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Abstract

Graph- or matroid-theoretic approach has been successfully applied to
the design and analysis of large-scale systems, usually under certain
“generality" assumptions. 1In this paper, the structural solvability of a
system of equations is discussed under less restrictive and more realistic
assumptions on the "generality" of the quantities involved. A necesséry
and sufficient condition for the structural solvability is stated in terms
of the rank of a union matroid associated with the system of equations.
Also given is the detailed description of an efficient algorithm for
testing the structural solvability as well as for detecting the structural

inconsistencies.
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1. Introduction

FCombinatorial approach has proveh to be useful in the design and
énalysis of large-scale Systems, especially in detecting structufal
inconsistencies and in decomposing the whole system into subsystems [10],
[11]. For example, the solvability of a linear electric network is
discussed in terms of combinaﬁo?ial concépts connected with graphs and
matroids, where a certain "generality" is usually imposed on the quantities
involved in the network [12], [21], [22].

A number of graph-theoret#cvtechniques have been successfully
incorporated into chemical process simulators such as JUSE GIFS and DPS,
developed in Japan (8], (1431, [24], (28], (31], [32]. The ideas of
applying graph-theoretic techniques to the solution of systems of equatioﬁs
are found in {11, [51, (61, [71, {151, [25], [26]. The mathematical basis
for the techniques employed in JUSE GIFS and DPS for testing the structural
solvability of a system of linear/nonlinear equations, as well as for
decomposing the whole system into hierarchical subsystems, is discussed in
[13]1, [14]1, [16]1, [17]1, [18] by means of graph theory under a certain
generality assumption" on the functional forms of thé equations. However,
the "generality assumption™ is to§ stringent for some practical problems,
so that the graph-theoretic techniques developed under the assumption are
sometimes not justified in the strict sense of the word; in fact, a number
of real problems have been encountered for which the graph-~theoretic
techniques fail to detect the structural inconsistencies.

In this paper, the structural solvability of a system of
linear/nonlinear equations is formulated in a less restrictive and more

realistic setting, i.e., under a weaker "generality assumption" on the
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functions in the system and a necessary and sufficient condition for the
structural solvability is given in terms of the rank of the union of two
matroids associated with the system of equations. An efficient algorithm

for testing the structural solvability is presented together with examples.

2. Structural Solvability of a System of Equations

We consider a system of equations in the following form, with unknowns

xj (j=1,...,N) and u (k=1,...,K), and parameters A (i=1,...,M):

1)

{ y; = £, 0) (d=1,...,M), -

u, = gk(x, u) (k=1,...,K),
where fi (i=1,...,M) and 8, (k=1,...,K)-are sufficienﬁly smooth real-valued
functions. This form is most natural and convenient when we treat a
physicai/engineering system represented by a set of functional relations
among elemental state variables, where we want to adjust the values of x-
and u-variables so as to meet the arbitrarily given values of y-variables
[14].

We are concerned with whether the system (2.1) of equations has a

structure which admits a unique solution. In the following we assume that

M = N, since the number of equations must usually be equal to the number of
unknowns in order for (2.1) to have a unique solution. We denote Jacobian

matrix of (2.1) with respect to x and u by

J(f,x) J(f,u)
J(x,u) = , (2.2)
J(g,x) J(g.u)-IK

where
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afi Bfi
J(f'X) = 39X . ’ J(f.u) = Su ’
J 1
o8 28
K ) K
J(E,X) = 39X . . J(g,u) = Ju .
J 1

~ ~

Suppose that (2.1) has a solution (x, u) = (x, u) for some y = ;. It

follows from the theorem on implieit function that, if

det J(x,u) # 0, (2.3)
(2.1) has a unique solution (x, u) around (;. G) in accordance with an
arbitrary perturbation of y in a neighborhood of ;. It should be noted
also that, from a computational point of view, the condition (2.3)
guarantees the feasibility of a Newton-like iterative method for the
~numerical solution of (2.1).

The above condition (2.3), howe&er, depends not only on the functioqal
forms of fi and gk but also on particulér values of (;, G). which are
usually not known in advance. Hence we will consider a condition for the
solvability of (2.1), i.e., the condition that the Jacobian, as a function
in x, (j=1,...,N) and Uy (k=1,...,K), does not vanish identically:

det J(x,u) # O. (2.4)
More precisely, we shall assume that the partial derivatives of functions
fi and gk can be regarded as elements of some extension field F of the
rational number field Q. This assumption is fulfilled, for example, if fi
and g, are functions rational in xj (j=1,...,N) and uy (1=1,...,K), in
which case the field 6f rational functions in xj (j=1,...,N) and u1

(1=1,...,K) may be taken as the field F. We shall séy that the system

(2.1) of equations is structurally solvable if the Jacobian matrix J(x,u)

of (2.1), as a matrix over F, is nonsingular, i.e., if (2.4) holds in F.
In the following, we denote by D the set of partial derivatives of fi and
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D={8fi/8xj, afi/aul. agk/axj. ng/aul}. »
where iz=1,...,M, j=1,...,N, and k,1=1,...,K. The set D is, by assump;ion,
a subset of F.

In [13], the structural solvability of (2.1) is discussed under the
following assumptionbon the "generality" of the functional forms of fi and
8*

V GA1: The nonvénishing elements of D are algebraically independent

[29] over the rational number field Q.

Under this assumption, the structural solvability (2.4) of (2.1) is reduced
to a condition on the "represehtation" graph of (2.1), which is a directed
graph, or a kind of signal-flow graph, with ;ertices corresponding to
variables xj (j=1,...,N), uy (k=1,...,K) and vi (i=1,...,M) and arcs

representing the functional dependences among the variables éxplicitly seen

in fi and gk. That is, we have the following theorem [13].

Theorem 2.1. The system (2.1) of equations is structurally solvable
iff there exists on the representation graph a Menger-type vertex-disjoint

complete linking from X={xj|j=1.....N} to Y={yili=1,...,M}.

This result provides a mathematical basis for the graphical techniques
incorporated in chemical process simulators JUSE GIFS and DPS, which have
proven their effectiveness in industrial applications (243, [28]1, [31],
[32]. The "generality" assumption GA1 is, however, sometimes too stringent
in actual situations.

To meet realistic situations, we have to mitigate the generality

assumption. Specifically, we shall consider the rank of the Jacobian
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matrix, when the elements of D are ciassified into two ;ubsets, } and D\;,
in such a way that % is algebraically independent over the field Q(D\;),
the adjunction of D\% to Q [29]. By so doing, we can treat more realistic
situations than we could under the assumption GA1, since GA1 obtains as a
particular case where ; = D. In the next section, we establish

Theorem 3.1, which is a basic lemma concerning,the rank of a matrix

consisting of ‘two kinds of entries as above.

3. Rank of a Matrix

3.1. Additive partition of a matrix

Let K be a field and F an extension field of K. Consider an m by n

matrix A (aij) over F . We shall denote by A also the set of entries

{aijli=1,....m;j=1.....n} of the matrix A, Suppose the matrix A is
expressed as the sum of two matrices T = (tij) over F and Q = (qij) over K:

A=T4+0Q, (3.1)
where the nonvanishing entries of T are algebraically independent over K.
As is readily seen, if we define
= ..la, . 1 t d -
T {alJlalJ is a transcendental over K(A\{alJ})},

0
then tijﬁo implies aij eTo. Conversely, when given a matrix A over F, we

o~

can get an additive partition (3.1) of A by setting

tij = aij' qij =0 if aij €T0.

t.. =0, q,. = a,. otherwise.
ij ij ij
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‘Example 3.1, Let K=Qand F = Qﬁx,u,ex). For
21/2 x3+1 u+x
A = x2 1 e
o & 2

we have partition (3.1) with

0 0 u+x 2 0
T=10 0 e and Q = x2 1 ol.
0 o o o0 2

Let R = {1,...,m} and C = {1,...,n} be the column set and the row set,
respectively. For I<R and J <C, we denote by A(I,J) the submatrix of A
with rows I and columns J. The rank and the term-rank of A are denoted by
r(A) and t(A), respectively. Tﬁe following identity plays an important

role in the subsequent érguments.

" Theorem 3.1 (Rank Identity). For a matrix A of the form (3.1), we

have

r(A) = max {t(T(I,d)N)+r(Q(R\I,C\J))}. (3.2)
IcR,J<C

Proof: First we show the more obvious inequality:
r(A) < max {£(T(I,d))+r(Q(R\I,C\J))}.
) IR, J<C
Take a nonsingular submatrix A(R',C') = T(R',C') + Q(R',C') of.A with
[R"I{=IC']=r(A). Since det A(R',C'), viewed as a polynomial in nonvanishing
tij's over K, does not vanish, there exists a nonvanishing term, say
. . . . X .
HiEIti.j(i) with IcR', whose coefficient is equal, up to a sign, to
det Q(R'\I,C'\J) with J = j(I). Hence, we have t(T(I,J)) = [I] and
r(Q(R\I,C\J)) > r(Q(R'\I,C'\J)) = IR'|-II] = r(A)-1Il. Thus we obtain r(A)
< t(T(I,Jd))+r(Q(R\I,C\J)). Note that the algebraic independence of tij's
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is not used in this part.

Next we show

r(A) > max {t(T(I,d))+r(Q(R\I,C\J))}.
IcR,J<C

Take (I,J) which attains the maximum on the right-hand side. Then there
exists a square nonsingular submatrix.T(I',J') of T(I,J) such that

E(T(I',d")) = {I'] = }d'} = £(T(I,d)).
Similarly there exists a square nonsingular submatrix Q(I",J") of
Q(R\I,C\J) such that

r{Q(I",d") = JI"] = [J"] = r(Q(R\I,C\J)).
The submatrix A(I'+I",J'+J") is nonsingular, since the generalized Laplace
expansion of det A(I'+I",J'+J") with respect to rows I' contains a term

det Q(I",d™) deth(I'.J'),
which cannot be cancelled out by virtue of the algebraic independence of
the nonvanishing entries of T over K. Therefore we obtain

r(A) > r(A(I'+I",J'+d"))

v

I + (1"

t(T(I,Jd)) + r{Q(R\I,C\J)). Q.E.D.

3.2. Matroids associated with the additive partition (3.1

Theorem 3.1 may be rephrased in terms of linking systems [23] that the
linking system defined by matrix A is thé union of the two linking systéms
defined by matrices T and Q. It may alsoc be remarked that (3.2) can be
regarded as an extension of the 2-block rank introduced in [9].

With matrix A of the form (3.1), we will éssociate two matroids on S =
R+C, which are nothing but the matroids corresponding to the linking
systems defined by T and Q, respectively [{23]. To be specific, we define

two functions T and p :ZS-——>£+ by
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T(I+J) t(T(R\I,J)) + IIJl, _ (3.3)

P(I+Jd) r(Q(R\I,Jd)) + II{, (3.4)
where I <R and J<C. Since T and 0 enjoy the properties of rank
functions of matroids [30], we denote the corresponding matroids by M( T)
and M('D), respectively. Then it follows from (3.2), (3.3) and (3.4) that

r(A) = max { T(S') + pP(S\S")} -~ IR},

S'cs

and by the definition of a union matroid, we obtain

r(d) = (TVvVe)(S) = m,
where M(T VP) is the union matroid of M(T ) and M(p ), and m = }R|{. On
recalling the well-known relation between the rank of the union matroid and

the maximum size of a common independent set, we obtain the following

theorem, where M(p*)is the dual of matroid M( p).

Theorem 3.2. For a matrix A of the form (3.1), we have

r(A) rank of M(TVP) = m

= maximum size of a common independent set of M( T) and M(p¥*).

Remark 3.1. The dual matroid M(p*) of M( p) corresponds to the
transpose of the matrix Q. That is,

P%(I+J) = r(Q(I,C\J)) + |{JIl.

Since, as described later, M( T) can be represented by a bipartite
graph, and M( 0) as well as M(p*) by a matrix over 5; we can compute the
rank of a matrix of the form (3.1), on the basis of Theorem 3.2, by
utilizing ani established efficient algorithm for finding the-ﬁnion&of
M(T) and M( p), or fof finding a maximum common independent set of M( D)

and M(p*). The significance of Theorem 3.2 lies in the fact that it

8-
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enables us to determine the rank of a matrix A over F with graph -
manipulations as well as arithmetic operations in the subfield K, not in
the extension field F.

In connection with the Rank Identity (3.2), the following holds. -

Theorem 3}3. For a maximizer (I,J) of (3.2) which is maximal with

respect to set inclusion, we have |R\I])=]C\J| and |
" det A(R\I,C\J) €K¥ (K*=K-{0}).

Proof:b‘Puﬁ T=R\I and J=C\J. Suppose |II>r(Q(I,J)). Then there
exists i in T such that (I+{i},J) is also a maximizer of (3.2), which
contradicts the aSSumption thé£'(I,J) ig maximal. Similarly for |J}.
‘Hence |T1=13]=r(Q(T,3)), that is, Q(I,J) is nonsingular, and a fortiori
A(1,J) is nonsingular, i.e., det A(I,J)#0.

Suppose det A(I,J) £ K. Then there exist I'<T and J'<J (1'#0, J'40@)
such that both T(I',J') and Q(INI',J\J') are nonsingular, which implies

that (I+I';J+J') is also a maximizer of (3.2), a contradiction. Q.E.D.

it is known [19] that if det A<€K* for a square matrix A over F of
the form (3.1), the matrix A, with suitable permutations of its rows and
columns, can be deéomposed into LU-factors with a unit lower triangular
matrix over F and a nonsingular upper triangular matrix over K. This
means, in practical situations, that the submatrix A(R\I,C\J) in

Theorem 3.3 has one and the same U-factor whatever values tij's may take.
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4. Condition for the Structural Solvability

4.1, Structural solvability under generality assumptions

Suppose. the partial derivatives D of fi and 8y in (2.1) afe classified
into two subsets, } and D\;, in such a way that ; is algebraical;y
independent oven Q(D\;).(see section 2). Accordingly, we express the
Jacobian matrix (2.2) as ‘

J=T+QqQ, N . _ (5. 1)
where the partial derivatives belonging. to ; are taken for ;he_nqnv;nishing
entries: of .T. - This expression is of the form (3.1) with KFQ(D\})‘in éhe
previous section. Let us denote by M(T ) and M(p), respeCtivelg, the
matroids defined by (3.3) and (3.4). From Theorem 3.2 with A = J, we
immediately obtain a necessary and sufficient condition for thevstructural

solvability (2.4) of the system (2.1) of equations, as stated below.

Theorem 4.1. Suppose that M = N in (2.1). The following three
conditions are equivalent.

(i) The system (2.1) of equations is structurally solvable.

(ii) The union matroid M(T VP) has the rank 2(N+K).

(iii) The maximum size of a common independent set of M(T ) and M(p¥)

is equal to N+K.

In case we can assume
GA2: Those elements of D which do not belong to the rational number
fieid Q are algebraically independent over Q,
on the generality of the partial derivatives D, we may take ; to be the set

of all the partial derivatives which are not rational constants. Then we

-10-
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have E;Q(D\;)zg. which implies that the structural solvability can be
determined by arithmetic operations on rational numbers-as well as by graph
manipulations. /
Another useful assumption is that:
GA3: ‘Those -elements of D which do not belong ‘to the-real number
field R are algebraically independent over R.
In this case, we can take for E‘the set of non-constant derivatives and put
K=R, and consequently, the structural solvability is determined by~
arithmetic operations on real numbers as well as graph manipulations. The
genefélity’assumption”GA3=ref1écts the . situation where we regard the
nonlinear part of the fuﬂétions‘fi and 8, as independent.
Some comments would be in order here on the mutual relations among the
generality assumptions GA1, GA2 and GA3. First of all, GA2 is weaker than
GA1; that is, if GA1 holds, GA2 holds, too. No other implications exist, .

as illustrated below, where E;g(x,ex) and-TO is determined with K=Q.

D GA1 GA2 GA3 | T,
{ex,x,e¢5:eV§; 0.K. 0.K. 0.X. {ex;x,e¢5,e/§}
{ex,x.evg;,evg} 0.K. O.K. X {ex,x,eVE;.elg}
{e*,x, m,1} X 0.K. 0.K. | {e¥,x, T}

{x, T, n2,21/2} X X 0.K. {x}
{ex,x, mx,1} X 0.K. X {ex,x, mx}
te*.x, mx, T} X X X te*}

When given a system of equations, we can test the structural
solvability by applying Theorem 4.1, once we classify the elements of D
into two subsets T and D\T. In actual applications to real problems, the

-11-
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classification is in some sense at our disposal, or in other words, it

depends on how we model the system, as will be seen in the example below. .

4,2, Example ——- Ethy}ene dichloride: production: system

Consider.-a hypothetical system (Fig. 1) for the production of ethylene
dichloride (CZHMCIZ)' which is slightly modified from the one given in
"Users Manual of Generalized Interrelated Flow Simulation" of "The Service

Bureau Co.":

Feeds to the system-are 100 mol/h-of pure chlorine (Clz).(stream 1.,
and 100,mol/h‘of pure ethylene (CZHu),(stream 2).. In the reactor, 90% of
the ethylene is converted into ethylene dichloride accord;ng to the
reaction formula h

‘CZHM + Clé §-> CZHM >

In the purification stage, the product ethylene dichloride ‘is recovered and

Cl

the unreacted chlorine and ethylene are separated for recycle. The
purification is described.in terms of component recovery ratios a1, a2 and

a, of chlorine,vethylene and ethylene dichloride, respectively. These are

3
the fractions of components in the unit feed (stream 5) that are recovered

in stream 6.

The problem considered here is as follows.

1

ethylene, determine the recovery x:a3 of ethylene dichloride with which a

Problem: Given the component recoveries a, and a, of chlorine and
specified value y mol/h of ethylene dichloride is produced.

Let ui1, ui2 and u13 mol/h be the component flow rates of chlorine,

ethylene and ethylede dichloride in stream i, respectively. The system of '

-12=~
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@ recycle

@ chlorine feed Lat o en
100 mol C12/h @ : S mE @ B I

————®1 _.reactor [————Ppurification

@ ethylene feed . s
90% convy. .
100 mol Cz“a/h Czﬂﬂclzw‘czuag,z

@ product

Fig. 1. Hypothetical ethylene: dichloride .production;system

Fig. 2. Representation graph of the example problem.
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equations to be solved may be put in the following standard form [8], where
u is an auxiliary unknown variable in the reactor and r (=0.90) is the

conversion ratio of ethylene.

str3=stris+stré6: u,, = Ugy *+ 100

31
| gy = Ugy (j=2,3)
striz=str2+str3: Uy = u32 + 100
| hmj=“n (3=1,3)

reactor: uzr uué

ugy = u;jx- u (j=1,2)

u53 = uu3 + U
purification: u6j = aj qu (j=1,2)

Y63 = ¥ Us3

u7j = uSj - u6j (j=1,2)

Y = Y53 = Ye3

In this case we have Mz=N=1 and K=15 in the notation of (2.1). We regard aj
(j=1,2) and r (=0.90) as constants which assume "general", i.e.,
algebraically independent, values.

The representation graph of this system of equations is gi#en in
Fig. 2, on which a Menger-type complete linking (e.gl, X —> u63 —>y)
exists from the set X={x} to the set Y={y}. Therefore, the existing method
(81, [13], [14], which assumes GA1 and applies Theorem 2.1, would conclude
that this system were structurally solvable, contradicting the fact that it
is not structurally solvable, i.e., that the Jacobian of this system
(Fig. 3) identically vanishes. This contradiction stems from the

assumption GA1, which, in this case, fails to hold. In fact a large part

~14-
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of the equations are made up of simple additions and subtractions so that
most of ﬁhe partiél derivatives are constént of values such as 1 and ;1.
which are too special to be considered "general"; consequéntly. the
Jacobian matrix is singular in spite of the fact that it has term-rank of
N+K=16, or equivalently [13], that tﬁe representation graph has a
Menger-type complete linking. |

| On the other hand, thé new method based on Theorem 4.1 can détect the
structural inconsistency of this system of equations. We consider 31;'32,

r, x and u to be algebraically independent over Q and, putting T = {a

53
as. . X, u53}, express the Jacobian matrix in the form of (3.1). The

1’

maximum size of a common independent set of M( T) and M(p*), which can be
found by the algorithm given in the next section, turns out to be equél to
15. It follows from Theorem 4.1 that the system of equations is not .

structurally solvable.

-15-
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Ugq Ugp U3z Uy Uyp Uyz-Ugy YUgp Yg3.Ygq Ugo UYg3 Y7q Ugn. U

X

-1

SRR

il e T —

- -t - —— . ——— am o

-1

e - - - - w—— o a——

-1

— e - - — o - - a——

=1

-1

e T e T

Jacobian matrix of the example problem

Fig. 3.
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5. Algorithm for Testing the Structural Solvability

5.1. Representation of ;he maﬁroids M('f) and M(p*)

In this section, we will describe an algorithm for determininé the
rank of an m by n matrix A = T + Q of the férm (3.1) on the Easis of
Theorem 3.2. For convenience, Qe put the column set C:{1....,n}'and‘the
row set R={n+1,...,n+m} apdAS =7C+R = {],.,..n+m}. and understand
throughout that i and J denote a subset of R and C, féspécﬁively. 4Two
functions, i.e., the clésure ;19 and thg fundgméntal cireuit CQ are defined
in M(p*): ~ ‘., | .

190X = (VIO (K+(v))=0*(X)} for X<S,
and for v Ele(X)\X with X independent ;
CQ(VIX) = {ul (X+{vI)\{u} is indepen&enﬁ},
The closure clT and the fundamental circuit CT in M(T) are defined

similarly.

The matroid M( T ) can be represented by a bipartite graph GT
associated with matrix T; thg vertex sets are R and C, and there is an edge

(i,j) iff ti #0. The subset I+J is independent in M(T ) iff, for some

J
subset J, of R\I, there exists a complete matching between J, and J on GT'
With a fixed complete matching between J; and J for an independent set I+J,
is associated the auxiliary directed graph GT' with vertices R+C,'which has

an arc (i,j) if the edge (i,j) in G_ is out of the matching and an arc

T
(j,i) if the edge (i,j) is in the matching, where i €¢R and j eC.

The basic functions, clT and CT, of M( T) may be characterized in terms
of the reachability on GT. as is stated in the following propositions,

where K = R\(I+J*) and u-%¥->v means that v is reachable from h.

-17-
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Proposition 5.1. For v ¢ I+J with I+J independent in M(T),
v £ clT(I+J) iff u-%->v on ET for some ue K. 1
Proposition 5.2. For ue I+J, ve clT(I+J)\(I+J) with I+J independent
in M(T), ue CT(VlI+J) iff u-%->v on ET' !
Proposition 5.3. For ue IsJ, v ¢ I+J with I+J independent in M(T ),

u-%->v on GT implies that I+J+{v}\{u} is independent. [

On the other hand, the matroid M(p¥*) can be répresented by
n-dimensional row vectofs over K. Let a be the i-th row vector of Q
(izn+1,...,n+m) and ej Se the j-th row vector of the unit matrix In
(j=1,...,n). For convenience, we write

e, (i=1,...,n),
{Q' (i=n+1,...,n+m).
Then I+J is independent in M(p*) iff the row vectors {rjljs I+J} are
linearly independent over K.

Let s be a permutation of S={1,...,n+m} such that {r }j=1,...,n} is

s(j)

a base of the n-dimensional vector space, that is, B={s(j)!j=1,...,n} is a
base of M(P*). Then rs(i)'s'(i=n+1,...,n+m) can be represented as a linear

combination of r 's (j=1,...,n), and we shall write the coefficient

s(J)
matrix of the combination by m by n matrix P=(pij) over K such that

(izn+1,...,n+m).

[ e =]

Pij Ts(h

r < =
s(1) j=1

Q

In terms of the maﬁrix P, ¢l1” and CQ can be characterized as follows.

For s(i) £ I+d,
s(i) e le(I+J) iff n<i and pij=o for any j with s(j)e B\(I+J).
For s(i) € el AT+IIN(T+d),

Q

s(j)e C(s(i)|I+J) iff j<n and pij £ 0.

-18-
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5.2. Description of the algorithm

By specializing the algorithm described in [11], [27], we will fina a
max imum cbmmon independent set of M( T) and M(p*) instead of determining
the rank of the union matroid pf M(T) and M(p) [4]. To be specific, we
consider a maximum independent matching problem on a bipartite graph with

the vertex set V_+V_, each of V. and V_ being a copy of 'S, and the edges

T -Q T Q
connecting the vertices of VT and VQ corresponding to the same element of
S. To VT is attached the matroid M( T) and to VQ the matroid M(p*). Let

I+J be a common independent set of M( 1) and M(p*). The algorithm works
with the auxiliary graph E. on which augmenting paths are to be found, and
an m by n matrix P:(pij) (i=n+1,...,n+m; j=1,...,n) along with a
permutation s of {1,...,n+m} such that I+J cB={s(j}!j=1,...,n}.

The auxiliary graph E’is-determined as follows. The vertex set of 5
is the union of V_=R_+C_ and V_=R_.+C_, ;here R

T T T Q Q Q T
are copies of R (C, resp.). The copies of v € R+«C are denoted by vTe VT and

and RQ (CT and CQ, resp.)

vQ EVq.

above, with respect to a matching on GT' The subgraph of G on VQiexpresses

The subgraph of G on V.r is the auxiiiary graph GT’ mentioned

M{(p*) with the help of the matrix P and the permutation s in the following
manner: An arc (uq,vQ) (uQ;er Vb) exists iff Pig = 0 for all k such that
s(k) ¢ I+J and pij # 0, where u=s(i) and v=s(j).

The algorithm starts with a maximum matching on GT' the bipartite
graph associated with the matrix T. This means that it starts with a
common independent set J, the subset of C which is covered by that
matching. With the aid of the auxiliary graph 5, the algorithm increases
the size of the common independent set I+J one by one. Associated with the

-~

auxiliary graph G is a common independent set I+J:

-19-
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I

{ie Rl(iQ,iT) exists on 6},

d ) exists on G}.

{je CI(jQ.J'T

A vertex in RT is called an entrance vertex if it has no incoming edge

on G. A vertex uQ‘in RQ+CQ is called an exit vertex if it is not in the

closure of the independent set I+J in M(p*), i.e., if
either ue{s(j)1j=1,...,n}I\(I+J) or pijio for some j with s(j) £ I+J,

where u=s(i).

Algorithm
1) s(k):=k for k=1,...,n+m.
P:=Q.
Find a maximum matching on GT; set J equal to the subset of C such

that the corresponding vertices in C, are covered by it. Let the

T

arc set of G consist of the following:

{(i Yie R,je C;(i ) is out of the matching on GT}

T’JT TQJT
+H{(Jpipdlie Ry Je Cilin, Jg
(i H e RE + (U, dd1de O} + (G, 3p) 13 d1,

) is in the matching on GT}.

{(iQ,J'Q

2) Look for a shortest path P (i.e., with minimum number of arcs)

YlieR,je C;pik=0 for any ke C\J and pijio}.

on 8 from an entrance vertex to an exit vertex.

i) If such a path ; does not exist (including the case where there is
no entrance or no exit vertex), stop with I+J being a maximum
independent set.

ii) If such a path ; exists, do the following.
For all pairs u,v such that the arc (uQ,vQ) exists on ;,

perform the pivoting operation on P with the pivot (k,1),

where u=s(k) and v=s(1):

-20-
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. .- _ . i£1) |
rkpij : pij pilpkj/pkl (i#k, j#1)
\ (i#k),

Pi1 *= Py /P

pkl = T/Dkl,

L s(k):=v; s(1):=u.

Let vQ‘be the exit verﬁex on P and v=s(k). If k>n, then do

pivoting above with pivot Py # 0 such that u=s(1) £ I+J.

Reverse the orientations of all the arcs on P.

(Update I+J accordingly.)

Referring to the new matrix ‘P, update the arcs of G connecting two ,

 vertices within VQ, i.e., make an arc (quvQ) iff

Piy = 0 for all k with s(k) £ I+J and-pij £ 0,

where u=s(i), v=s(j).

Go to 2).
The following example illustrates how the algorithm works.

Example 5.1. Consider a square matrix

[ty 1 ty1-1 0 2)

0 t2 T 1 1 2 0
0 0
0 t3 ts 0 0
A = o1 1 10 1 1 ’

L0 0 0 1 0 1 1)

where {ti|i=1,....5} are algebraically independent over the rational number

field Q. The partition (3.1) yields A = T + Q with

21~
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(¢, 0 tuoooo* 010 1-10 2

0 t,0 0 0 0 0 00111 2.0

0 0 tjt; 0 0 0 000 00O 0O
T=]0000000]|, Q=]011-10 1 1].

000000 O 1-1.0 0 1 11

10000000 001 1120

[ 000000 0) L0000 1 0 1 1

It is easy to see that r(A) =6, r(T) = t(T) = 3 and -r(Q) = u,
The algorithm starts with a maximum matching on GT; e.g., {(8,1),
1 t2, t3}. This means ‘I+J = {1, .2, 3}. The initial

state of the auxiliary graph ¢l

of the matrix P:P(0)=Q. The entrance is {11

(9,2), (10,30}, or {t
is given in Fig. 4 (i) together with that

12 13T, 14T} and the exit

T T
is {uq, SQ, 6Q' 7Q' BQ, 9Q’ 110, 120, 13Q' 140}.
5(0) ~(0)

Then an augmenting path P =11T——>11Q is found on G

pivoting of P with pivot (k,1)=(11,4) is done. (We may choose (11,6) or

and the

(11,7) instead of (11,4) as the pivot.) * According to the updated matrix

P:P(1), we change the arcs connecting two vertices in V., to obtain the

auxiliary graph ¢‘" in Fig. 4 (ii). Now I+J = {1, 2, 3, 11}.

On G(1), an augmenting path P(1)=12T-->12Q is found, yielding G(z) in
~(2)

Fig. 4 (iii) with I+J = {1, 2, 3, 11, 12}. The entrance of G is {13T,

14T} and the exit is {MQ, Sq, 6Q. 7Q}. An augmenting path
(2) .

P _1MT——>1NQ-—>3Q——>3T-—>1OT-—>HT-—>BQ is found. For the arc (140,30)
and the exit vertex 4_, we perform the pivoting, once with (k,1)=(14,3) and

Q
once with (k,1)=(11,6) (or (11,7)). The auxiliary graph G(Z) is updated to

G(s) in Fig. 4 (iv) with I+J = {1, 2, 4, 11, 12, 14}, It turns out that no

~(3)

path exists on G from the entrance {13T} to the exit {SQ. 6Q, TQ}.

Therefore the I+J is a maximum common independent set. It follows from
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Theorem 3.2 that r(A) = |[I+J] = 6. From the maximum independent set I+J,
we also know that T(R\I,J) and Q(I,C\J) gives a partition of matrix A that

attains the maximum in the right-hand side of (3.2).
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10
PO 1

12
13
14

-
©O H O~ O H O

H N~ = O N O

, I+Jd= {1, 2, 3}

= O M = O O N

o 9
- A ]
- —Q
- —0O
- ©
- ©
- ©
O &

Y/ o

VA—

O - O 11,

C - O 12,

O - © 13,

O - '0) 14Q |

Fig.4 (i). Auxiliary graph G0),
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0 0-1 1-1-11
0-1 0 1 1 1-1
10 {0 0 0 0 0 0 O
P(])= 4-f0-1-1 1 0-1-1), I+= {1, 2, 3, 11}
12 |]1-1 0 o (:) 1 -1
13 |{o-1 6 1 1 1-1}
14 |0-1-1 10 00
1p
.Y 1
) 3'1‘
Ay
-1
oI
o1
8T // F—
9TQ§// -
lOT(Z T
11T e el
T(1)
12T(>» i
13TC} -
14T() -

Fig.4 (ii). Auxiliary graph E(]).

QO :entrance (:exit
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310

1 2 311126 7
1-1-1 1-1 0 0
-1 00 1100
© 000000
0-1-1 1 0(D-1
-1 100 1-1 1
-1 00 1100
0-1¢D) 1 0 0 0

’

|

Y

A A

|

5(2)

Fig.4 (iii). Auxiliary graph

S

—26-
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1 2 1411 12 4 7

8|11 01 0-1 0 O
9]-1 0 0 1 1 O O
10 ]0 0 0 0 0 0 O
p(3). 6 01 0 0-1-1] , I+J= {1, 2, 4, 11, 12, 14}
5]-1 1-1 0 1 1 2
13 }j1-1 0 0 1 1 0 O
3{0-1-11 0 00
1T
2'1'
3T
10T S-S
llT° _—
12, @ —
141,13 —
: . s =(3)
Fig.4 (iv). Auxiliary graph 6'~/. O :entrance ; @:exit
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6. Concluding Remarks

Graph-theoretic techniques for testingrthe'structural solvability
naturally lead to ﬁhe.decompositions of the whole system into hierarchical
subsystems [13], [16], [17], [18],’[25].‘ For exaﬁple, the decomposition of
a bipartite graph [2], [3] due to A. L. Dulmage and N. S. Mendelsohn
applied to the Jacobian matrix (Fig. 3) of thé ethylene dichloride
prodqption system yields Fhe block—triangular‘fqrm shown in Fig. 5.
Obvi§ﬁsly. the term-rank of this matrix is equaivto 16. Once the matrix is
putrjabﬁhe bloék-triangular form, it will not be:difficult. in this case,
to detect the singularity of the matrix by inspection; in fact, the
diagonal block of size 4 in the middle, i.e., the one corresponding to {y,

u.t, is easily seen to have rank equal to

}x{u

U3gs Uy3e Ugz?™llggs Uggs Ugzs Uyg

3. 4
On the other hand, the matrix A of Example 5.1 is irreducible by the

Dulmage-Mendelsohn decomposition. And it would be essential to resort to
the proposed method to determine the rank of this matrix efficiently.

Theialgorithm. described in section 5, for finding a maximum common
independent set of M( T) and M(p¥*) also giQes a partition of R+4C with the
partial order structufe, which is called the principal partition [10],
f11j, [20] w}th respect to the pair of matroids (M( T), M(P*)),

We conclude with the following theorem.

Theorem 6.1. Suppose that the matrix A of the form (3.1) is
nonsingular. The partition of R+C induced by the principal partition with
respect to (M( T), M(p*)) is a refinement, inclusive of the partial order,

of that induced by the Dulmage-Mendelsohn decomposition of the matrix A.
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u -1

u 1

-1

1

-1

a5

1

-1

-1

-1

53

-1

Fig. 5.

Block-~triangular form of the Jacobian matrix in Fig. 3

-29-



314

Acknowledgement

The authors would like to thank Messrs. J. Tsunekawa and S. Kobayashi
of the Institute of the Union of Japanese Scientists and Engineers and
S. Abe of Nissan Chemical Industries, Ltd. for useful discussions and

suggestions from the practical point of view.

References

[1] Christensen, J. H., and Rudd, D. F.: Structuring Design Computations.

A. I. Ch. E. (American Institute of Chemical Engineers) Journal, Vol.15

(1969), pp.94 - 100.

[2] Dulmage, A. L., and Mendelsohn, N. S.: A Structure Theory of Bipartite

Graphs of Finite Exterior Dimension. Transactions of the Royal Society of
Canada, Section III, Vol.53 (1959), pp.1 - 13.
[3] Dulmage, A. L., and Mendelsohn, N. S.: On the Inversion of Sparse

Matrices. Mathematics of Computation, Vol.16 (1962), pp.494 - 496.

[4] Edmonds, J.: Minimum Partition of a Matroid into Independent Subsets.

Journal of National Bureau of Standards, Vol.69B (1965), pp.67 - 72.-

{5] Harary, F.: A Graph-Theoretic Approach to Matrix Inversion by

Partitioning. Numerische Mathematik, Vol.4 (1962), pp.128 - 135.

[6] Himmelblau, D. M.: Decomposition of Large Scale Systems ——- I.

Systems composed of lumped parameter elements. Chemical Engineering

Science, Vol.21 (1966), pp.425 - 438,
(71 Himmelblau, D. M.: Decomposition of Large Scale Systems ——- II.

Systems containing nonlinear elements. Chemical Engineering Science,

-30-



315
Vol.22 (1967), pp.883 - 895.

[8] Institute of the Union of Japanese Scientists and Engineers:
JUSE-L-GIFS User's Manual, Version 3 (in Japanese), 1976.
[9] Iri, M.: The Maximum-Rank Minimum-Term-Rank Theorem for the Pivotal

Transforms of a Matrix. Linear Algebra and Its Applications, Vol.2 (1969),

{10] Iri, M.: A Review of Recent Work in ;apan on Principal Partitions of
Matroids and Their Applications. Annals of the New York Academy of .
Sciences, Vol.319 (1979). pp.306bf 319.

[11] Iri, M., and Fujishige.(s.: Userof Matroid Theory in Operatiqns

Research, Circuits and Systems Theory. International Journal of Systems

Science, Vol.12 (1981), pp.27 - S4.
[12] Iri, M., and Tomizawa, N.: A Unifying Approach torFundamental _
Problems in Network Theory by Means of Matroids. Electronics and.

Communications in Japan, Vol.58-A (1975), pp.28 - 35.

[13] Iri, M., Tsunekawa, J., and Murota, K.: Graph-Theoretic Approach to
Large-Scale Systems ——- Structural Solvability and Block-Triangularization .

(in Japanese). Transactions of Information Processing Society of Japan,

Vol.23 (1982), pp.88 - 95. (English translation available).
[14] Iri, M., Tsunekawa, J., and Yajima, K.: The Graphical Techniques Used

for a Chemical Process Simulator "JUSE GIFS". Information Processing 71

(Proceedings of the IFIP Congress 71), Vol.2 (Applications), (1972).
pp.1150 - 1155';

[15] Lee, W., Christensen, J. H., and Rudd, D. F.: Design Variable
Selection to Simplify Process Calculations. A. I. Ch. E. (American

Institute of Chemical Engineers) Journal, Vol.12 (1966), pp.1104 - 1110.

[16] Murota, K.: Decomposition of a Graph Based on the Menger-type

-31-



316

Linkings on It (in Japanese). Transactions of the Information Processing

Society of Japan, Vol.23 (1982), pp.280 - 287.

[17] Murota, K.: Structural Analysis of a Large-Scale System of Equations
by Means of the M-Decomposition of a Graph (in Japanese). Transactions of

the Information Processing Society of Japan, Vol.23 (1982), No.5, to

appear.

[18] Murota, K.: Menger-Decomposition of a Graph and Its Application to
the Structural Analysis of a Large-Scale System of Equations. Kokyuroku,
Kyoto University, No.453 (1982), pp.127 - 173.

[19] Murota, K.: LU-Decomposition of a Matrix with Entries of Different
Kinds. Kokyuroku, Kyoto University, No.463 (1982), pp.23 - 32.

[20] Nakamura, M., and Iri, M.: A Structural Theory for Submodular
Functions, Polymatroids and Polymatroid Intersections. Research Memorandum
RMI 81-06, Department of Mathematical Engineering and Instrumentation
Physics, University of Tokyo, 1981.

[21] Recski, A.: Sufficient Conditions for the Unique Solvability of

Linear Memoryless 2-Ports. Circuit Theory and Applications, Vol.8 (1980),

pp.95 - 103.

[22] Recski, A., and Iri, M.: Network Theory and Transversal Matroids.

Discrete Applied Mathematics, Vol.2 (1980), pp.311 - 326.

t23] Schrijver, A.: Matroids and Linking Systems. Mathematical Centre

Tracts, Vol.88, Amsterdam, 1978.

[24] Sebastian, D. J .G., Noble, R. G., Thambynayagam, R. K. M., and Wood,
R.K.: DPS —- A Unique Tool for Pfocess Simulation.  2nd World Congress of
Chemical Engineering, Montreal, 1981.

{25] Steward, D. V.: On an Approach to Techniques for the Analysis of the

Structure of Large Systems of Equations. SIAM Review, Vol.l4 (1962), pp.321

-32-



317

- 342,
[26] Steward, D. V.: Partitioning and Tearing Systems of Equations. SIAM

Journal on Numerical Analysis, Series B2 (1965), pp.345 - 365.

[27] Tomizawa, N., and Iri, M.,: An Algorithm/for Determining the Rank of a
Triple Matrix Product AXB with Application to the Problem of Discerning the
Existence of the Unique Solution in a Network. Electronics and

Communications in Japan, Vol.57-A (1974), pp.50 - 57.

[{28] Thambynayagam, R. K. M., Wood, R. K., and Winter, P.: DPS ——- An

Engineer's Tool for Dynamic Process Analysis. The Chemical Engineer,

No.365 (1981), pp.58 -~ 65.
{29] van der Waerden, B. L.: Algebra. Springer~Verlag, Berlin, 1955.

[30] Welsh, D. J. A.: Matroid Theory. Academic Press, London, 1976.

[31] Yajima, K., Tsunekawa, J., and Kobayashi, S.: On Equation-based

Dynamic Simulation. Proc. of 2nd World Congress of Chemical Engineering,

Vol.V, pp.U469 - 480, 1981.
{32]) Yajima, K., Tsunekawa, J., Shono, H., Kobayashi, S., and Sebastian,
D. J.: On Graph-Theoretic Techniques for Large-Scale Process Systems.

International Symposium on Process Systems Engineering, Kyoto, August,

1982.

-33-



