<table>
<thead>
<tr>
<th>Title</th>
<th>GENERAL ELEMENTS OF IDEALS IN LOCAL RINGS (Some Recent Development in the Theory of Commutative Rings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Rees, David</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1983), 484: 22-30</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/103437</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
GENERAL ELEMENTS OF IDEALS IN LOCAL RINGS

David Rees (Exeter, England)

In many situations arising in the theory of local rings, it is necessary to make use of elements x_1, \ldots, x_s of ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_s$ which are sufficiently general in some sense, depending on the particular situation involved. The purpose of this lecture is to describe a general set-up in which such general elements can be defined which satisfy the required conditions in most such situations and to give an illustration of its application.

We suppose that (Q, \mathfrak{m}, k) is a local ring of dimension d. We first construct the general extension Q_g of Q. Let X_1, X_2, \ldots be a countable sequence of indeterminates over Q. Then Q_g is the localisation of $Q[X_1, X_2, \ldots]$ at the prime ideal $\mathfrak{m}[X_1, X_2, \ldots]$. It follows from a general result of Grothendieck that Q_g is noetherian (alternatively one can prove that if \mathfrak{a} is a finitely generated ideal of Q_g, then $\bigcap_{n=1}^{\infty} (\mathfrak{a} + \mathfrak{m}_g^n) = \mathfrak{a}$, and then, observing that the completion of Q_g is noetherian, use the above to show that if $\mathfrak{a}Q_g = \mathfrak{a}'Q_g$ where \mathfrak{a}' is a finitely generated ideal of Q_g contained in \mathfrak{a}, then $\mathfrak{a} = \mathfrak{a}'$.)

Now suppose that $\mathfrak{a}_1, \ldots, \mathfrak{a}_s$ are ideals of Q, and that \mathfrak{a}_1 has a basis a_{i1}, \ldots, a_{im_i}. Write $M_i = m_{i1} + \ldots + m_{im_i}$. Then we term x_1, \ldots, x_s an independent set of general elements of $\mathfrak{a}_1, \ldots, \mathfrak{a}_s$ if there exists an automorphism T of Q_g over Q such that
\[T(x_i) = \sum_{j=1}^{m_i} x_{M_i-1+j}^{a_{ij}} \quad (i = 1, \ldots, s). \]

It is a simple matter to prove that this definition is independent of the choice of bases of \(\mathfrak{a} \sigma_1, \ldots, \mathfrak{a} \sigma_s \). It also follows that the ideal \((x_1, \ldots, x_s) \cap Q\) of \(Q \) and the \(Q \)-algebra \(\mathcal{O}_g/(x_1, \ldots, x_s) \) (to within isomorphism as a \(Q \)-algebra) depend only on the ideals \(\mathfrak{a} \sigma_1, \ldots, \mathfrak{a} \sigma_s \). I will only consider the first in the case when the ideals \(\mathfrak{a} \sigma_1, \ldots, \mathfrak{a} \sigma_s \) are all equal to \(\mathfrak{a} \). Let \(a(\mathfrak{a}) \) denote the analytic spread of \(\mathfrak{a} \), and \(v(\mathfrak{a} L) \) the minimal number of generators of \(\mathfrak{a} \).

i) if \(s < a(\mathfrak{a}) \), the ideal \((x_1, \ldots, x_s) \cap Q\) is nilpotent;

ii) if \(s = a(\mathfrak{a}) \), \((x_1, \ldots, x_s)\) is a reduction of \(\mathfrak{a} \sigma Q_g \) and hence \((x_1', \ldots, x_s') \supseteq \mathfrak{a} \sigma^n Q_g\) for \(n \) large, and hence \((x_1, \ldots, x_s) \cap Q\) contains a power of \(\mathfrak{a} \);

iii) if \(s \geq v(\mathfrak{a}) \), we have \((x_1, \ldots, x_s) \cap Q = \mathfrak{a} \).

Now we consider the second. In this case we will be concerned with the case when \(s = d-1 \) or \(d \), and the ideals \(\mathfrak{a} \sigma_1, \ldots, \mathfrak{a} \sigma_s \) are all \(\mathfrak{m} \mathfrak{w} \)-primary. Let \(N \) be any integer and define \(Q_N \) to be the ring \(Q[Y_1, \ldots, Y_N] \) localised at \(\mathfrak{m}[Y_1, \ldots, Y_N], Y_1, \ldots, Y_N \) being indeterminates over \(Q \). If we replace \(Y_i \) by \(X_i \), it is clear that we can consider \(Q_N \) as a subring of \(Q_g \). Now suppose that \(\mathfrak{a} \sigma \) is any ideal of \(Q_g \). Then for some \(N \), \(\mathfrak{a} \sigma \) is generated by elements of the sub-ring \(Q_N \) of \(Q_g \) and therefore \(\mathfrak{a} \sigma = (\mathfrak{a} \sigma \cap Q_N) Q_g \). Now we have an isomorphism of \((Q_g)_N \to Q_g \) in which \(X_i \) maps to \(X_{N+i} \) and \(Y_i \to X_i \) for \(i = 1, \ldots, N \). It follows that \(Q_g/\mathfrak{a} \sigma \) is isomorphic to
$(Q_{g})_{N}/\alpha^{*}$, where α^{*} is an ideal of $(Q_{g})_{N}$ meeting Q_{g} in $(Q \cap \alpha)Q_{g}$. The case that will concern us is when α is generated by general elements x_{1}, \ldots, x_{d-1} of \mathfrak{m}-primary ideals $\alpha_{1}, \ldots, \alpha_{d-1}$ of Q.

For simplicity of exposition, we will restrict ourselves to the case when Q is a domain. Then $Q_{g}/(x_{1}, \ldots, x_{d-1})$ is a local ring of dimension 1. Now suppose y_{i}, z_{i} $(i = 1, \ldots, d-1)$ is a set of independent general elements of the ideals $\alpha_{1}, \alpha_{1}', \ldots, \alpha_{d-1}', \alpha_{d-1}$. Now choose N so that the elements y_{i}, z_{i} $(i = 1, \ldots, d-1)$ are all contained in the sub-ring Q_{N} of Q_{g}. Then it is not difficult to prove that the elements $w_{i} = y_{i} - x_{N+1}z_{i}$ $(i = 1, \ldots, d-1)$ form a set of independent general elements of $\alpha_{1}, \ldots, \alpha_{d-1}'$. We further note that for each i, the elements $y_{i}, z_{1}, \ldots, z_{d-1}$ generate an $\mathfrak{m}Q_{g}$-primary ideal of Q_{g}. We now quote a general result which will be proved in an appendix:

Let Q be a local domain of dimension d, and let y_{i}, z_{i} $(i = 1, \ldots, d-1)$ be elements of Q such that $y_{i}, z_{1}, \ldots, z_{d-1}$ generate an \mathfrak{m}-primary ideal for each i. Then, if B is the ring $Q[y_{1}/z_{1}, \ldots, y_{d-1}/z_{d-1}]$, $B/\mathfrak{m}B$ is isomorphic to $k[X_{1}, \ldots, X_{d-1}]$, where $k = Q/\mathfrak{m}$, and X_{1}, \ldots, X_{d-1} are indeterminates over k;

i) if L denotes B localised at the prime ideal $\mathfrak{m}[y_{1}/z_{1}, \ldots, y_{d-1}/z_{d-1}]$, and $Q(X)$ denotes the ring $Q[X_{1}, \ldots, X_{d-1}]$ localised at $\mathfrak{m}[X_{1}, \ldots, X_{d-1}]$, where X_{1}, \ldots, X_{d-1} are indeterminates over Q, then the kernel of the homomorphism of $Q(X)$ onto L in which $X_{i} \rightarrow y_{i}/z_{i}$ $(i = 1, \ldots, d-1)$ is a prime ideal \mathfrak{P} containing the ideal $\mathfrak{I} = (y_{1}-z_{1}X_{1}, \ldots, y_{d-1}-z_{d-1}X_{d-1})$ and $\mathfrak{P}/\mathfrak{I}$ is annihilated by a power of \mathfrak{m}.

-3-
Applying this result, we see that, replacing \(Q \) by \(Q_g \) and giving \(y_i, z_i \) their original meaning, the ring \(L \) obtained in this situation is isomorphic to \(Q_g/(x_1, \ldots, x_{d-1}): m^n \) if \(n \) is large enough.

It follows that we can consider \(L \) in two ways, first as a homomorphic image of \(Q_g \), and second as a local ring containing \(Q_g \) and contained in its field of fractions \(F_g \). Further the maximal ideal of \(L \) is \(m_L \) and \(m_L \cap Q_g = m_Q_g \). Now \(L \) is 1-dimensional.

Hence, by the Krull-Akizuki theorem, the integral closure \(L^* \) of \(L \) in \(F_g \) is the intersection of a finite set of discrete valuation rings. Let the associated valuations be \(V_1, \ldots, V_q \) and let their restriction to the field of fractions \(F \) of \(Q \) be \(v_1, \ldots, v_q \). Then \(v_1, \ldots, v_q \) are independent of the choice of the elements \(y_i, z_i \).

Now we must digress to consider valuations on \(Q_g \). Suppose that \(V \) is a valuation \(> 0 \) on \(Q_g \), and \(> 0 \) on \(m_Q_g \), and taking integer values. If \(K_V \) is the residue field of \(V \), then \(K_V \) is an extension of \(k_g \), and an old result of Zariski states that \(\text{tr.deg}_k K_V \leq d-1 \). Now let \(v \) be the restriction of \(V \) to \(F \). Then it is quite easy to prove that

\[
\text{tr.deg}_k K_V \geq \text{tr.deg}_k K_v.
\]

Now I recall another old result; due in this case to Northcott. Let \(K \) denote the residue field of \(L \) (which is a pure transcendental extension of \(k_g \) of transcendence degree \(d-1 \)). Now the valuations \(V_i \) already referred to have an extension to

-4-
the completion \(\overline{L} \) of \(L \) which we denote by \(\overline{V}_i \), and each such extension \(\overline{V}_i \) takes the value \(\epsilon \) on a minimal prime ideal \(\overline{P}_i \) of \(\overline{L} \). Let \(\delta_i \) denote the length of the primary component of \((0) \) in \(\overline{L} \) with associated prime \(\overline{P}_i \). Then if \(x \in L \),

\[
e(xL) = \ell(L/xL) = \sum_{i=1}^{q} \delta_i [K_{V_i} : K] V_i(x)\]

where \(e(\cdot) \) is the multiplicity.

Now we turn to multiplicities and degree functions. Following Teissier, we will use mixed multiplicities. Let \(\alpha_1, \ldots, \alpha_d \) be \(\mathfrak{m} \)-primary ideals of \(Q \), and let \(M \) be a finitely generated \(Q \)-module. Then we define \(e(\alpha_1, \ldots, \alpha_d; M) \) as \(e(x_1, \ldots, x_d; M) \) where \(x_1, \ldots, x_d \) are independent general elements of \(\alpha_1, \ldots, \alpha_d \). Then we have the result that if \(L \) is as described earlier,

\[
e(\alpha_1, \ldots, \alpha_d) = e(x_dL) = e(\mathfrak{a}_dL),\]

the latter following since \(x_dL \) is a reduction of \(\mathfrak{a}_dL \). Further this latter remark also implies that, if \(V_i, v_i \) have the meanings given earlier, then \(V_i(x_d) = v_i(\alpha_d) \) where the latter denotes the minimum value of \(v_i(x) \) on \(\alpha_d \). We further note that \(e(\alpha_1, \ldots, \alpha_d; M) \) is a symmetric function of \(\alpha_1, \ldots, \alpha_d \) and, if \(\alpha_d' \) is another \(\mathfrak{m} \)-primary ideal of \(Q \), then

\[
e(\alpha_1, \ldots, \alpha_d, \alpha_d'; M) = e(\alpha_1, \ldots, \alpha_d; M) + e(\alpha_1, \ldots, \alpha_d; M)\]

we can now write down a formula for the multiplicity symbol

\[
e(\alpha_1, \ldots, \alpha_d; Q) = \sum_{i=1}^{q} \delta_i [K_{V_i} : K] v_i(\mathfrak{a}_d)\]

and similar formulae arising from the symmetry of the symbol. However this formula attains its full force if we introduce
degree functions. We define the degree function \(d(\alpha_1, \ldots, \alpha_d; x) \)
where \(x \) is an element of \(Q \) to be \(e(\alpha_1', \ldots, \alpha_d'; Q') \) where \(Q' = Q/x \)
and \(\alpha_i' = (\alpha_i + xQ)/xQ \). If \(Q \) is a domain, this can also be
written as \(e(x_1', \ldots, x_d'; x; Q) \) and we obtain the expression

\[
d(\alpha_1, \ldots, \alpha_d; x) = \sum_{i=1}^{q} \delta_i [K_{Y_i}:K] v_i(x).
\]

APPENDIX

First we prove a lemma which is well known.

LEMMA. Let \(B \) be a noether domain, \(y, z \) elements of \(B \) such that
\((y, z)\) has height 2. Let \(B' \) be the ring \(B[y/z] \) and let \(\mathfrak{P} \) be
the kernel of the map \(B[Y] \to B' \) in which \(Y = y/z \). Then \(\mathfrak{P} \)
contains \(w = zY - y \), and

\[
wB[Y] : (z^m, y^m) = \mathfrak{P}
\]

if \(m \) is sufficiently large. Further, if \(\mathfrak{m} \) is any prime ideal
of \(B \) containing \((y, z)\), then \(B'/\mathfrak{m}B' \cong (B/\mathfrak{m})[X] \), where \(X \) is an
indeterminate over \(B'/\mathfrak{m}B' \).

Proof. Let \(f(Y) \) be a polynomial of degree \(r \) over \(B \) such that
\(f(y/z) = 0 \). Then we can write \(f(Y) = F(Y, 1) \) where \(F(Y, Z) \) is
a homogeneous polynomial over \(B \) of degree \(r \) such that \(F(y, z) = 0 \).
Then

\[
z^r F(Y, Z) = F(zY, zZ) = F(yZ+(zY-yZ), zZ)
\]

\[
= F(yZ, zZ) + (zY-yZ)G(Y, Z) \quad \text{by Taylor's Theorem}
\]

\[
= z^r F(y, z) + (zY-yZ)G(Y, Z)
\]

whence, by putting \(Z = 1 \), we see that \(z^r f(Y) \in wB[Y] \). Also,

\[
y^r f(Y) = (y^r - z^r Y^r) f(Y) + Y^r z^r f(Y) \in wB[Y].
\]
But as the ascending sequence of ideals $wB[Y]:(y^r, z^r)$ becomes stationary for large r, it follows that

$$\mathfrak{p} = wB[Y]:(y^m, z^m) \quad m \text{ large.}$$

Hence \mathfrak{p} is the radical of $wB[Y]$ and since $y, z \in \mathfrak{m}/\mathfrak{w}$, $w \in \mathfrak{m}B[Y]$, i.e. $\mathfrak{p} \subset wB[Y]$, which proves the result.

We now come to the main result of this appendix.

THEOREM. Let (Q, \mathfrak{m}, k) be a local domain of dimension $d \geq 2$, and let y_i, z_i $(i = 1, \ldots, d-1)$ be elements of \mathfrak{m} such that $(y_i, z_1, \ldots, z_{d-1})$ is \mathfrak{m}-primary for $i = 1, \ldots, d-1$. Let $u_i = y_i/z_i$ and $B = Q[u_1, \ldots, u_{d-1}]$. Then

$$B/\mathfrak{m}B \cong k[x_1, \ldots, x_{d-1}]$$

where x_1, \ldots, x_{d-1} are indeterminates over k, implying that $\mathfrak{m}B$ is prime.

Further let $L = B_{\mathfrak{m}B}$ and let Q_{d-1} denote $Q[X_1, \ldots, X_{d-1}]$ localised at $\mathfrak{m}[X_1, \ldots, X_{d-1}]$. Let \mathfrak{q} denote the kernel of the homomorphism $Q_{d-1} \rightarrow L$ in which $x_i \rightarrow u_i$. Let $w_i = z_i x_i - y_i$ and let \mathfrak{x} be the ideal (w_1, \ldots, w_{d-1}). Then for r large,

$$\mathfrak{m}^r \mathfrak{q} \subset \mathfrak{x}.$$

Proof. The proof will be by induction on d, the case $d=2$ following from the lemma. Now suppose that $d > 2$. Write Q' for $Q[u_{d-1}]$ localised at $\mathfrak{m}[u_{d-1}]$, which is prime by the lemma. We first prove that $(y_i, z_1, \ldots, z_{d-2})Q'$ is $\mathfrak{m}Q'$-primary for $i = 1, \ldots, d-2$. Now, by the lemma, $Q' \cong Q(X_{d-1})/\mathfrak{q}'$, where $Q(X_{d-1})$ denotes $Q[X_{d-1}]$ localised at $\mathfrak{m}[X_{d-1}]$, and \mathfrak{q}' is the radical of $w_{d-1}Q(X_{d-1})$. Hence it will be sufficient to show that $(w_{d-1}, y_i, z_1, \ldots, z_{d-2})$ is $\mathfrak{m}Q(X_{d-1})$-primary. Write
\[C_i = y_1 Q(X_{d-1}) + z_1 Q(X_{d-1}) + \ldots + z_{d-2} Q(X_{d-1}). \]

Then the minimal prime ideals of \(C_i \) are generated by elements of \(Q \) and so can only contain \(w_{d-1} \) if it contains \(y_{d-1}, z_{d-1} \). Since \(C_i + z_{d-1} Q(X_{d-1}) \) is \(m \)-primary, \(\dim C_i = 1 \), and since \(w_{d-1} \) belongs to no minimal prime of \(C_i \), the result now follows.

Now we consider the first statement of the theorem. It is clearly equivalent to the statement that if \(f(x_1, \ldots, x_{d-1}) \) is a polynomial over \(Q \) such that \(f(u_1, \ldots, u_{d-1}) = 0 \), then all the coefficients of \(f \) belong to \(m \). Suppose there is a coefficient of \(f \) not in \(m \). Then if we consider the polynomial \(f(x_1, \ldots, x_{d-2}, u_{d-1}) \) as a polynomial with coefficients in \(Q' \), then the lemma implies that this has a coefficient not in \(m \cdot Q' \).

But \(Q' \) has dimension \(d-1 \) and the conditions of the theorem apply. Hence by our inductive hypothesis \(f(u_1, \ldots, u_{d-1}) \neq 0 \).

We are now in a position to construct \(L \). Consider the homomorphism \(Q_{d-1} \to L \). This can be factored as the product of the homomorphism \(Q_{d-1} \to Q'_{d-2} \) in which \(X_{d-1} \to u_{d-1} \) and the homomorphism \(Q'_{d-2} \to L \). Denote by \(0 \) the kernel of the homomorphism \(Q_{d-1} \to Q'_{d-2} \). Applying the inductive hypothesis to the second factor, we see that, for \(r \) large,

\[m^R \mathcal{P} \subset 0 + (w_1, \ldots, w_{d-2}) \]

while, by the lemma,

\[(y_{d-1}^m, z_{d-1}^m) 0 \subset w_{d-1} Q_{d-1}. \]

Hence

\[(y_{d-1}^m, z_{d-1}^m) m^R \mathcal{P} \subset (w_1, \ldots, w_{d-1}) = \mathcal{F}. \]

But by reordering the suffixes \(1, \ldots, d-1 \), we can replace \(d-1 \) on the left hand side by \(i \) \((i = 1, \ldots, d-2) \). Hence if \(m, r \) are
large enough,

$$(y_1^m, \ldots, y_{d-1}^m, z_{d-2}^m, \ldots, z_{d-1}^m)^m \mathcal{P} \subset \mathcal{I}$$

and the result follows since the first factor is m-primary.