulate a
design described at multi-levels (gate, - functional, and register
transfer) in a structured logic design.

(3) Structured Hardware Design Language (SHDL)
SHDL is used to describe logic designs in ISS. SHDL can
describe a design as a hierarchically constructed set of moduies.
Each module is described with its structure or. behavior. There
are three kinds of behavioral description which enable multi-
level description of a design.
(4) Design Data File
The filg.system storing description data or simulation.data is
configurated "module boriented". ' ISS has the file systgm‘as a

common interface among programs and is integrated around it.

4.2 Design Verification in ISS

A logic simulator is wused for design verification in order
to find @ out design errors based on simulation results which do
not satisfy the design specification. Verification . by
simulation shows that "the design contains errors", not that "the
des;gn is correct". The. usefulness of a simulatEr.asfé’design
verificétidn tool depends oﬁ how earl§ a user ¢an find out design
errors with it. The turn around time to feed back the
verification results to the design step becomes shorter, the
earlier an error can be found.

Interactive Simulator IS in ISS is an interactive simulator

which has following functions.

17

90

(1) Interrupting function

A user can set ‘breakpoints in simulation steps wusing
subcommand AT, STEP, WHEN and ON. When the following conditions
occur, the simulation process 1is suspended and falls into the
suspended state.

AT condition occurs when the simulation time reaches the
specified one. ' AT subcommand is used to set this condition.

STEP condition occurs when the simulatioh for the specified
time interval ends. STEP subcommand is used to set this
condition.

WHEN condition occurs when the simulated module behaves in
the specified manner or falls into’ the specified state. WHEN
subcommand is usea td:§et this condition: |

INPUT CONSTRAINTS ERROR condition occurs when the simulated
module or submodules (blocks) receive input patterns which do not
satisfy the input constraints of the module or submodules. ON
subcommand is used to make this condition in effect. In SHDL the
design specification of a module can be partially described as
constraints on its input patterns. In general the module is
designed to have the specified function only of the input
patterns which satisfy the input constraints. A designer can use
- this useful information in design verification with a simulator.
When ank input pattern to a module violates input constraints,
the design containing the module must have some errors ana the
module behaves incorrectly. The errors are likely to be in the
design of modules which supply the input patﬁern or in the input

constraints itself. A designer can tell of what kind the error is

18

91

from £he type of the input constraints not satisfied. Moreover,
a designer can easily prepare input patterns for a module
according to input constraints description. Waste of computation
time on unnecessary simulation for wrong input patterns. IS has
a function to check input patterns during execution whether
"~ they satisfy input constraints of modules to which ‘they
drive. INPUT CONSTRAINTS ERROR cqndition occurs when these
input constraints are violated.
While the simulation process stays in the suSpended state,
a user can examine the statué 6f the module precisely and resume
the simulatign with modified input patterns specified adaptively.
(2) Display function of simulation results |
A user can examiné‘ the'Valﬁes of signal lines and contents
of memory elements at the specified simulation time in'féalltime.
LIST subcommand is ﬁsed to display simulation results.
(3) Modification funcﬁion of input patterns
A user can modify input patterns dynamically acéording to
the simulation results. EDITWAVE subcommand is used.
(4) Simulation resuming function
A user can resume the simulation from the past-éé;wéli as
the present simu;étion timé. When the input pattérns’are chénged,
he can go back to £he time ét which the chénges are effetive and
resume the simulation. This technique reduces much computation
time. GO and RUN subcommand are available fér this function.
Using these functions of IS, a designer cén easily fiﬁd
design errors in the early stage of design cycle. It shortens the

whole time spent for logic design. In Fig.2, an example of

19

008109 ISS: SIMULATE ONE_OF_FOUR_DECODER

00929 ENTER UNIT TIME(NS): 5

00030 SIMULATE: AT 51

6840 SIMULATE: GO

86058 <AT> TIME=< 51: 55>

900960 SIMULATE: LIST. (SHR.QA SHR.QB SHR.QC SHR.QD COUNTER.JK1.Q COUNTER.JK2.Q)
90079 SHR.QA < 46: 56>

poas8e a

" 'ge@9¢ SHR.QB ©C 46: 58>

0106 @ .
90119. SHR.QC < 46: 58>

06120 @ :

9@13@ SHR.QD . < 46: 58>

00149 @ ' ‘

#0158 COUNTER.JK1.Q < 46: 58>

001640 @ L

§017@¢ COUNTER.JK2.Q < 46: 506>

90180 @ ;
908190 SIMULATE: WHEN LOAD (SHR.QA=C | SHR.QB=C | SHR.QC=C | SHR.QD=C)
99200 SIMULATE: GO

00210 <WHEN> LOAD TIME=< 71:°'75>

90220 SIMULATE: LIST (SHR.QA SHR.QB SHR.QC SHR.QD)
§9230 SHR.QA : < 66:78>

66246 1 '

60250 SHR.QB < 66: 78>

60260 1 :

8270 SHAR.QC < 66: 78>

66280 @ .

#6290 SHR.QD "< 66: 78>

06300 1 :

#6316 SIMULATE: GO

6328 <KWHEN> LOAD TIME=<131:135>

#6330 SIMULATE: LIST (SHR.QA SHR.QB SHR.QC.SHR.QD)

6340 SHR.QA’ <126:1308>
60350 X :
90360 SHR.QB' <126:136>
60370 1

#8380 SHR.QC <126:138>
20390 1

#0408 SHR.QD <126:130>
90410 @ :

#0420 SIMULATE: LIST L (1:138)
904396 L < L:138>

PB448 XXXXX XXXXX XXXXX XXXXX XXXXX X

00456 SIMULATE: EDITWAVE

00460 ENTER LINENAME: L

08478 FROM: 86

00480 ENTER VALUE: -

00490 ﬂﬂﬂ@ﬂl@ﬁﬂﬂﬂﬂﬂQlﬂEﬂlﬂﬂﬂl@ﬂ00@00l@@ﬁﬂﬁ@ﬁ@ﬂﬁﬂ@@ﬂ@ﬂﬂﬂﬁﬂ
#8500 SIMULATE: GO 86

#8519 <KWHEN> LOAD TIME=<131:135>

@0529 SIMULATE: LIST (SHR.QA SHR.QB SHR.QC SHR.QD)

00530 SHR.QA ’ <126 :130>
00540 0)
86550 SHR.QB <126:136>
00566 1 : '
86578 SHR.QC <126:138>
06580 1
86598 SHR.QD . <126:138>
p0600 @ -
Fig.2 Interactive simulation with IS

20

93

interactive simulation is shown. ISS is impleménted on FACOM M-
200 in Data Processing Center of Kyoto University. Programs are
mostly developed in PL/I and about 18 thousands steps in total.

Users can use ISS from their TSS terminal interactively.

5. Conclusion

In tﬁié paper, Wé discussed séveralvproblems in’the design
of hafdware algorithms and logic design automation. The theory
of complexty of logic circuits and parallel computatioh wiil fo;m
the‘fbundaﬁion of desién of hardware algorithms which’wiii‘become
more important for larger VLSI systems. bEspeciélly,: tpq
relation bétween the éomplexitieé- of software and‘whardwére is
vefy impoftant fortpractical system design, because sysééﬁs are
combihétion of software énd hardware.

Dgsign autématibn is one of most highlightedvfieids in
-computer science. - In iogic design automation, we étill have
manylﬁard problems t§ rééolve for development of an efficient
design system. Researches on high—level hardwaretwdesign
languages, aﬁtomaticb'logic design from descriptioﬁs of:theéék
1angﬁéges and design'verification techniques‘for> large systems
have béen increasing.) Several techniques‘aéveléped' in the

software engineering will be applied to these area.

21

94

References

(1]

(2]

(31

[4]
[5]
[6]

(71

(81

[9]
[10]

[11]

"Highly Parallel Computing" Edited by L.S.Hayens, IEEE
Computer, vol.l5, no.l, pp.7-96, Jan. 1982.

S.Yajima, H.Yasuura and Y.kémbayashi, "Design of
Hardwaré Algorithms and Related Problems“, IECE
Technical Rep. AL81-86, Dec. 1981 (in Japanese).
N.Tokura, "VLSI Algorithms and Area-Time Complexity‘,
Joho-Shori vol.23, no.3, pp.l76-186, March 1982 (in
Japanese).

C.A.Mead and L.A.Conway, "Introduction to VLSI Systems",
Addison-Wesley, Reading, Mass.,il980. v

H.T.Kung, "The Structure of Parallel. Algorithms",

Advanced in Coﬁputers, vol.1l9, Academic Press, 1980.

M.Foster and H.T.Kung, "The Desién of Special-Purpose
VLSI Chips"”, IEEE Computer, vol.13, no.l, Jan. 1980.
C.D.Thompson, "Area-Time Complexity for VLSI", Proc. 11th
Symposium on the Theory of Computing, pp.81-88, May
1979. |

R.P.Brent and H.T.Kung, "The Area-Time Complexity of
Binary Multiplication®, JACM, vo0l.28, no.3, pp.521-534,

July 1981.

J.P.Gray, "Introduction to Silicon Compilation", Proc.

16th DA Conference, pp.305-306, June 1979.

K.Hwang, "Computer Arithmetic:Principle, Architecture and
Design", John-Wiley & Sons, Reading, Mass., 1979,
L.B.Jackson, S.F.Kaiser and H.S.McDonald, "An Approach to

the Implementation of Digital Filters," IEEE Trans. Audio

22

[12]

[13]

[14]

[15]

[16]

(171

[181]

(191

{20]

95

Electro., AU-16, Sept. 1968.

W.J.Stenzel, W.J.Kubitz and G.H.Garcia, "A Compact High-

Speed Parallel Multiplication Scheme," IEEE Trans. on
Comput., vol.C-26, no.10, pp.948-957, Oct. 1977.
A.Karatsuba and Y.Ofman, "Multiplication of Multidigit
Numbers with Computers”, Dokl. Akad. Nauk. SSSR, ‘ho;i45,
Feb? 1962. l 7

C.S.Wallace, "A Suggestion for a fast Multiplier“, IEEE
Trans. on Electro. Comput., vol EC-13, no.l, pp.l1l4-17,
Feb. 1964.

A.V.Aho, J.E.Hopcroft and J.D.Ullman, "Design and
Analysis of Computer Algorithms", ‘Addison-Wesley,
Reading,>Mass.,_1974. |
D.E.Muller and F.P.Preparata, "Bounds to Complexities of
Networks for Sorting and Switching", JACM, vo;,22,,n§.2,
pp.195-201, Apr. 1975. |
C.D.Thompson and H.T.Kung, "Sorting on a Mesh-Connected
Parallel Computer", CACM, vo0l.20, no.4, Apr.1977.
D.Nassimi and S.Sahni, "Bitonic Sort on a Mesh—Connected
Parallel Computer", IEEE Trans. Comput.,‘vol.c~28, np.l,
Jan. 1979. - - v
M.Maekawa, "Paréllel Sort and Join for Highr Speed
Database Machine Operations", AFIPS Conf. Prcc;, ﬁqi.SO,
June 1981.

L.E.Winslow and Y.C.Chow, “éarallel Sorting M#chines
:Their Speed and Efficieny", AFIPS Conf. Proc., vél.SO,

June 1981.

23

96

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

{30]

T.C.Chen, V.Y.Lum and C.Tung, "The Rebound Sorter:An
Efficient Sort Engine for Large Files"™, Proc. 4th VLDB,
pp.312-318, Sept. 1978.

H.Yasuura ;ndVN.Takagi, "A High-Speed Sorting Circuit

Using Parallel Enumeration Sort®™, Trans. IECE, vol.J65-

D, no.2, pp.179-186, Feb.1982 (in Japanese).

S.Todd, "Algorithm and Hardware for a Merge Sort Using

"Multiple Processors", IBM Journal of R. & D., vol.22,

no.5, Sept. 1978.

Y.Tanaka, Y.Nozawa and A.Masuyama, "Pipeline Searching

 and Sorting Modules as Components of a Data Flow Database

Computer", Proc. IFIP80, pp.427-432, Oct. 1980.

' 'H.Yasuura, "Hardware Algorithms for VLSI", Proc. Joint

Conf. of 4 Institutes Related on Electric Engineering,
34-4, Oct. 1981 (in Japanese).

J.E.Savage, "The Complexity. éf Computing"”, Wiley-

Interscience, Reading, Mass., 1976.

S.H.Ungéf, "Pree Realizations of Iterative Circuits",
1EEE Trans. Comput., vol.c-26, no.4, pp.365-383, Apr.
1977.

H.Yésuura, Y.0o0i and S.Yajima, "On MacroscObic'Depth
Reduction for Combinational Logic Circuits", " IECE

Technical Rep. EC81-1, Apr. 1981 (in Japanese).
H.Yasuura, "Width and Depth of Combinationél Ldgic

Circuits", Information Processing Letters, vol.l3,

no.4, 5, End, pp.191-194, 1981.

C.E.Leiserson, "Area-Efficiency Graph Layout (for VLSI)",

”

[31]

[32]

{331

97

Proc. 21st FOCS, Oct. 1980.

L.G.Valiant, "Universality Considerations in VLSI
Circuits", IEEE Trans. on Comput., vol.C-30, no.2,
pp-153-157, Feb.1981.

H.Yasuura and S.Yajima, "On Area of Circuits on VLSI"
(to appear).

T.Sakai, Y.Tsuchida, H.Yasuura, Y.Ooi, Y.Ono, H.Kano,

S.Kimura and S.Yajima, "An Interactive Simulation System
for Structured ngic Design —-- ISS", Proc. 19th DA Conf.,
June 1982.

25

