<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE CANONICAL MODULES (Some Recent Development in the Theory of Commutative Rings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Aoyama, Yoichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1983(1983), 484: 1-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/103439</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON THE CANONICAL MODULES

愛媛大 理 青山陽一 (Yôichi Aoyama)

A ring will always mean a commutative noetherian ring with unit. Let R be a ring, M a finitely generated R-module and N a submodule of M. We denote by $\text{Min}_R(M)$ the set of minimal elements in $\text{Supp}_R(M)$ and put $U_M(N) = \bigcap Q$ where Q runs through all the primary components of N in M such that $\dim M/Q = \dim M/N$. Let T be an R-module and \mathfrak{a} an ideal of R. $E_R(T)$ denotes an injective envelope of T and $H^1_\mathfrak{a}(T)$ is the 1-th local cohomology module of T with respect to \mathfrak{a}. We denote by $\hat{\mathfrak{a}}$ the Jacobson radical adic completion over a semi-local ring. For a ring R, $Q(R)$ denotes the total quotient ring of R. Throughout this note A denotes a local ring of dimension d and with maximal ideal \mathfrak{m}.

Definition([7, Definition 5.6]). An A-module K is called a canonical module of A if $K \otimes_A \hat{\mathfrak{a}} \cong \text{Hom}_A(H^d_\mathfrak{m}(A), E_A(A/\mathfrak{m}))$.

For elementary properties of canonical modules, we refer the reader to [6, §6], [7, 5 Vortrag und 6 Vortrag] and [2, §1]. It is not obvious that the localization of a canonical module is a canonical module of the localization ring, which was known only
for local rings with dualizing complexes, and Ogoma [9] showed that there is a non-acceptable (hence without dualizing complex) local ring with canonical module. Our purposes are to prove that K_p is a canonical module of A_p for every p in $\text{Supp}_A(K)$ (A is a local ring with canonical module K) and to consider endomorphism rings of canonical modules.

Lemma 1 (Corollary to [5, Theorem 1]). Let B be a faithfully flat local A-algebra with maximal ideal m. Then:

1. If B/mB is an artinian Gorenstein ring, then $E_A(A/m) \otimes_A B = E_B(B/m)$.
2. If T is an A-module such that $T \otimes_A B = E_B(B/m)$, then $T = E_A(A/m)$ and B/mB is an artinian Gorenstein ring.

Theorem 2 ([4]). Assume that A has a canonical module K and let B be a faithfully flat local A-algebra. Then the following are equivalent:

(a) B/mB is a Gorenstein ring.
(b) $K \otimes_A B$ is a canonical module of B and B/mB is a Cohen-Macaulay ring.

(Proof) Suppose that B/mB is a Cohen-Macaulay ring and let y_1, \ldots, y_r be a system of elements in m, the maximal ideal of B, which is a maximal B/mB-regular sequence ($r = \dim B/mB$).

Let $R = A[X_1, \ldots, X_r]$ with indeterminates X_1, \ldots, X_r over A and let f be the natural A-algebra homomorphism from R to B such that $f(X_i) = y_i$ for $i = 1, \ldots, r$. Then f is a flat local homomorphism. By [7, Korollar 5.12], $C = K \otimes_A R$ is a canonical module of R. Hence we may assume that B/mB
is artinian. Furthermore we may assume that A and B are both complete. In this case it is shown that $K \otimes_A B$ is a canonical module of B if and only if $E_A(A/m) \otimes_A B \cong E_B(B/n)$ ([2, Proof of Proposition 4.1]). Hence the assertion follows from Lemma 1. (Q.E.D.)

Suppose that A has a canonical module K. Let M be a finitely generated A-module and h_M the natural map from M to $\text{Hom}_A(\text{Hom}_A(M,K),K)$.

Proposition 3([2, (1.11)]). The following are equivalent:
(a) The map h_M is an isomorphism.
(b) \hat{M} is (S_2) and $\dim A/\mathfrak{p} = d$ for every \mathfrak{p} in $\text{Min}_A(M)$.

Corollary 4([1, Proposition 2]). $A \cong \text{Hom}_A(K,K)$ if and only if \hat{A} is (S_2).

Next we show some elementary properties of the endomorphism ring of a canonical module. Assume that A has a canonical module K and put $H = \text{End}_A(K)$.

Theorem 5([2, Theorem 3.2]). The following statements hold for H:
(1) H is a semi-local ring which is a finitely generated A-module and $A/U \subseteq H \subseteq Q(A/U)$ where $U = U_A(0) = \text{ann}_A(K)$.
(2) Every maximal chain of prime ideals in H is of length d.
(3) \hat{H} is (S_2).
(4) For every maximal ideal n of H, K_n is a canonical module of H_n. (K is an H-module by the usual way.)
(5) $\dim_A \text{Coker}(A+H) \leq d - 2$.

3
(Proof) We may assume that \(\text{ann}_A(K) = U_A(0) = 0 \).

(1) Let \(p \) be a prime ideal of \(A \) with \(\dim A/p = d \) and \(q \) a minimal prime ideal of \(p\hat{A} \). Then \(\dim \hat{A}/q = d \) and \(\hat{K}_q \) is a canonical module of \(\hat{A}/q \). Since \(\dim \hat{A}/q = 0 \), \(\hat{K}_q \cong E_A(\hat{A}/q) \).

Since \(K \otimes_{A_p} \hat{A}_p \cong \hat{K}_q \), \(K = E_A(A/p) \) by Lemma 1(2). Let \(\text{Ass}(A) = \{p_1, \ldots, p_t\} \) and \(S = A \setminus \bigcup_{i=1}^t p_i \), the set of non-zerodivisors of \(A \). Since \(K \) is torsion free, so is \(H \) and the natural map \(H \to S^{-1}H \) is injective. Since \(S^{-1}K \cong \bigoplus_{i=1}^t K_{p_i} \cong \bigoplus_{i=1}^t E_A(A/p_i) \), \(S^{-1}H \cong \text{Hom}_A(S^{-1}K, S^{-1}K) \cong \bigoplus_{i=1}^t A_{p_i} \cong Q(A) \).

(2) Because \(A \) is unmixed.

(3) Because \(\hat{K} \) is \((S_2) \).

(4) The map \(h_K : K \to \text{Hom}_A(H, K) \) is an isomorphism by Proposition 3. Hence the assertion follows from [7, Satz 5.12] and (3).

(5) We may assume that \(A \) is complete. Let \(p \) be a prime ideal such that \(\height p \leq 1 \). Then \(A_p \) is Cohen-Macaulay and \(K_p \) is a canonical module of \(A_p \) because \(A \) is complete and \(U_A(0) = 0 \). Hence \(A_p = H_p \), that is, \(\text{Coker}(A\to H)_p = 0 \), which means \(\dim_A \text{Coker}(A\to H) \leq d - 2 \). (Q.E.D.)

Theorem 6([2, Theorem 4.2]). Let \((A, m) \to (B, n) \) be a flat local homomorphism and \(M \) an \(A \)-module. If \(M \otimes_A B \) is a canonical module of \(B \), then \(M \) is a canonical module of \(A \).

Corollary 7([2, Corollary 4.3]). Assume that \(A \) has a canonical module \(K \) and let \(p \) be an element of \(\text{Supp}_A(K) \). Then \(K_p \) is a canonical module of \(A_p \) and \(\hat{A}/q \otimes_{\hat{A}} q \) is a Gorenstein ring for every minimal prime ideal \(q \) of \(p\hat{A} \).

Before proving Theorem 6, we show two lemmas.
Lemma 8. Assume that A is complete. Let T be a finitely generated (S_2) A-module such that $\dim A/\mathfrak{p} = d$ for every \mathfrak{p} in $\text{Min}_A(T)$ and $H^d_{\mathfrak{m}}(T) \cong E_A(A/\mathfrak{m})$. Then T is a canonical module of A. In this case A is (S_2).

(Proof) By Proposition 3, the map h_T is an isomorphism. Since $\text{Hom}_A(T,K) \cong \text{Hom}_A(H^d_{\mathfrak{m}}(T),E_A(A/\mathfrak{m})) \cong \text{Hom}_A(E_A(A/\mathfrak{m}),E_A(A/\mathfrak{m})) \cong A$, $T \cong \text{Hom}_A(A,K) \cong K$, a canonical module of A. (Q.E.D.)

Lemma 9. Let R be a finite over-ring of A such that $\dim_A R/A \leq d - 2$ and $\dim R/\mathfrak{p} = d$ for every maximal ideal \mathfrak{p} of R. If T is a finitely generated R-module such that $T_\mathfrak{p}$ is a canonical module of $R_\mathfrak{p}$ for every maximal ideal \mathfrak{p} of R, then T, as an A-module, is a canonical module of A.

(Proof) We may assume that A is complete. For every maximal ideal \mathfrak{p} of R, $\text{Hom}_A(R,K)_\mathfrak{p}$ is a canonical module of $R_\mathfrak{p}$ by [7, Satz 5.12] (K is a canonical module of A). Hence $T_\mathfrak{p} \cong \text{Hom}_A(R,K)_\mathfrak{p}$ for every maximal ideal \mathfrak{p} of R and therefore $T \cong \text{Hom}_A(R,K)$. Since $\dim_A R/A \leq d - 2$, we have $\text{Hom}_A(R/A,K) = 0$ and $\text{Ext}^1_A(R/A,K) = 0$ (cf. [2, (1.10)]). Hence, from the exact sequence $0 \to A \to R \to R/A \to 0$, we have $\text{Hom}_A(R,K) \cong \text{Hom}_A(A,K) \cong K$, a canonical module of A. (Q.E.D.)

(Proof of Theorem 6) We may assume that A and B are both complete and mB is n-primary. Let K (resp. L) be a canonical module of A (resp. B).

(I) The case that B is (S_2): Since B is (S_2), $B \cong \text{Hom}_B(L,L)$, i.e., $H^n_B(L) \cong E_B(B/n)$. Since $H^n_{\mathfrak{m}}(M) \cong H^n_{\mathfrak{m}}(M \otimes_A B) \cong H^n_B(L) \cong E_B(B/n)$, $H^n_{\mathfrak{m}}(M) \cong E_A(A/\mathfrak{m})$ by Lemma 1(2). Since L is (S_2),
so is M. Since $\text{Ass}_B(L) = \{ q \in \text{Spec}(B) \mid \dim B/q = d \}$, $\text{Ass}_A(M) = \{ p \in \text{Spec}(A) \mid \dim A/p = d \}$. Hence we have $M \cong K$ by Lemma 8.

(II) The general case: Since $\text{Ass}_A(M) = \{ p \in \text{Spec}(A) \mid \dim A/p = d \}$ and $M_p \cong E_A(A/p)$ for every p in $\text{Ass}_A(M)$ (cf. Proof of Theorem 5(1)), we have $\text{ann}_A(M) = U_A(0)$. Hence we may assume that $U_A(0) = 0$ and $U_B(0) = 0$. Put $R = \text{End}_A(M)$ and $S = \text{End}_B(L)$. Since $R \otimes_A B \cong S$ is a finite over-ring of B, R is a finite over-ring of A. For every maximal ideal p of R, $\dim R_p = d$ because A is unmixed. We have $\dim_A R/A \leq d - 2$ because $\dim_B S/B \leq d - 2$. Let p be a maximal ideal of R and q a maximal ideal of S lying over p. Since $M_p \otimes_R S_q \cong L_q$ is a canonical module of S_q by Theorem 5(4) and S_q is (S_2) by Theorem 5(3), M_p is a canonical module of R_p by the case (I). Hence we have that M is a canonical module of A by Lemma 9. (Q.E.D.)

Remark. Goto (Nihon University) proved the following lemma and gave another proof of Theorem 6. ([3, Appendix])

Lemma. Let $(A,m) \rightarrow (B,n)$ be a flat local homomorphism such that mB is n-primary. If there is a finitely generated A-module T such that $T \otimes_A B$ is a canonical module of B, then B/mB is a Gorenstein ring.

By virtue of Corollary 7, we can prove the following proposition by induction on $\dim A$ (cf. [1, Proof of Proposition 2]). Assume that A has a canonical module K. For a finitely generated A-module M, h_M denotes the natural map from M to
Proposition 10([2, Proposition 4.4]). The following are equivalent:

(a) The map \(h_M \) is an isomorphism.
(b) \(\hat{M} \) is \((S_2)\) and \(\dim A/p = d \) for every \(p \) in \(\text{Min}_A(M) \).
(c) \(M \) is \((S_2)\) and \(\dim A/p = d \) for every \(p \) in \(\text{Min}_A(M) \).

Corollary 11([9, Proposition 4.2] and [4]). The following are equivalent:

(a) \(A \cong \text{Hom}_A(K,K) \).
(b) \(\hat{A} \) is \((S_2)\).
(c) \(A \) is \((S_2)\).

Remark. The implication (c) \(\Rightarrow \) (a) was first proved by Ogoma (Kochi University), not by induction. (See [9, §4]. cf. [3, (2)])

Corollary 12([4]). Assume that \(A \) has a canonical module and \(\dim A/p = d \) for every \(p \) in \(\text{Min}(A) \). Then the \((S_2)\)-locus of \(A \) is open in \(\text{Spec}(A) \).

Corollary 13([4]). Assume that \(A \) has a canonical module. Let \((A,m) \rightarrow (B,n) \) be a flat local homomorphism such that \(B/mB \) is a Gorenstein ring.

1. Let \(M \) be a finitely generated \((S_2)\) \(A \)-module such that \(\dim A/p = d \) for every \(p \) in \(\text{Min}_A(M) \). Then \(M \otimes_A B \) is \((S_2)\) and \(\dim B/q = \dim B \) for every \(q \) in \(\text{Min}_B(M \otimes_A B) \).

2. If \(A \) is \((S_2)\), then \(B \) is also \((S_2)\).

Next we show that the endomorphism ring of a canonical module is characterized by the properties described in Theorem 5.
Theorem 14([4]). Assume that A has a canonical module K.

Let R be a ring satisfying the following conditions:

(i) R is a finite (S_2) over-ring of $A/U_A(0)$,
(ii) For every maximal ideal \mathfrak{n} of R, $\dim R_{\mathfrak{n}} = d$, and
(iii) $\dim_A \operatorname{Coker}(A \to R) \leq d - 2$.

Then $R \cong \operatorname{End}_A(K)$ as A-algebras.

(Proof) We may assume that $U_A(0) = 0$. Put $L = \operatorname{Hom}_A(R, K)$.

Then $L_{\mathfrak{n}}$ is a canonical module of $R_{\mathfrak{n}}$ for every maximal ideal \mathfrak{n} of R. By Lemma 9, we have $L \cong K$. From this isomorphism, we have an A-algebra isomorphism $\operatorname{End}_A(K) \cong \operatorname{End}_A(L)$. Since $\operatorname{End}_A(K)$ is commutative, so is $\operatorname{End}_A(L)$ and $\operatorname{End}_A(L) = \operatorname{End}_R(L)$.

Since R is (S_2), $R \cong \operatorname{End}_R(L)$. Hence we have $R \cong \operatorname{End}_A(K)$ as A-algebras. (Q.E.D.)

In the following we assume that A has a canonical module K, $d \geq 2$ and $U_A(0) = 0$. Put $H = \operatorname{End}_A(K)$ and $c = A:A H$, the conductor. Let T be the c-transform of A, i.e., $T = \{ x \in Q(A) | ct x \subseteq A \text{ for some } t \}$. Let q be a prime ideal of \hat{A} containing $c\hat{A}$ and p an associated prime ideal of \hat{A}_q. Since $U_{\hat{A}}(0) = U_A(0)\hat{A} = 0$ and height $c \geq 2$, we have $\dim \hat{A}_q/p \geq 2$. Hence by [8, Proposition(2.7)] we have:

(15.1) T is a finitely generated A-module.

The following two assertions are obvious:

(15.2) $\dim_A T/A \leq d - 2$.
(15.3) T is (S_2).

Hence, from Theorem 14, we obtain the following
Proposition 16([4]). \(T \cong H \) as \(A \)-algebras.

We denote by \(A^G \) the global transform of \(A \), i.e., \(A^G = \{ x \in \text{Q}(A) \mid m^t x \subseteq A \text{ for some } t \} \). Since \(U_A(0) = 0 \) and \(d \geq 2 \), \(A^G \) is a finitely generated \(A \)-module by [8, Proposition (2.3)].

Corollary 17([4]). \(A^G \cong H \) as \(A \)-algebras if and only if depth \(A_p \geq \min \{ 2, \dim A_p \} \) for every non-maximal prime ideal \(p \) of \(A \). In particular, if \(H^i_m(A) \) is of finite length for \(i \neq d \), \(A^G \cong H \) as \(A \)-algebras.

Ehime University

References

