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FINITE-DIMENSIONAL REGULATOR DESIGNkaR
INFINITE—DIMENSiONAL SYSTEMS WITH CONSTANT/DISTURBANCES .
Toshihiro Kobayashi (1\‘j%§§&\§4%)
Department of Control Eﬁgineering
Kyushu Instifute of Technology
Tobata, Kitakyushu 804 o (ﬁLf:-}l)v |
In this paper we investigate é regulator problem for an infinite-
dimensional system with constant disturbances. The regulator problem
considered here is to determine a feedback control law which stabilizes and
regulates the system. From a practical point of view we propose a design

procedure of a regulator which can be realized in finite-dimensional theories

and techniques for an infinite-dimensional system. In the design’procedure it

is necessary to construct a state observer in order to estimate the system
state from observations. We present explicit sufficient conditions for the

convergence of the schemes.

1. System description and problem formulation.
We consider the system described by an evolution equatibn on a reflexive
Banach space X:

du

(1.1) ———%El=Au(t)+Bf(tj+w, O<t<t u(0)=uO€D(A)

d 1’
where u(t)eX is the systém state vector, ‘f(t)éﬁp ié the control &ector

and WeX‘is an unknown constant distﬁrbance vector. The opérator A:D(A)>X is
a closed, linear, densely définéd generator ofla holomorphic semigrbup U(t)
on X. The control f(t) is assumed to be HBlder‘cohtinuous. The oﬁeratof B
is a bounded linear operator from a p—dimensiohéi Euclidéan sbééé P to.X;

Then the system (1.1) has a unique solution u(t)eD(A} for t>0, continuous

for t>0 and continuously differentiable for t>0, given by
(1.2) u(t)=U(t)u0+f8U(t-s) (B£(s)+w)ds.

The controlled output y(t)eEr is given by
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(1.3)  y()=Cu(t), O<t<t1
where the output operator C:D(C)CX+Er is linear and defined on D(A), and
hence D(A)CD(C). The operator C is assumed to be A-bounded.

The key to finite-dimensional regulato? design is to a decomposition of
the state space X based on the modes of the system. The operator A satisfies
the spectrum decomposition assumption[6];then thefé exists the projection P
such that |
(1.4)  X=PX+(I-P)X
and PX, (I-P)X form A invariant sﬁbspaces of X. From the viewpoints of system
analysis and synthesis, it .is practical and interesting to take PX as a
- finite-dimensional space. We shall assume henceforth that PX is®the N-
dimensional subspace.

. Consequently from (1.1) and (1.3)

dPu(t)

(1.;5) it —Appu(£)+psf(t)+pw, Pu(0)=Puy,

(1.6)  —SREop quie)+BE(E)+Qw,  Qu(0)=Quy,

(1.7) y(£)=CpPu(t)+CoQu(t)
and

u=Pu+ Qu ueX,

where Q=I-P and AP’ A are the restrictions of A to PX and QX, respectively.

Q

PB, QB are the restrictions of B to PX and QX, restrictively. Cp, CQ are the

restrictions of C to PX and QX. Up(t)=PU(t) is generated by AP and UQ(t)=QU(t)
is generated by AQ'

Actually AP is bounded on PX and Up(t) is a uniformly
continuous holomorphic semigroup.

We also assume that the operator A. is a genarator of a exponentially

Q

stable semigroup UQ(t) such that for constants K>1 and ¢>0

1.8 |lugm|lke™, 0.

Now we.may pose the following control problem.



/1

PROBLEM 1.
Find a linear feedback control law for the system (1.1) and (1.3) such that
(i) the resulting closed-loop system without a disturbance w will be exponen-
tially stable
and
(ii1) the controlled output y(t) will be regulated so that y(t)+yd, o
independent on w where ydeEr represents a desired constant reference vector.
The assumption that the disturbance vector w and the reference vector are
constant in time t, is not the most general. We can treat polynomial signals
in time t. However, the constant vectors are most important and they allow us

to develop the theory without unnecessary mathematical complexity.

2. Construction of state feedback controllers.

In this chapter we construct a feedback controller which solves Problem 1.
The controller consists of two parts: the stabilizing compensator (Proportional
part of the confroller) and the servocompensator (Integral part of the controll
-er). The role of the servocompensator is to change the system steady state, so
that the output regulation y(t)+yd will occur.

Now if we put
(2.1)  A)=y(®)-yy,

we obtain from (1.1) and (1.3) the following system

o (3 LI
(2.3 y=[0 C][”]

u

in the extended state space Xr=ErXX, which will be a Banach space,

when equipped with the norm
2 2 2
112 =112 410112
T E

Before designing a compensator, it is useful to transform the state variable

as follows:
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2.4) {5=”+Su

u=u
where S is a bounded linear operator from X to EP. By this transformation

we get from (2.2)

e e e )

that is,
ro:
. 3 -
| gl o CP+SPAP CQ+SQAQ £ SB Sw yd‘
(2.5) Pu =10 Ap 0 Pul+ { PB |f +{ Pw
Quj {0 0 AQ' | Qu QB Qw

Since the operator AQ is the generator of a exponentially stablé’semigroﬁp'UQ(t),
the inverse Aél exists and is bounded. If we take S =0 and SQ=—CQAQ , th

operator S=(0,SQ) is actually a bounded linear operator from X to EP. 1In this

case (2.5) becomes

. .

0 C, O g}‘ SQQB SQQw—yd
(2.6) Pu = O'-AP 0 {{Pui+| PB {f+| Pw
Q). o o AQ Qul QB ) |

Thus (2.2) and' (2.3) become

—_ f+
1 0 A {{u B w

£ fo Tlfe] (s8] [sw-v,
(2.7) +
[

(2.8) y=[0 C]ﬂ
. u

where C=(C ,0), SB=S QB and Sw= SQQw——CQ Q Qw

B=-C_.A
Q¥®=-Co*y |
For the system (2.7) we consider a linear feedback control 1aw ‘
(2.9)  £(t)=DE(t)+Fu(t)

=(DSfF)u(t)+ng(y(s)—yd)ds

where DeL(Er,Ep) and FeL(X,Ep), Then we get the closed-loop system
E] [sep  Teser|[ €] [sw-y,

(2.10) = , +
1 BD A+BF ||u w

y=[0 CI(&).
u
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[Theorem 1]

Suppose that there is a stabilizing control £=DE+Fu such that the system

o (3 L)

will be exponentially stable. Then regulation will occur in spite of a constant
disturbance w.
Proof.

Let us introduce the following notations

Ao{o E} A [SBD E+SBF\J.

0 A BD  A+BF

The operator AO is a generator'of a strongly continuous semigroup on Xr’ The
operator Af is é bounded .perturbation of AO' Thus Af is also a generator of. a
strongly continuous semigroup Uf(t) on Xr' Since Af was assumed exponentially .

stable, the inverse A;l exists and is bounded.

The unique solution of (2.10) is given by

E(t) e] . Sw-y 4
=Uf(t) +f0Uf(t—s) ds
u(t) u(0)) w
T (E(0)) . [sw-y
=Ug (1) +[8Uf(tfs)AfAf1{ d}ds
L u(0)) o w
(£(0)) - Sw-y Sw-y
=U,(t) +Uf(t)A;1[ d] —A%l[ 41,
(u(0) ] w w

Letting t-~, we have

1im & ()= at S Ya)
t>o|u(t) » w
since Uf(t) is a stablé semigroup. The output is now given by

: . _ | -1{Sw-y
(2.12) lim y(t)=-[0 C]Af {~ w é].

T

Next consider the equation

(2.13) A f{i:] - [Sw;yd] |

which implies
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SBDg*+(E4SBF)u*=sW—yd
BDE *+ (A+BFJu*=w.

From these equations we obtain
SAu*-Eh*=yd

from which we get Cu*=-y&, since SA+C=C. Equations (2.12) and (2.13) imply

>0 u*

g-k
lim y(t)=-[0 C]{ ‘}=—Cu*=yd
‘which proves the regulation independenf of w.

Now we have proved that if the augmented system (2.11) can berstabilized,
‘then regulation will automatically occur. The next step is to show that there
exists a stabilizing control of the form f=D+Fu where D€L(Er,Ep) and FeL(X,Ep);
The key to stabilizability for the system (2.11) is a decomposition of the
system state u on the modes of the Systeﬁ.'

Decomposing the state u by Pu and Qu; we obtain from (2.11)

: s
£ ¢, 01[ €] [sB

0
Pal=\0 A, 0 ||Pul+|PBf.
Qu} {0 © AQ Qu \QB
For this system let us consider a linear feedback control law

(2.14) f(t)=DE(t)+F0Pu(t)
=DSu () +F Pu(t)+D/ § (¥ (s)-y ) ds
where FOEL(PX,EP). Then we have the closed-loop system

£| [sBD Cp*SBFy 0 £
Pi|=| PBD A+PBF, 0 || Pu|.

Qi) Lqeo QBF, A Qu

If the (r+N) dimensional system

e ([ [)

is controllable, there exist feedback control operators D and F

0 such‘that all

the eigenvalues of AfP
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SBD CP+SBFO

A =
£P {
PBD AP+PBFO
can be determined

The feedback operators D and F

have negative real parts
by pole allocation or optimal regulator design for the usual finite-dimensional

system[8].
Now we have for constants Kz;l and w>0
-wt
||exp(AfPt)|LiK2e , t0.
This implies
(O £ (0)
(2.16) ;Kze , 0.
Pu(t) Pu, -
. 0
Since

Let us estimate Qu(t)

Qu () =Ug (£) Qug#/ g (£-5)QB[D F»][g(s);]ds, |

Pu(s

from (1.8) and (2.16) we have
L1 1Bl ||| D FO]HII( (g)]| -0 (t=5) -us,

_0t+ftKK

|l quee)] <k [ Quy| e
| =K| | Qug || e F4kK, |[QBI||![D FOJIIII[ (0)]l+——————-———

where we choose @ such that p#c. Consequently we obtain

o) o™ OO

(2.17)
+(KKI!QBHH[D Foll it u),)HQH ).

where c¢ —/_hax(K /ré
Moreover the estimates (2.16) and (2.17) give

]n /e |2+ [Pacorqu(n) | |2

g(t)

u(t)

H{

2 £(0)
<‘/——\/2 Zth[ ]H +C2 2m1n(c w)tH[ O}H

‘c -min (o, w)tll[i( )}l|, 0.

=

Thus we have obtained the following estimate
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(2.18)  ||ug(e)] l;cze'"‘i“("’“’)‘t, t20

where C2=V2CK§+C%)max(/§;/IqTEﬂE).

It has been shown that the‘system (2.11) is exponentially stabilized by
the feedback control law f=DE+Fu‘where F=FOP. We havé obtained the following
theoeremn.
tTheorem 2]

- If the (r+N) dimensional system (2.15) is controllable, then thefe:exiéts a
feedback control law |
£(£) =DSu (£)+Fu(t)+DJ (y (s) -y ) ds
which exponentially stabilizes and regulates the system (1.1).
Remark 1. |

It is easily shown the (r+N) dimensional system (2.15) is controllable if the

N dimensional subsystem (AP,PB) is controllable and
rank{SB Cé]=r+N§p+N.
PB AP
In our design schemes it is not clear how fast the output y(t) will
converge to the reference VectOrvyd. If for the system (2.7) wekapply the
feedback control law (2.14), we get the_closed—loop system -
(2.19) ugéAfug(t)+wS

where ug(t)=[£], ws=[$w-yé). The solution is given by
u \ : ' ' )

e ,
= - 1
qg(t) Uf(t)ug(0)+f0Uf(t s)wsgs‘
Differentiating this:in t, we obtain

ﬁg(t)=Uf(t)(Afug(0)+w5).

From (2.18)

[, (0] |2 e,e™ P9 a0 0+ |, e20.
Since (2.4) implies é(t)=ﬁ(t)+8ﬁ(t)=(y(t)—yd)+SQQﬁ(t); we get the estimate
(2.20) ‘]y(t)—ydl‘;gonst.e_min(ofw)tilAfug(O)+wS!l, 0.



This estimate says that the controlled output y(t) will converge to the
constant reference vector Y4 with an arbitrarily assignable exponential decay

rate by the feedback controller (2.15).

3. Construction of output feedback controllers.

Theorem 1 and Theorem 2 give the basic solution for Probleﬁ 1. However we
assume that the knowledge of Su and Pu in the feedback control law (2.14). In
this chapter we shall show that even if we use the state v of an observer .in.
place of u, the feedback control law (2.14) still gives the solution of Probler
1. |

Consider the measurement output'z(t) given by
(3.1)  z(t)=Mu(t), t20
where the mesurement operator M:D(M)—>Eq is linear and defined on D(A), and
hence D(A)CD(M). The operator M is assumed to be A-bounded.

‘ Now wé construct an identity observer
(3.2) v(t)=Av(t)+Bf(t)-G(Mv(t)-z(t)), 0<t<tl, v(0)=0-

Here G is a compact operator from E? to X. Then A =A-GM generates a holomorphic

G
semigroup T(t) on X[12] and the solution (3.2) is given by
v(t)=/T(t-5) (Bf (s)+6z(s))ds.

The solution veC(0,t X).r We can prove the following lemma.

1;
Lemma 1.
If the N dimensional syétem (AP,MP) is observable; then there exists an operatc
G such that the semigroup T(t) will be exponentially stable.
Proof. |

Consider the system

V=AV(t) -CMV (1), V(0)=VeD(A) .

We choose G such that QG=0, that is,

0

Gz={G z on PX for zeEq
0 on QX

'where GOeL(Eq,PX)1 Decomposition v by Pv and Qv, we have

-9 -



. PiéAPPVLGO(MPP§4MQij, PV (0)=Pv,

QieAQQV; Q510)=Q§b.
Since PX is the N dimensional subspace of V, from fiﬁite dimensional theory([8],
we can find a GOEL(Eq,PX) such that all the eigenvalues of Ayp=A,-G M, have
negative real parts. Thus there are constants KGiJ and y>0 such that

(3.4) | Jexp(Agpt) || <Kee ™, t20.

From (3.4) -

Pv(t)=exp(AGPt)PvO—IOexp(AGP(t—s))GOMQQV(s)ds.
The estimates (1.8) and (3.4) imply

N

1
: B -Yt, t . -y(t-s) -50s Sy I
<Kl 199 e B 6| 1756 ™ 42 Iy 91 [as

|| PV () ] | <k fge‘Y(t'S)llMQuQ(galIIIUQcSJvalids

G;|pvblie*Yt+KG

. __ . -Yt e_dt__e ‘t }_ B
;KGl |PV0‘ le +KKG>] lGol IMQuq()} l (_“2‘\‘{?—“‘)2\ IQvoi l

since we can choose. such that 2y#c. Here we have assumed

f ‘ , y12 |
(3.5) MQUQ(.)EL (O,tl,E ).
Consequently we have

v el v [+ v |

—min(%gy)t .
<cqe vyl 1, t20
where c3={KélPH+thH(1+Kg[pJ‘HMQUQ(-ﬂtf§3f§Ta}. Thus we obtain the estimate
-nin(g,1)t
(3.6) l]T(t)I[é;Se , t>0.

From (1.1), (3.1) and (3.3) the estimated error vector e=v-u satisfies

(3.7) é(t)=AGe(t)-w, e(0)=—u0.
Even if the operator AG generates an exponentially stable semigroup T(t), there

remains an estimated error in the steady state, since w is a constant vector in

time t.

- 10 -



However we can show that the feedback control law
(3.8) f(t)=DSV(t)+Fv+ng(y(t)—yd)dt

gives the solution for Problem 1. From (2.7), (3.7) and (3.8) we get the

closed-loop system

é AG 0 0 e -W
(3.9) £ |=| SBDS+SBF SBD C+SBF|| & i+ Sw—yd
u BDS+BF BD A+BF u w

y=[0 0 C]{e
g€
lu

in the extended state space Xq=XXEqXX, which will be a Banach space, when

equipped with the norm

H«il§q=1|'11§+|15|1§q+|l.H;.

Corresponding to Theorem 1 the following theorem holds.
[Theorem 3]

If the system

e [Ag 0 0 (e’
(3.10) £ |=| SBDS+SBF  SBD  C+SBF Lg
i) | BDS+BF BD A+BF JlLu

is exponentially stable, then regulation will occur in spite of a constant

disturbance w.

The next step is to show that the system (3.10) will be exponentially
stable, if both the semigroup T(t) generated by AC and the semigroup Uf(t)

generated by Af are exponentially stable. Introducing the notations

u€= gl, Bf= SBDS+SBF|,
u BDS+BF
we get from (3.10)

e(t)=T(tje(0)

| ug(t)=Uf(t)ug(0)+f8Uf(t—s)Bfe(s)ds.

- 11 -
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Using (2.18) and (3.6) we can estimate

.0
-min(5,v)t :
[Te(®)]lzcqe e[|, w0

I!u (t)||<c o-min(o, m)t‘l (0) l+C2C3||Bf||e(0)||ft -min(o,w) (t-s)

-mln(iav)s

xe ds
_(O_ )t

min( )t | Ly _e~Min(,0)t

e MR |y ()] |reye] [l = el
min(c,w)-min(iyY)

=C

2

since we can shoose w and y such that min(o,w)#min(%3y).

ol

where :
AR

Thus we have

-min (y,w,5)t

(3.11) [Iug(t)llép4e t>0

c =min(c 2c3bf,/_ﬁax(c ¢, bf)), bf—

4 lmin(o,m)—min(%yY)l

Consequently . we obtain

. . g
—mln(y ,w)f)t
(3.12) IIUG(t)II;pSe , t20

=S 02402 . s
where cs—/b3+c4 The semigroup UG(t) 1s,generated by AGf

A 0 0
A ¢=| SBDS+SBF  SBD C+SBF/{.
BDS+BF BD A+BF

We can obtain the following theorem from Theorem 2 and Lemma 1.
[Theorem 4]
If the (r+N) dimensional system (2.15) ié controllable and the N dimensional

system (AP,MP) is observable, then there exists a feedback control law (3.8)

which exponentially stabilizes and regulates the system (1.1).
Moreover if for the system (2.7) we apply the feedback control law' (3.8),
we get the closed-loop system

(3.13) (t)+w

eE Gf et

- 12 -
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(S
g‘U. WS

where u =(%‘], —l{—w] The solution is given by
o £
= t. . =
ueg(t)—UG(t)ueg(O)+IOUG(t—s)wds.
Differentiating this in t, we obtain

or (D=UG (£) (g, ()40 .

From (3.12)

,—mln(Y,w,z)

g, (0112 ege HAGf Ol o
which 1mp11es that the‘estiﬁéte
- -min(y, w,z) -
(3.14) l]y(t) ydl|<Const e HAGf g(O)+wi|

This estimate says;that the eontrolled output y(t) willfconverge;xo the constant
reference vector yd1with_an arbitrarily assignable .exponential decay.rate by the
feedback controller (3 8).

However, the 1nf1n1te dlmen51ona1 observer (3 2) 1s‘£ot o) éasy to
realize. We can show that the system (1.1) and (1.3) is stablllzed and regulated
by output feedback through a finite-dimensional observer. -

Define the other projections’Pv and QL'suéh that

L
- X=P, X#Q; X
and PLX is the L dimensional subspace where L>N. We construct an observer
(3.15)  V(t)=AV(t)+P BE(t)-G(Mv(t)-z(t)), O<t<t,, v(0)=0.

Then we get the following system corresponding to (3.10)

&) [A;-QB(DS+F) ’ -q;BD - BF|fe)
(3.16) £ = {SBDS+SBF SBD C+SBF|}| ¢
a BDS+BF BD A+BF [Lu

This system operator is added a bounded perturbation

-QB(DS+F)  -Q;BD  -QBF
B, = 0 0 0
0 0 0

- 13 -



to AGf' The operator AGf+§L generates a strongly continuous semigroup ﬁé(t),

defined by

— _ t — —
UG(t)uq—UG(t)uq+fOUG(t—s)BLUG(s)uqu, uleq.

Moreover from (3.12) we obtain the estimate [2],[6]

_ . (—min(y,w,99+c ![ﬁ ll)t
(3.17) IIUG(t)Iiépse 205 t>0

If we choose L such that —min(Y,m,%)+c51Iﬁill;;6<0, the system (3.16) is
exponentially stable. In this cése the control law (3.8) still stabilizes
and regulates the system (1.1) using the observer (3.15) in place of the

observer (3.2).

On the other hand since I>N, the restriction of G to PLX is GO and the

restriction of G to QLX is 0. The observer (3.15) is decomposed as follows.

PLV(t)=(APL—GOM?L)PLV(t)+PLBf(t)-GOMQLQLV(t)+Goz(t)
where APL and AQL are the restrictions of A to,PL
and MQL are the restrictions of M to PLX and QLX'

We are free to choose QLV(0)=0 and this implies that QLv(t)=0, t>0. Thus

X and QLX’ respectively, MfL

an L dimensional compensator is given by

(3.18) PLb(t)=(APL_GOMPL)PLV(t)+PLB?(t)+Goz(t)

'f(t)=(Ds+F)PLv(t)+ng(y(s)—yd)ds.

Therefore if we choose L such that —min(Y,w,%)+c5lIBLl|§;6<O, we can
stabilize and regulate the system by output feedback through'an L dimensional

observer. For the L dimensional compensator (3.18) Theorem 3 and Theorem 4

still hold. Moreover y(t) will converge to Y4 with the exponential decay

rate e

- 14 -



Example.

Let us consider the system

( Bu(t,x)_Szu(t,x)
2

e varu(t,x), xe(0,0.2)U(0.2,0.7)U(0.7,1)
9X

(3.19) '< u(t,0)=u(t,1)=0 t>0, u(O,x)=uO(x)

| [u (0. 5)]g 2 =d

where [f(s)]zt denotes the change of the value of the function at the point s
and d is an unknown constant.
The control is given by
0.2+ 0.2+_

[0, (6,0.210 256 (©),  [u(t,0.219 7570

(3.20) _ t>0.

[0y (£,0-7 197716, (8),  Tu(e,0.7]g; -0

The mesurements at the points 0.3 and 0.6 should be reguléted so that
y,(£)=u(t,0.3) > 1=y,

(3.21)
yz(t)=u(t,0.6) - 3=yd2.

For this example we consider the case when zl(t)=y1(t), zz(t)=y2(t).
The operator A:D(A) - Lz(O,l), Au=u”+4ﬂ2u, where D(A)={ueL2(0,1)!u,u' are
absolutely continuous, u"eLz(O,l), u(0)=u(1)=0}, has the eigenset

¢n(x)=/§éinnnx, An=—(nﬁ)2+4n2; n=1,2,---..
Now we méy define a set of Hilbert spaces

IS A R Fe sy I A T A TR M)

n! n=1

with the following inner product

(u,v) = leﬁ I (u, 9.0 (v,0)

2 2
where HO=L (0,1) and Bn=kn—4w , n=1,2,---.,
We note that AeL(Ht,Ht_l) is a closed linear operator A:D(A)=Ht > Ht—l
with the same eigenfunctions for all teR.

It can be shown that the problem (3.19),(3.20),(3.2L) can be written as

- 15 -
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the control problem

du
(3.22) dt

y (t)=Cu(t)

U _Au(t)+BE (1) +w

in the Hilbert space X=H The operators A, B ,C, M and the disturbance w

-1/2°

are given as

Au=_%.A_(u,é )b,  for all ueH

£,(8)

BE()=-[ £,0, (0.2)0 , £ o (0.76 ] f ©

w=-d £ ¢ (0.5)¢_

oo, 0.9 fue.s)f
' for all ueH

Cu=Mu— Hy/o-

£y o)ty (o ) |uto.6)

The operator B is a bounded 11near operator from E to H Moreover since

-1/2°

call ueHl/ CC(O 1), a p01ntw1se observation at x e(O 1) can be deflned with the

aid of an element c=n=1¢n(xo)¢neH_l/2. Then

Inil(u,¢n)o¢n(x031;:.n§1—1—¢ =) E 18, e, b

IB 0’ n=
-ch mllul!l,z [1ell 1/2l|(A aryal || a2

<4ﬁ IICII 1/2||u|| l/2+|lcll 1/2’|Au|"1/2»’, for all UEH1/2=D(A)

which proved that the pointwise observation are A-<bounded. This implies that

C:Hl/2 > E* is A-bounded also. Thus the presented theory can be applied.

Now A2=0, A3=—5n2 and then we can take N>2. Here choose

PX:span{¢n(X);n=l,2}, QX=Span{¢n(X)§n=3,4,---},
then N=2 and

UQ(t)u0=n§36Xp(Ant)¢n(u0’?n)O'
In this case
5ﬂ2t

(3.23) Uy () [|cexprgt)=e

- 16 -
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which implies that K=1 and 0=5ﬂ2 in (1.8).

Relative to the basis ¢1,¢2 for PX, we have

. =[3w2 } Coppe |02 sn) Ly 100003 4,003
0

2 P
$,(0.2) 6,(0.7)] $1(0.6) 6,(0.6)
$,(0.5)
Pw=-d ¢2(0.5) .
Moreover the operator SeL(X,Ez) is defined by
-1 (0.3)
Sw=S .Qw=-C_.A Qw—— T —w|’n , weH_
Q QQ =3A 4§n(0'6;] 1/2

where wn=(w,¢n)0. Then

© 1 © 1 y
SB=-C A~ nkz 7 9 (0-2)0,(0.3) 254, (0.7)¢ (0.3)
e | o

@ 1 ® 1
n§3—7;¢n(0.2)¢n(0.6) nés‘ig¢n(°'7)¢n(o'6)

Next we investigate controllability of the 4 dimensional system (2.11) by

Remark 1. Since ¢n(0,2)#0, ¢n(0.7)¢0,'n=1,2, rank (PB APPB]=2. "Thus if the

SB CP
rank PB Ap =4

holds, the system (2.11) is controllable.

condition

Analogously sufficient conditions for observability of the 2 dimensional
system (A,,Mp) are ¢ (0.3)#0, n=1,2 (or ¢_(0.6)#0, n=1,2).
So an output feedback regulator through an identity observer for our systern

is given by

fl(t) ’ | t)
(3.24) fz(t) =DSv(t)+F0Pv[t)+DfO(y(s)—yd)ds

2
VI3V L, 2 v(t,0.3) . u(t,0.3)
3t 3,2 4“‘/-GLNtAL6J GLﬂtJL6J
(3.25) v(t,0)=v(t,1)=0, v(0,x)=0

[v (£,0.2)102= (0), [v(£,0.2)102"=0

[v, (£,0.719 Z*—f (6), [v(£,0.71g 7 =0

- 17 -
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where
! dlz] F Py it)- s11"1(t)“"*lz"z(t)J
d d 0 521v1(t)+522v2(t)

21 22

v(t,0.3)
- £1gv(t,0.50 )+ £ 0v(£,0.6)6 (x)

G v(t,0.6) =
T

st tr2 c =[gn glz}

01521 S22 0 1821 822

We construct the matrices D, F, and G0 such that all the eigenvalues of

0

0 Cp] [sB
A, = + [D F.]
Pl A, |ee 0
p
and A__=A_-G.M_ have negative real parts.

GP "P 0P

Moreover, relative to the basis ¢1,-——,¢L for PLX, the L dimensional

observer (3.18) becomes

vl 0 v, )] [6,0.2) $,00.7)
(3.26) vz“(t) = A, v, (1) ]- ¢2(?.2) ¢2(0f7) £,(1)
: N
S L IR (0 I R
vy (£) ) ) [8.00.2) 6 0.7))
g1 %) g1 1) (v (8))

+ 812 822 r(t,o.S)}; 812 & [cpl(o.s) ¢2(0.3)---¢L(0.3)} vy ()

0 u(t,0.6) O (02006 (0.6, 0.6}
v / VL(t),
and
£ (t) | $_(0.3)
1 =—Dn§3——i——vn(t) n +F PV (£)+DS 5 (y () -y )ds.
£,(t) ¢ (0.6)

- 18 -
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