Contractions on Hilbert space 福岡教育大学 内山, 充(Mitsuru Uchiyama)

Let T be a contraction ,that is $||T|| \le 1$, on a separable Hilbert space \mathcal{R} . Then $D_T = (I-T*T)^{1/2}$ is well defined, which is called defect operator of T. In this case we have $\sigma(T) \subset \widetilde{D}$, where D and \widetilde{D} denote the open unit disc and its closure respectively. Contractions which have defect operators of finite ranks have been studied by many mathematicians. For investigations of contraction T with $D_T \in (\sigma,c)$, that is $I-T*T \in (\tau,c)$, where (σ,c) and (τ,c) denote the Hilbert Schmidt class and the trace class respectively, some mathematicians added a condition $\sigma(T) \neq \widetilde{D}$. Such a contraction T was called weak contraction by M.G.Krein. The spectral decomposition for weak contraction T or accretive operator

$$(I+T)(I-T)^{-1}$$

were obtained by Sz.-Nagy and Foias, Brodskii and Ginzburg (cf. [7]).

Since T is a contraction, $||T^nx||$ is decreasing for each x. Sz.-Nagy and Foias defined contractions' classes as following:

These formal notations are playing important roles in the studies of contraction. In particular they showed that every weak contraction in C_{00} belongs to C_{0} (about this notation see [7]),

and every weak contraction is decomposed to direct sum of the contraction in C_0 and the contraction in $C_{1\,1}$. The Jordan models for weak contractions were constructed by P.Y.Wu [10].

In [9] the author applied the results of Bercovici and Voiculescu's paper [1] to investigate a contraction T satisfying $\sigma(T) = \widetilde{D}$ and $D_T \in (\sigma,c)$, in particular, showed that T belongs to C_{10} iff there is a quasi-affinity X such that

$$X T = S_E X$$
,

where E is a Hilbert space with dim E = - index T (this "index" is Fredfolm index) and S_E is the unilateral shift on ${\textstyle 1 \atop \scriptstyle E}^2(E)$. From the results of [9], he conjectured that contraction in C_{00} with (σ,c) -defect operator belongs to C_0 . In [8] Takahashi and Uchiyama showed that this was true.

In this note we will clear the structure of a contraction T with $D_{_{\bf T}}$ in (σ,c) . In particular, setting

 $\alpha = \min \; \{ \dim \; N(T-\lambda) : \lambda \in D \; \} , \; \beta = \min \; \{ \dim \; N(T^*-\lambda) : \lambda \in D \; \} ,$ where $N(T) = \{ x \colon Tx = 0 \; \} ,$ we will show that there are vector valued holomorphic functions $h_i(\lambda)$, $f_j(\lambda)$ $(1 \le i \le \alpha , 1 \le j \le \beta)$ defined on D satisfying

$$(T-\lambda)h_{\dot{1}}(\lambda)\equiv~0~,~(T^{\star}-\lambda)~f_{\dot{1}}(\lambda)\equiv~0$$
 , and that if $~\alpha=~\beta=~0$, then T is a weak contraction.

In section 4, we will study the weighted shifts with finite matrices' weights.

From now on, we use the symbol D(T) instead of $\ensuremath{\text{D}}_{\ensuremath{\text{T}}}$ for convenience

1. Upper triangulation

Let T be a contraction on $\mathcal H$ with $D(T)\in (\sigma,c)$. Then, since $\sum\limits_{i} (1-||Te_i||^2)<\infty$ for a C.O.N.B. $\{e_i\}$ of $\mathcal H$, we have $\dim N(T)<\infty$. Let T=V|T| be the polar decomposition of T . Then there is a isometric (or co-isometric) extension V_1 of V such that V_1-V is of finite rank. In this case $\dim N(V_1-\lambda)$ is constant on D and finite , also $\dim N(V_1^*-\lambda)$ is constant on D. Since $\operatorname{range}(V_1-\lambda)$ is closed $(V_1-\lambda)$ is a semi-fredholm operator, and $\operatorname{index}(V_1-\lambda)$ is constant on D. Since $T-\lambda=V_1-\lambda+(V-V_1)-V(I-|T|)$, $T-\lambda$ is a semi-fredholm operator, and $\operatorname{index}(T-\lambda)$ is constant on D and less than ∞ . Thus we have (1.1) $\sigma(T)\cap D=\{\sigma_{\widehat{p}}(T)\cup \overline{\sigma_{\widehat{p}}(T^*)}\}\cap D$.

Now we notice that if dim $N(T^*)$ is finite , then $(T-\lambda)$ is a Fredholm operator for each $\lambda \in D$.

From the definition of C_1 . it follows that

(1.2)
$$\sigma_{p}(T) \cap D = \phi$$
 for $T \in C_{1}$.

In this section we obtain an upper triangulation of T whose diagonal elements were already studied.

The next lemma is trivial, but for the sake of the completeness we prove it.

Lemma 1.1. Let Y be a bounded operator and F a Fredholm

operator such that $FY \in (\tau, c)$. Then we have $Y \in (\tau, c)$.

Proof. There are bounded operators F' and P such that F'F = I-P, range P = N(F).

Thus $(I-P)Y = F'FY \in (\tau,c)$ implies $Y = (I-P)Y+PY \in (\tau,c)$. Q.E.D.

Lemma 1.2. Let T be a contraction with $D(T) \in (\sigma,c)$ and let

$$T = \begin{bmatrix} T_0, & B \\ 0 & T_1. \end{bmatrix}$$

be the decomposition of T such that $T_0. \in C_0.$, $T_1. \in C_1.$ (see[7]). Then $D(T_0.)$ and $D(T_1.)$ are in (σ,c) and B in (τ,c) .

Proof. Since $I-T*T \in (\tau,c)$,

 $I-T_0$. * T_0 . , $B*T_0$. and $I-(B*B+T_1$. * T_1 .)

belong to (τ,c) , where I of "I-T₀. * T₀." is the identity on the space where T₀. is defined. From next lemma , it follows that T₀. is a Fredholm operator. Thus , by Lemma 1.1, we have $B \in (\tau,c)$ and hence I-T₁. *T₁. $\in (\tau,c)$. Q.E.D.

Lemma 1.3. Suppose $T_0. \in C_0$. and $D(T_0.) \in (\sigma,c)$, then $T_0.$ is a Fredholm operator.

Proof. Let
$$T_0 = \begin{bmatrix} T_{01} & A \\ 0 & T_0 \end{bmatrix}$$

be the decomposition of T_0 . satisfying $T_0 \in C_{01}$ and $T_0 \in C_{00}([7])$. Since $I-T_0$. * T_0 . $\in (\tau,c)$, $I-T_{01} *T_{01}$, $A*T_{01}$ and $I-(A*A+T_0*T_0)$ are in (τ,c) too. From (I.2) we have $\sigma_p(T_{01}*)\cap D=\phi$, hence T_{01} is a Fredholm operator. Consequently, from Lemma 1.1, $A \in (\tau,c)$ and hence $I-T_0*T_0 \in (\tau,c)$. Since $T_0 \in C_{00}$, we have $T_0 \in C_0$ [8], which implies dim $N(T_0) = \dim N(T_0*) < \infty$ [7]. Therefore T_0 is a Fredholm operator. Thus

$$\mathbf{T}_{0} = \begin{bmatrix} \mathbf{T}_{01} & \mathbf{0} \\ \mathbf{0} & \mathbf{T}_{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

is a Fredholm operator.

Q.E.D.

Lemma 1.4. Suppose $T_1 \in C_1$ and $D(T_1,) \in (\sigma, c)$ and let

$$\mathbf{T}_{1}. = \begin{bmatrix} \mathbf{T}_{11} & \mathbf{F} \\ \mathbf{0} & \mathbf{T}_{0} \end{bmatrix}$$

be a decomposition of T_1 . such that $T_{11} \in C_{11}$, $T_{\cdot,0} \in C_{\cdot,0}([7])$. Then $D(T_{11})$ and $D(T_{\cdot,0})$ are in (σ,c) and F in (τ,c) , and $T_{\cdot,0} \in C_{10}$.

Proof. $I-T_{11}*T_{11}$, $F*T_{11}$ and $I-(F*F+T._0*T._0)$ belong to (τ,c) . From (1.2) we have

$$\sigma_{p}(T_{11}) \cap D = \phi$$
 and $\sigma_{p}(T_{11}^{*}) \cap D = \phi$

and hence , by (1.1) we have

$$\sigma (T_{11}) \cap D = \emptyset$$

Thus $F \in (\tau,c)$ and hence $I-T._0*T._0 \in (\tau,c)$. To show $T._0 \in C_{10}$, decompose $T._0$ as

(1.6)
$$T_{.0} = \begin{bmatrix} T_{00} & F_{3} \\ 0 & T_{10} \end{bmatrix},$$

where $T_0 \,_0 \in C_{0\,\,0}$, $T_{1\,\,0} \in C_{1\,\,0}$. Then we have $I - T_{0\,\,0} \,^* T_{0\,\,0} \in (\tau,c)$ and hence $T_{0\,\,0} \in C_0$, from which we get

(1.7)
$$\sigma(T_{0,0}) \cap D \neq D .$$

Denote the space on which T_1 . is defined by \mathcal{L} , and let $\mathcal{L}=\mathcal{L}_1\oplus\mathcal{L}_2\oplus\mathcal{L}_3$ be a decomposition of \mathcal{L} corresponding to

$$T_{1}. = \begin{bmatrix} T_{11} & F_{1} & F_{2} \\ 0 & T_{00} & F_{3} \\ 0 & 0 & T_{10} \end{bmatrix}$$

where $[F_1, F_2] = F$. Set

$$T_2 = \begin{bmatrix} T_{11} & F_1 \\ 0 & T_{00} \end{bmatrix} .$$

Then, since $T_2 = T_1 \cdot | \mathcal{L}_1 \oplus \mathcal{L}_2$, we have $T_2 \in C_1$. and $D(T_2) \in (\sigma, c)$. Above triangulation of T_2 implies that

$$\sigma(T_2) \subset \sigma(T_{11}) \cup \sigma(T_{00})$$
.

From this relation and (1.5), (1.7), it follows that

$$\sigma(T_2) \cap D \neq D$$
.

Therefore T_2 is a weak contraction. The C_0-C_{11} decomposition of T_2 ([7]) implies T_2 has no C_0 -part , because $T_2 \in C_1$. , and so $T_2 \in C_{11}$. From (1.8) we have $T_{00} *= T_2 * |_{\mathcal{L}_2}$,which belongs to C_0 and C_1 . ; this is impossible. Thus \mathcal{L}_2 reduces to 0, so that from (1.6) we have $T_{00} = T_{10} \in C_{10}$.

Theorem 1.5. Let T be a contraction with $D(T) \in (\sigma,c)$. Then we have an upper triangulation :

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}_{01} & & & & & \\ 0 & \mathbf{T}_{0} & * & & & \\ 0 & 0 & \mathbf{T}_{11} & & & \\ 0 & 0 & 0 & \mathbf{T}_{10} \end{bmatrix},$$

where $D(T_{0\,1})$, $D(T_0)$, $D(T_{1\,1})$ and $D(T_{1\,0})$ belong to (σ,c) , and $T_{0\,1} \in C_{0\,1}$, $T_0 \in C_0$, $T_{1\,1} \in C_{1\,1}$, $T_{1\,0} \in C_{1\,0}$, and * belongs to (τ,c) .

Proof. At first, decompose T as Lemma 1.2 ,next decompose T_0 . as (1.4). In the proof of Lemma 1.3 we showed that $T_{0.1}$ and T_0 satisfy the conditions in theorem. At last decompose T_1 . as Lemma 1.4 and set $T_{1.0} = T_{1.0}$.

Definition. Above upper triangulation is called the canonical triangulation for T with $D(T) \in (\sigma,c)$.

Remark.We showed that $T_{0\,1}$ and $T_{0\,1}$ are Fredholm operators and $T_{1\,1}$ is invertible. But dim $N(T_{1\,0}{}^*)$ may be infinite.

Eigenvectors

Let T be a contraction on \mathcal{H} with $D(T) \in (\sigma,c)$. Set $\alpha = \min \left\{ \dim N(T-\lambda) : \lambda \in D \right\} , \beta = \min \left\{ \dim N(T^*-\lambda) : \lambda \in D \right\} ,$ $i(\lambda) = \dim N(T-\lambda) - \alpha \quad (<\infty), \Lambda = \{\lambda \in D : i(\lambda) > 0 \} .$

Now we note that if a bounded operator A is decomposed as

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & A_3 \end{bmatrix} \text{ , where } A_1 \text{ is a surjection,}$$

then dim $N(A) = \dim N(A_1) + \dim N(A_3)$. In fact, we have $N(A) = N(A_1) + \{(-B^{-1}A_2 \times , \times) : \times \in N(A_3)\} ,$ where B is the restriction of A_1 to $N(A_1)$.

Theorem 2.1. Let T be a contraction with $D(T)\in(\sigma,c)$.And consider the canonical triangulation of T. Then

 $\alpha = \dim N(T_{01})$ and $\beta = \dim N(T_{10}^*)$

Proof. At first, we notice (1.3). Since $\sigma_p(T_1.) \cap D = \phi$, it is not difficult to show $N(T-\lambda) = N(T_0.-\lambda)$ for $\lambda \in D$. Next we notice (1.4). Since $D(T_{01}) \in (\sigma,c)$ and $\sigma_p(T_{01}^*) \cap D = \phi$, $(T_{01}-\lambda)$ is a surjection for each $\lambda \in D$. Thus we have

(2.1)
$$\dim N(T-\lambda) = \dim N(T_0.-\lambda) = \dim N(T_{01}-\lambda) + \dim N(T_0-\lambda)$$
$$= \operatorname{index} (T_{01}-\lambda) + \dim N(T_0-\lambda) = \operatorname{index} T_{01} + \dim N(T_0-\lambda).$$

 $T_0\!\in\! C_0$ implies that $\sigma(T_0^{})\!\cap\! D$ is countable. Hence we have $\alpha \!=\! \text{ index } T_{0\,1} = \text{dim } N(T_{0\,1}^{}) \ .$

To show β = dim N(T₁₀*), take the adjoint of (1.3),that

is

$$\mathbf{T^*} = \begin{bmatrix} \mathbf{T_1 \cdot *} & \mathbf{B^*} \\ \mathbf{0} & \mathbf{T_0 \cdot *} \end{bmatrix} \quad .$$

Since $\sigma_p(T_1.) \cap D = \phi$ and $D(T_1.) \in (\sigma,c)$, $(T_1.*-\lambda)$ is a surjection for each $\lambda \in D$. Thus we have

 $\dim N(T^*-\lambda) = \dim N(T_1 \cdot *-\lambda) + \dim N(T_0 \cdot *-\lambda)$.

From (1.4) , it follows that $N(T_0.*-\lambda)=N(T_0*-\lambda)$ for $\lambda\in D$, because $\sigma_p(T_{0\,1}*)\cap D=\varphi$. Now we notice the decomposition of T_1 . in Lemma 1.4 and remark that we set $T_{1\,0}$ instead of $T_{\cdot\,0}$ in the canonical triangulation of T. Since $\sigma_p(T_{1\,1}*)\cap D=\varphi$, it is clear that $N(T_1.*-\lambda)=N(T_{1\,0}*-\lambda)$ for $\lambda\in D$, so that $\dim N(T^*-\lambda)=\dim N(T_{1\,0}*-\lambda)+\dim N(T_0*-\lambda)$.

Consequently we have $\beta = \dim N(T_{10}^*)$. Q.E.D.

Corollary 2.2. Let T be a contraction with $D(T)\in(\sigma,c)$. Then $\sum_{\lambda\in\Lambda}(1-|\lambda|)\cdot i(\lambda)<\infty.$

Proof. From (2.1),we have $i(\lambda)=\dim N(T_0-\lambda)$. Thus ,by[7] we can conclude the proof. Q.E.D.

Theorem 2.3. Let T be a contraction with D(T) \in (\sigma, c). Then there are holomorphic vector valued functions $h_i(\lambda)$, $f_j(\lambda)$, $(1 < i < \alpha$, $1 < j < \beta$) defined on D such that

 $(T - \lambda) h_{i}(\lambda) \equiv 0 \quad (T^{*-}\lambda) f_{j}(\lambda) \equiv 0$,

and for each $\lambda \in D$ $\{h_1(\lambda), \ldots, h_{\alpha}(\lambda)\}$ are linearly independent, also $\{f_1(\lambda), \ldots, f_{\beta}(\lambda)\}$ are . In this case , setting

$$\mathcal{L}^{\perp} = \bigvee \{h_{i}(\lambda), f_{j}(\lambda): i, j, \lambda\}, P_{\mathcal{L}}T|_{\mathcal{L}} \text{ is a weak contraction.}$$

Proof. We showed that $T_{0.1}$ in the canonical triangulation of T is a Fredholm operator. Hence

 $T_{0\,1}*(I-\ T_{0\,1}T_{0\,1}*) = (I-T_{0\,1}*T_{0\,1})T_{0\,1}* \in (\tau,c)$ implies,by Lemma 1.1, $D(T_{0\,1}*) \in (\sigma,c)$. Therefore there is a quasi-affinity X such that X $T_{0\,1}* = S_E X$, where dim E = -index $T_{0\,1}* = \dim N(T_{0\,1}) = \alpha < \infty$ [9]. Let $\{e_1,\ldots,e_{\alpha}\}$ be a C.O.N.B. of E . Then $g_{\underline{i}}(\lambda)=\{e_{\underline{i}},\lambda e_{\underline{i}},\lambda^2 e_{\underline{i}},\ldots\}$ $(1\leq \underline{i}\leq\alpha)$ is holomorphic function defined on D with value in $\ell^2_+(E)$. And for each $\ell^2_+(E)$ are orthogonal each other. It is trivial to show that

$$(S_{E}^{*} - \lambda)g_{i}(\lambda) \equiv 0 , \qquad \bigvee_{i \lambda} g_{i}(\lambda) = \mathcal{L}_{+}^{2}(E) .$$
Since $T_{01}X^{*}=X^{*}S_{E}^{*}$,
$$h_{i}(\lambda) = \begin{bmatrix} X^{*}g_{i}(\lambda) \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad (1 \leq i \leq \alpha)$$

satisfy the conditions given in the theorem. Since $T_{1\,0} \in C_{1\,0}$ and $D(T_{1\,0}) \in (\sigma,c)$, there is a quasi-affinity Y such that

Y
$$T_{10} = S_F$$
 Y , where dim $F = \beta \leq \infty$.

We can show the existence of $f_j(\lambda)$ with the same way as above ; hence we omit it. We must show the last assertion. To this end, we notice that $\{h_j(\lambda): 1 \leq i \leq \alpha \ , \ \lambda \in D\}$ and $\{f_j(\lambda): 1 \leq j \leq \beta \ , \ \lambda \in D\}$ span the spaces on which T_{01} and T_{10} , respectively, are defined . Thus , by Theorem 1.5 we have

$$(2.2) P_{\mathcal{L}} T|_{\mathcal{L}} = \begin{bmatrix} T_0 & \star \\ 0 & T_{11} \end{bmatrix}.$$

In this case * clearly belongs to (τ,c) . Now we set $T_{\mathcal{L}}=P_{\mathcal{L}}T|_{\mathcal{L}}$. From (2.2) $D(T_0)\in(\sigma,c)$ and $D(T_{11})\in(\sigma,c)$ imply that $D(T_{\mathcal{L}})\in(\sigma,c)$. Since T_{11} is invertible , we have

$$\sigma_{\mathbf{p}}(\mathbf{T}_{\mathcal{L}}) = \sigma_{\mathbf{p}}(\mathbf{T}_{\mathbf{0}}) \qquad \sigma_{\mathbf{p}}(\mathbf{T}_{\mathcal{L}}^{*}) = \sigma_{\mathbf{p}}(\mathbf{T}_{\mathbf{0}}^{*}).$$

 $T_0 \in C_0 \quad \text{implies that } \sigma_p(T_0 *) = \overline{\sigma_p(T_0)} \neq D \quad \mbox{[7]. Thus by(1.1)}$ we have $\sigma(T_{\mathcal{L}}) \cap D = \sigma_p(T_0) = \Lambda \neq D \quad \text{Thus } T_{\mathcal{L}} \text{ is a weak contraction.}$ Q.E.D.

Theorem 2.4. Let T be a contraction with $D(T) \in (\sigma,c)$; then the following are equivalents:

- (a) $\alpha = \beta = 0$;
- (b) T is a weak contraction;
- (c) T is decomposable (about definition see [2]).

Proof. (a) \Rightarrow (b): From Theorem 2.1. $N(T_{0\,1})=0$, which implies $T_{0\,1}$ is a weak contraction. Therefore there is a $C_0-C_{1\,1}$ decomposition of $T_{0\,1}$, but it is impossible, because $T_{0\,1}\in C_{0\,1}$. Thus the space on which $T_{0\,1}$ is defined reduces to 0. Similarly the space on which $T_{1\,0}$ is defined reduces to 0. Thus $\mathcal L$ in Theorem 2.3 is $\mathcal R$. Therefore T is a weak contraction.

- (b) \Rightarrow (c): This was shown by Jafarian [5].
- (c) \Longrightarrow (a): Since decomposable T has the single valued extension

property, $\alpha=0$ follows . Thus for $\lambda \notin \Lambda$, $(T-\lambda)$ is injective semi-Fredholm operator. Hence $\sigma_{\chi}(T) \cap D \subset \Lambda$. Thus we have $\sigma(T) \cap D \subset \Lambda$ (see p.30 of [2]). Consequently $\beta=0$. Q.E.D.

Proposition 2.5. Let T be a contraction on $\mathcal H$ with $D(T)\in (\sigma,c)\,.$ Then $T\in C_{1\,0}$ if and only if there are vector valued holomorphic functions $h_{1}(\lambda)$ such that

$$(T^* - \lambda) h_{\underline{i}}(\lambda) \equiv 0$$
 , $\bigvee_{\underline{i},\lambda} h_{\underline{i}}(\lambda) = \mathcal{H}$.

Proof. "Only if" part follows from Theorem 2.3 and its proof. We must show "if" part. Since

$$T^{*n}h_{i}(\lambda) = \lambda^{n} h_{i}(\lambda) \rightarrow 0 \text{ as } n \rightarrow \infty$$
,

 ${\bf T^*}^{\bf n}$ strongly converges to 0 on linear spann of $\{{\bf h_i}(\lambda): {\bf i}, \lambda\}$. Suppose

 $T^{*^{n}} x_{i} \to 0 \quad (n \to \infty \text{) and } x_{i} \to x \text{ } (i \to \infty).$ Since $||T^{*^{n}} x|| \le ||T^{*^{n}} x_{i}|| + ||T^{*^{n}} (x - x_{i})|| \le ||T^{*^{n}} x_{i}|| + ||x - x_{i}||$, we have $\overline{\lim_{n \to \infty}} ||T^{*^{n}} x|| \le ||x - x_{i}||$. Since we can make the right side arbitrary small, $T^{*^{n}} x \to 0 \quad (n \to \infty)$. Thus T belongs to C.0, therefore the canonical triangulation of T becomes

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}_0 & \star \\ 0 & \mathbf{T}_{10} \end{bmatrix} .$$

Let ${\mbox{\bf P}}$ be the orthogonal projection to the space which ${\mbox{\bf T}}_0$ is defined on . Then we have

$$0 = P (T^*-\lambda) h_i(\lambda) = P (T^*-\lambda)P h_i(\lambda) = (T_0^*-\lambda)P h_i(\lambda).$$

Since $\sigma_p(T_0^*)$ are countable , Ph $(\lambda) \equiv 0$. Consequently P $\mathcal{R}=0$ and hence $T=T_{10}$. Q.E.D.

Alternately we have

Proposition 2.6. Let T be a contraction on $\mathcal R$ with $D(T)\in (\sigma,c). \text{ Then } T\in C_{0\,1} \text{ iff there are vector valued holomorphic functions } f_j(\lambda) \text{ defined on } D \text{ such that}$

$$(T-\lambda)$$
 $f_{j}(\lambda) \equiv 0$ $\bigvee_{j,\lambda} f_{j}(\lambda) = \mathcal{H}$

3. m-accretive operators

Let A be an m-accretive operator densely defined in $\mathcal K$ (about the definition see [6]). Then

$$(3.1) T = (A-I) (A+I)^{-1}$$

is a contraction defined on ${\mathcal H}$ and

$$\sigma_{p}(T) \not \ni 1$$
 and $T^* = (A^*-I)(A^*+I)^{-1}$

(see Chap IV of [7]). It is trivial to show that

$$((I-T*T)h,h) = 4 \text{ Re } (A(A+I)^{-1}h, (A+I)^{-1}h) \text{ for } h \in \mathcal{H}.$$

Since $A(A+I)^{-1}$ and $(A+I)^{-1}$ are bounded, we have a relation:

$$I-T*T \in (\tau,c) \iff u(A) \in (\tau,c)$$
,

where $u(A) = Re((A*+I)^{-1}A(A+I)^{-1})$. In this section we denote the

open right half plane by Ω . The mapping

$$\psi: \mu \longrightarrow \frac{\mu - 1}{\mu + 1}$$

transforms Ω onto D. It is clear that

$$(3.2) \qquad (A-\mu) x=0 \iff (T-\psi(\mu)) (A+I) x=0.$$

Set

$$\alpha = \min \{ \dim N(A-\mu) : \mu \in \Omega \}, \beta = \min \{ \dim N(A^*-\mu) : \mu \in \Omega \},$$

$$i(\mu) = \dim N(A-\mu) - \alpha, \Gamma = \{ \mu : i(\mu) > 0 \}.$$

Proposition 3.1. Let A be an m-accretive operator densely defined in $\mathcal{H}.$ If $u(A)\in (\tau,c)$, then it follows that

$$\sum_{\mu \in \Gamma} \left(\frac{\text{Re } \mu}{1 + |\mu|^2} \right) \cdot i(\mu) < \infty .$$

Proof. Since range of (A+I) is \mathcal{H} , by (3.2), we have $\dim N(A-\mu) = \dim N(T-\psi(\mu)), \ \alpha = \min\{\dim N(T-\lambda): \lambda \in D\},$ $\dim N(T-\lambda)-\alpha = \dim N(A-\psi^{-1}(\lambda))-\alpha = i(\psi^{-1}(\lambda)),$ $\{\lambda: i(\psi^{-1}(\lambda))>0\} = \psi(\Gamma).$

Thus from Corollary 2.2, it follows that

$$\sum_{\lambda \in \psi (\Gamma)} (1 - |\lambda|) \cdot i(\psi^{-1}(\lambda)) < \infty$$

$$\sum_{\mu \in \Gamma} \frac{\text{Re } \mu}{1 + |\mu|^2} : i(\mu) < \infty \quad \text{(cf. p.132 of [4])}.$$

Theorem 3.2. Let A be an m-accretive operator densely defined in \mathcal{H} . If $u(A) \in (\tau,c)$, then there are vector valued

holomorphic functions $x_i(\mu)$, $y_j(\mu)$, $(1 \le i \le \alpha, 1 \le j \le \beta)$ defined on Ω such that

$$(A-\mu) x_{\underline{i}}(\mu) \equiv 0$$
 and $(A^*-\mu) y_{\underline{j}}(\mu) \equiv 0$.

Proof. From Theorem 2.3, for T defined by (3.1) there are holomorphic functions $h_i(\lambda)$ $(1 \le i \le \alpha)$ such that

$$(T-\lambda) h_i(\lambda) \equiv 0$$
.

Then

$$x_i(\mu) = (A+I)^{-1}h_i(\psi(\mu))$$

is a holomorphic function defined on Ω ,and for each $\mu \in \Omega$ $x_{\tt i}(\mu)$ belongs the domain of A. From (3.2), we have

$$(A-\mu)$$
 $x_{i}(\mu) \equiv 0$.

We can similarly show the existence of $y_j(\mu)$ from the alternate relation of (3.2), that is

$$(A^*-\mu)x = 0 \iff (T^*-\psi(\mu))(A^*+I)x = 0$$
. Q.E.D.

4. Weighted unilateral shifts

In this section we study weighted unilateral shifts with (σ,c) - defect operators. Let E be an N-dimensional finite Hilbert space, and A_n (n=0.1.2...) invertible contraction on E. Let T be a weighted unilateral shift on \mathcal{L}^2_+ (E) defined by

$$T \{x_0, x_1, \dots \} = \{0, A_0x_0, A_1x_1, \dots \}$$

Lemma 4.1. Let B be an invertible operator on E. Then we have

$$||B^{-1}|| \le \frac{||B||^{N-1}}{|\det B|}$$
, $\frac{1}{|\det B|} \le ||B^{-1}||^{N}$.

Proof. Let $\lambda_1 \ge \dots \ge \lambda_N > 0$ be eigen values of B*B.

Then we have

$$||B^{1}||^{2} = ||(B^{*}B)^{-1}|| = \frac{1}{\lambda_{N}} \leq \frac{\lambda_{1}^{N-1}}{\lambda_{1} \cdot \cdot \cdot \lambda_{N}} = \frac{||B^{*}B||^{N-1}}{\det(B^{*}B)}.$$

Thus we have

$$||B^{-1}|| \leq \frac{||B||^{N-1}}{|\det B|}$$

The second inequality similarly follows (cf. p.200 of [3]).Q.E.D.

Now we remember next fact:

for scalar a_n such that $0<\left|a_n\right|<1$, $\prod\limits_{n=0}^{\infty}|a_n|$ converges iff $\sum\limits_{n=0}^{\infty}(1-\left|a_n\right|)<\infty$.

Theorem 4.2. Let T be a contractive weighted shift defined above. Then the following are equivalents:

- (a) $T \in C_{10}$;
- (b) $D(T) \in (\sigma, c)$;
- (c) T is similar with simple sift S_E ;
- (d) there is a $\delta > 0$ such that

$$|| \ {\tt A}_n \cdot \cdots \ {\tt A}_0 \times || \ \underline{>} \delta \, || \, x \, || \,$$
 for every $x \in E$ and every n .

Proof. (d) \Rightarrow (c): For each m we have

$$\begin{split} & || A_{m+n} \cdots A_m \times || = || A_{m+n} \cdots A_m A_{m-1} \cdots A_0 (A_{m-1} \ldots A_0)^1 \times || \\ & \geq \delta || (A_{m-1} \cdots A_0)^1 \times || \geq \delta \frac{1}{|| A_m \cdots A_0 ||} || \times || \geq \delta || \times || , \end{split}$$

because each A is a contraction. Thus for each $f \in L^2_+(E)$, we have

 $|| T^n f || \ge \delta || f ||$ for every n.

By the well known Sz.-Nagy's theorem, T is similar with an isometry V . Since T belongs to $C._0$, so do V, hence V is a unilateral shift . Since

$$\dim N(V^*) = \dim N(T^*) = \dim E = N$$

dimension of the wandering space for V is N. Thus V is unitarily equivalent with $\boldsymbol{S}_{\mathrm{E}}$.

 $(c) \Longrightarrow (a)$: This is obvious.

(a)
$$\Longrightarrow$$
(d): Set $\mathcal{L}(x) = \lim_{n \to \infty} || T^n \{x,0,0,\ldots\} ||$ for $x \in E$.

Since \mathcal{L} is continuous and $\mathcal{L}(\mathbf{x}) \neq 0$ for $\mathbf{x} \neq 0$, there is a $\delta > 0$ such that

 $l(x) \ge \delta$ for x in the unit surface of E.

Since $\ell(\alpha x) = |\alpha| \ell(x)$, we have

$$\lim_{n\to\infty} || A_n \cdots A_0 \times || = \mathcal{L}(x) \ge \delta || x || \text{ for } x \in E.$$

 $(b) \Longrightarrow (d)$: From

$$\infty > ||I-T*T||_{1} = \sum_{n=0}^{\infty} ||I-A_{n}*A_{n}||_{1} \ge \sum_{n=0}^{\infty} ||I-A_{n}*A_{n}||$$

it follows that

$$\prod_{n=0}^{\infty} (1 - || 1 - A_n * A_n ||)$$

converges and we denote its limit by $\ \delta^{\,2}\,.$ In view of

$$||A_{i}^{-1}||^{2} = ||(A_{i} * A_{i})^{-1}|| = ||(I - (I - A_{i} * A_{i}))^{-1}|| \le \frac{1}{||I - A_{i} * A_{i}||},$$

we have

$$|| A_{n} \cdots A_{0} \times ||^{2} \ge \frac{|| x ||^{2}}{|| (A_{n} \cdots A_{0})^{-1} ||^{2}} \ge \frac{|| x ||^{2}}{|| A_{n}^{-1} ||^{2}} ... || A_{0}^{-1} ||^{2}}$$

$$\ge \lim_{i \to 0} (1 - || I - A_{i} * A_{i} ||) || x ||^{2} \ge \delta^{2} || x ||^{2} for every n.$$

(d) \Rightarrow (b): Since each A_n is an invertible contractive matrix, we have $||1-A_n*A_n|| = 1-\min \{\lambda: \lambda \in \sigma_p(A_n*A_n)\}$

$$= 1 - \frac{1}{||(A_n^*A_n^{-1})||} = 1 - \frac{1}{||A_n^{-1}||^2} \le 2(1 - \frac{1}{||A_n^{-1}||})$$

from Lemma 4.1,

$$\leq 2(1-\frac{|\det A_n|}{||A_n||^{N-1}}) \leq 2(1-|\det A_n|).$$

From (d) and Lemma 4.1, we have

$$|\det A_n|$$
 $|\det A_0|$ = $|\det (A_n ... A_0)|$

$$\geq ||(A_n \dots A_0)^{-1}||^{-N} \geq \delta^N$$
,

which implies that $\prod\limits_{n=0}^{\infty} \left| \det A_n \right|$ converges, and hence

$$\sum_{n=0}^{\infty} ||I - A_n * A_n|| \le 2 \sum_{n=0}^{\infty} (1 - |\det A_n|) < \infty \qquad . Q.E.D.$$

References

- M.Bercovici and D.Voiculescu, Tensor operations on characteristic functions of C₀ contractions, Acta Sci.Math. 39 (1977),205-231.
- I.Colojoara and C.Foias, Theory of generalized spectral operators, Gorden and Breach, New York (1968).
- 3. P.Fuhrmann, Linear Systems and Operators in Hilbert Space, McGraw-Hill, (1981).
- 4. K.Hoffmann, Banach space of analytic functions, Englewood Cliffs, N.J. (1962)
- 5. A.Jafarian, Weak contractions of Sz.-Nagy and Foias are decomposable, Rev. Roumaine Math. Pures et Apll.22(1977) 489-497.
- 6. T.Kato, Perturbation Theory for linear Operators, Springer, (1966).
- 7. B.Sz.-Nagy and C.Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Akademiai Kiado, (1970).
- 8. K. Takahashi and M. Uchiyama, Every $C_{0\,0}$ contraction with H-S defect operator is of class C_0 , J.Operator Theory, to appear.
- 9. M.Uchiyama, Contractions and unilateral shifts, Acta Sci. Math., to appear.
- 10.P.Y.Wu, Jordan model for weak contractions, ibidem, 40, (1978), 189-196.