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Contractions on Hilbert space

ABFGKE L) Fwitsura vehiyana)

Let T be a contraction ,that is || T|| <1 , on a separable
Hilbert space #®. Then D, = (I-T*T) /2 is well defined, which
is called defect operator of T. In this case we have g (T)CD
where D and B'dengte'the open unit disc and its closure respe-
ctively. Contractions which have defect operators of finite
ranks have been studied by many mathematicians. For investiga-
tions of contraction T with DT,G(g,c) , that is I-T*T€&(y,c),
where (0,c) and (7,c) denote the Hilbert Schmidt class and the
trace class respectively, some mathematicians added a condition
o(T)# D . Such a contraction T was called weak contraction by
M.G.Krein. The spectral decomposition for weak contraction T
Or accretive operator

(1+T) (1-17 T
- were obtained by Sz.-Nagy and Foias,Brodskii and Ginzburg (cf
17 |
Since T is a contraction, || T™x|| is decréasing for each

X. Sz.-Nagy and Foias defined contractions' classes as following:

Ci.= {T: iim l|T"x || >0 for each x#0 },
n.m
Co. = {T: lim l|™"x|| =0 for each x 1},
n {o o]
Ca= {T: T*¢Ci. } , C.o= {T: T*€Co. } ,
Cij= Cf f\C.j ( Oill,]i 1).

These formal notations are playing important roles in the studies
of contraction. In particular they showed that every weak con-

traction in Cy belongs to C, (about this notation see [7]),



and every weak contraction is decomposed to direct sum of the
contraction in Cy and the contraction in Ci;i1 . The Jordan
models for weak contractions were constructed by P.Y.Wu [10].
In [9] the author applied the results of Bercovici and
Voiculescu's paper [1l] to investigate a contraction T satisfy-
ing o (T) = ?3/ and DTG(G,C) ; in particular,showed that T
belongs to Cyp 1iff there is a quasi-affinity X such that

XT=S; X,

where E is a Hilbert space with dim E = - index T (this "index"

is Fredfolm index ) and S; is the unilateral shift on {° (E).
From the results of [9]; he conjectured that contraction in Coo
with (0,c)-defect operator belongs to C; . In [8] Takahashi
and Uchiyama showed that this was true.

In this note we will clear the structure of a contraction
T with DT in (o,c). In particular, setting

o= min {dim N(T-A):)€D }, B= min {dim N(T*-A):A€D },
where N(T)= {x: Tx=0 }, we will show that there are vector va-
lugd holomorphic functions hi(k), fj(k) (1<i<a ,1<j<B )
defined on D satisfying

(T—A)hi(k)z 0 , (T*-d) fj(A)5~O

, and that if o= B= 0 , then T is a weak contraction.

In section 4, we will study the weighted shifts with finite

matrices' weights.

From now on, we use the symbol D{(T) instead of DT for

convenience
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1. Upper triangulation

Let T be a confraction on J£ with D(T) € (0,c). Then,
since I (1- HTeiH2)<m for a C.0.N.B. {e;,} of K, we
have di; N(T)< « . Let T=V|T| be the polar decomposition of
T . Then there is a isometric ( or co-isometric ) extension
Vy of Vv such that V1~V is of finite rank. In this case
dim N(V;-)X) is constant on D and finite , also dim N(V;*- ) is
constant on D. Since range(Vi-A) is closed (V;-2) is a semi-

Fredholm operator, and index(V;-A) is constant on D.

Since T-A=V i~ A+ (V-V)-V(I~|T|),T-} is a semi-Fredholm operator, -

and index(T—k)ris constant on D and less than « . Thus we have
(1.1) o(T)ND = {Op(T)UGP(T*)}[\D .

Now we notice that if dim N(T*) is finite , then (T-X)
is a Fredholm operator for each A€D.

From the definition of C;. it follows that
(1.2) GP(T)f\D = ¢ for TE-Cl.‘

In this section we obtain an upper triangulation of T
whose diagonal elements were already studied.

The next lemma is trivial, but for the sake of the comp-

leteness we prove it.

Lemma 1.1. Let Y be a bounded operator and F a Fredholm
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operator such that FY€(t,c). Then we have Yé&(t,c).

Proof. There are bounded operators F' and P such that
F'F = I-P , range P = N(F).

Thus (I-P)Y = F'FY € (1,c) implies Y =(I-P)Y+PY € (1,c). Q.E.D.

Lemma 1.2. Let T be a contraction with D(T) € (o,c) and

let

To. B ]
(1.3) T = J
10 Ti.

be the decomposition of T such that To.€Co. , T1.€Ci. (see[7]).

Then D(Ty. ) and D(T;. ) are in (g,c) and B in (1,c).

Proof. Since I-T*T € (1,c),

I-Ty. * To. ;, B*Ty. and I-(B*B+T;. *T;. )
belong to (t,c),where I of "I-Ty *¥ Ty. " is the identity on the
space . where To. is defined. From nextAlemma , it follows
that To. is a Fredholm operator. Thus , by Lemma 1.1, we have

B &€{(t,c) and hence I-T,. *T;. € (1,c) . Q.E.D.

Lemma 1.3. Suppose To€Cy. and D(Te. )€ (0,c), then

Tyo. 1is a Fredholm operator.

Proof. Let

(1.4) To. =
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be the decomposition of Tp,. satisfying T,.&C,; and TEC,0([71).
Since I-Tq *Te. € (T,C), I*To1*TnL , A*T-and I-(A*A+T,* T,)

are in (T,c) too. From (1.2):' we have Op(To1*)ﬂD= ¢ ,hence Tg,
is a Fredholm operator. Consequently, from Lemma 1.1 ,A€(t,c)
and hence I-T,*T,€(T,c).Since T €Cyso , we have T(€Cy {81,

which implies dim N(Ty) = dim N(To*)<w [7].Therefore T, is a

Fredholm operator. Thus

To1 O 0 A
To. = +
v To 0 0
is a Fredholm operator. Q.E.D.

Lemma l1.4. Suppose T;. € Ci. and D(T;. JE(o,c) and let

be a decomposition of Tl.'such'that T1€C1; » T.0€C.o ([71).

Then D(Ti:) and D(T.,) are in (o,c) and F in (t,c),and T.&€Cy,.

Proof. I-T11*T11 , F¥T1; and I-(F*F+T.*T.,)belong to
fT,c). From (l1.2) we have
qb(Til)f\D = ¢ and Up(Tll*)f\D = ¢ ’
and hence , by (1.1) we have
(1.5) 0(T11)[\D = ¢
Thus F €(T,c) and hence I-T.o*T.o € (1,c). To show T.,€C1o

decompose T.o as
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(1.6) ‘ T.o = P

where Too€Cyy , T1,€C;y . Then we have I-T,,*T,,€(1,c) and

hence T, ,6€Cy; , from which we get
(1.7) o(Tyo) N\D # D .
Denote the space on which T;. is defined by li , and let

I,= Ll@izea I-a be a decomposition of I corresponding to

'3

Ty, F, F,

where [ F, , F, 1 = F . Set
Ty Fy
(1-8) T2 = -
Then, since T,= TI'LEKDZQ , we have T,€C,;. and D(T,)€(c,c).
Above triangulation of T, implies that
0 (T2) C o(Tyy) Uo(Tey) -
From this relation and (1.5),(1.7), it follows that
o(T,)N\D #D .
Therefore T, 1is a weak contraction. The Cy- C;; decomposition

of T, ([7]) implies T, has no C,-part , because T,€C;. , and

so T,beC;;, . From (1.8) we have T00*=T2*[£, ;which belongs to
’ 2

Cy. and C;. ; this is impossible. Thus [.reduces to 0,so that

from (1.6) we have T.,= T,,€C;, . Q.E.D.
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Theorem 1.5. Let T be a contraction with D(T)¢& (o,c).

Then we have an upper triangulation :

Tos
*
0 Tq
T = 0 T11 4
where D(Tg;) , D(Ty) , D{(T;:) and D(T;,3) belong to (o,c),and
T016C01 r To €Cy , T11€C11 ’ TloEC”, and * belongs to (T,C).

Proof. At first, decompose T as Lemma 1.2 ,next decompose
To. as (1.4). In the proof of Lemma 1.3 we showed that Ty;
and Ty satisfy the conditions in theorem. At last decompose

T;. as Lemma 1.4 and set T;o= T., . Q.E.D.

Definition. Above upper triangulation is called the

canonical triangulation for T with D(T) € (o,c).

Remark .We showed that Ty;and T, are Fredholm operators

. and T;; is invertible. But dim N(T;¢*) may be infinite.



2. Eigenvectors

Let T be a contraction on Je with D(T) € (0,c). Set
¢ = min {dim N(T-)):2€D} , B= min {dim N(T*-X):X€D} ,
i(A)= dim N(T-A)-a (<o ), A={A€D:i(A)>0} .
Now we note that if a bounded operator A is decomposed as
Ay A

A = , where A, is a surjection,
0 A,

then dim N(A)= dim N(A;) + dim N(A3). In fact, we have
N(A) = N(A;) + {(- BT A2x , x): x€N(A;)}

where B is the restriction of A; to N(A;)

Theorem 2.1. Let T be a contraction with D(T)€(c,c) .And
consider the canonical triangulation of T. Then

a= dim N(Ty;) and B= dim N(T,q%*) .

Proof. At first, we notice (1.3). Since op(Tl;)nD=¢ ,
it is not difficult to show N(T-A)= N(Ty.-A) for AE D. Next we
notice (1.4). Since D(Ty;)€(0,c) and Up(T01*)nD = ¢, (Tygi1-2A)
is a surjection for each XD . Thus we have
(2.1) dim N(T-A)= dim N(Ty.-A) = dim N(Tq;-1) + dim N(T,-A)

= index (Ty,-)) + dim N(To-A)=index T,y + dim N(To=1).
ToE Cy implies that o(T, )AD is countable. Hence we have
o= index Ty; '= dim N(Tq;) .

To show B= dim N(T,;4%*), take the adjoint of (1.3),that
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is

Since op(Tl.)nD =¢ and D(Ty.)E(0,c), (T,.*-A) is a surjection
for each M¢D . Thus We have

dim N(T*-A)= dim N(T, .*-A)+ dim N(Tp.*-})
From (1.4) , it follows that N(To .*-A) = N(T,*-A) for AED,
because cp(TOI*)rﬂD = ¢ . Now we notice the decomposition Qf
T,. in Lemma 1.4 and remark that we set T;, instead of T., in
the canonical triangulation of T . Since op(T;l*M\D =¢ ,
it is clear that N(T,.*-A) = N(T,,*-A) for A€D., so that

dim N(T*-)) = dim N(T,,*-A) + dim ﬁ(To*—A).

Consequently we have B = dim-N(Tlo*), Q.E.D.

Corollary 2.2. Let T be a contraction with D(T)€(o,c).

Then g (1-]A])-iQA)< =
AEA

Proof. From (2.1),we have i(})=dim N(T,-A). Thus oy (7]

we can conclude the proof. Q.E.D.

Theorem 2.3. Let T be a contraction with D(T)&(o,c).
Then there are holomorphié vector valued functions hi(x), fj(x)
»(1<i<a , 1l<j<p ) defined on D such'that
(T - A) hi(k) =0 (T*-)) £.0Q0)= 0 ,
and for each (€D {hl(x),...,ha(k)} are linearly independent,

also {fl(x),...,fs(x)} are . In this case , setting



L
L = \/ {hi(k),fj()\):l,],}\},PLTIL is a weak contraction.

Proof. We showed that T,y .in the. .canonical triangula-

tion of T is a Fredholm operétor. Hence

To1*(I- To1To1*) = (I-To1*To1)To1* € (1,C)
implies,by Lemma 1.1, D(Ty:%) é(c,c). Therefore there is a
quasi-affinity X such that X‘T01* = SEX , where
dim E = -index Ty:1* = dim N(Ty;) = o< [9]. Let
{el,...,ea} be a C.0.N.B. of E . Then gi(A§={ei,Aei,A2ei,...}
(1< i<a) is holomorphic function defined on D with value in

Qi(E). And for each X €D {g;(}),..., gu(k)} are orthogonal

each other. It is trivial to show that

- = \4 _p2
Since TUIX*=X*SE*, .
X*gi(K)
hy )= | 0 (1< i<a )
0

satisfy the conditions given in the theorem. Since T;,€C;
and D(T,,) € (0,c) , there is a quasi-affinity Y such that

.Y Ty o= SF Y ;, where dim F = B<w
We can show the existence of fj(k) with the same way as above
; hence we omit it. We must show the last assertion. To this
end, we notice that {hi(A):li i<a , XD} and
‘{fj(k): 1< j<B , X€D} span the spaces on which Ty and T,

respectively, are defined . Thus , by Theorem 1.5 we have

10
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Ty *
(2.2) Py T|y = . n |
;n“this case * clearly belongs to (t,c). Now we set ?£=RZTLL',
From (2.2) ,D(Ty)&€(o,c) and D(T;,)€E(o,c) imply that

DUQQ € (0,c). Since T;; is invertible , we have

UP(T’t)z Op(To) GP(TI.*) =0p(To*) .

To€Co implies that GP(TO*)= Up(To) # D [7]1. Thus by(1.1)
we have Gx?t)f\D = cp(To) = A # D . Thus ?ﬁ is a weak con-

traction. ‘ Q.E.D.

Theorem 2.4. Let T be a contraction with D(T) € (o,c); then
the following are equivalents:
(a) o =8 = 0; |
(b) T is a weak contraction ;

(c) T is decomposable ( about definition see [2]).

Proof. (a)=>(b): From Theorem 2.1. N(Ty,)= O0,which implies
To; is a weak contraction. Thérefore there is a Cy-C;; decom-
position of Ty; , but it is impossible , because Ty:€Co:1 .
Thus thé Spacé on which Ty,; is defined reduces to 0. Similarly
the space on which T4 is defined reduces to 0. Thus gi-in |
Theorem 2.3 is J . Therefore T is a weak contraction.
(b) =2 (c) : This was shown by Jafarian [5].

(c)=9 (a): Since decomposable T has the single valued extension

11
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property, a=0 follows . Thus for AgA , (T-1) is injective
semi-Fredholm operator. Hence UQ(T)[\D C A. Thus we have

o(T)\D CA (see p.30 of [2]). Consequently B= 0 . .Q.E.D.

Proposition 2.5. Let T be a contraction on J with
D(T) € (0,c). Then TEC;,if and only if there are vector valued
holomorphic functions‘hi(k) such that

(T* -0)h,; (M)=0 , V h, ()= F .
iA
Proof. "Only if" part follows from Theorem 2.3 and its

proof. We must show "if" part. Since

n

T*nh.(x) = )X h.{(\A) -0 as ﬁ -> o,
i i

" strongly converges to 0 on linear spann of {hi(k):i,K}.
Suppose
n

T x. > 0 {(n»> o ) and x. - x (i> «).
i i

. n n
Since ||T*" x|| <||T* x|+ HT*n(x—xi)HgHT* x|+ lIx=xg 1]
we have 1lim ||T*"x|| < ||x-x,|| . Since we can make the right

n->o - 1
side arbitrary small, % » 0 (n+ «). Thus T belongs to C.y ,
therefore the canonical triangulation of T becomes
’To .
0 Tio
Let P be the orthogonal projection to the space which T, is»
defined on . Then we have

0 =P (T*-}) h,(A) =P (T*=M)P h, (1) = (To*-A)P hy (V).

12



Since GP(TO*) are countable , Phi(X)EO. Consequently P X= 0

and hence T=T;¢ . Q.E.D.

Alternately we have

Proposition 2.6. Let T be a contraction on J@ with
D(T) € (o,c). Then TE€Cy; iff there are vector valued holomor-
phic functions fj(k) defined on D such that

— R = \/ . = -
(T-)) fj(x) =0 A fj(k) yig

3. m—~accretive operators

Let A be an m-accretive operator densely defined in X
(about the definition see [6]). Then

(3.1) T = (A-I) (A+1)!

is a contraction defined on JQ and

— - * -1
0, () F1 ~and  T* = (A*-I) (A*+I)?
(see Chap W of [7]). It is trivial to show that
((I-T*T)h,h) = 4 Re (A(A+I)'h, (A+I)'h) for.thﬂz.
Since A(A+I)? and (A+I)?! are bounded , we have a relation:

I-—T*TE(T,C) <__.7) u(a) E (TIC) ’

where u(A)=Re((A*+IY*A(A+IT1); In this section we denote the

13
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open right half plane by € . The mapping

b M +1
transforms 2 onto D. It is clear that
(3.2) (A-p)x=0 & (T- ¥ (1)) (A+I)x=0 .
Set |
a= min{dim N(A-p) :peQ}, B= min{dim N(A*-u): ueQl ,

i(p)= dim N(A-u)=-ao , I'={u : i(u)>0} .

Proposition 3.1. Let A be an m-accretive operator densely

defined in . If u(A) € (1,c) , then it follows that

r (R i) < e .
per L rlPTT

Proof. Since range of (A+I) is &, by (3.2), we have
dim N(A-u) = dim N(T-y (p)), a=min{dim N(T-}):\€D},
dim N(T-1)-o = dim N(A-y? (A))=-a = 1 (¥ () ,
i@ (0))> 0} = p(T). |

Thus from Corollary 2.2 , it follows that

z (1-|AD)- 1@ N))< =
AEY(T)

so that ) (1- Jyu) ) i(u)< =.
uer

Therefore we have

5 Re yu

—_—  i(u)< = (cf. p.132 of [4]).
per 1 +|ul? ' '

Theorem 3.2. Let A be an m-accretive operator densely

‘defined in H#. If u(ad) €(1,c), then there are vector valued

14
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holomorphic functions xi(u), yj(u), (1<i<a,1<j<B ) defined

on  such that

(A-un) xi(u) =0 and (A*—uf yj(u) =0

Proof. From Theorem 2.3, for T defined by (3.1) there
are holomorphic functions h;(}) (1<i<a) such that
(T-21) hi(X),E 0 .

Then x; (0) = (A+I)7h, (¥ ()
is a holomorphic function defined on @ ,and for each uéqQ
xi(u) belongs the domain of A. From (3.2), we have

(A-u) x, (n) = 0.
We can similarly show the existence of yj(u) from the alternate
relation of (3.2), that is

(A*-p)x = 0 £ (T*-y(u)) (A*+I)x = 0 . Q.E.D.

4., Weighted unilateral shifts

in this section we study weighted unilateral shifts with
(0,c)- defect operators. Let E be an N-dimensional finite Hilbert
épace, and An(n=0.l.2...) invertible contraction on E. Let T
be a weighted unilateral shift on_Qi(E)defined by

T {XOIXII"' } = {O}A()XQ,AIXI,...}

15



21

Lemma 4.1. Let B be an invertible operator on E. Then
we have
N-1 1N
HB-—1H< ”B“ , 1 < HBIH
~Tdet B] |det B
Proof. Let A1> eeenen iAN‘> 0 be eigen values of B*B.

Then we have
- N-1
ot |lB*B ]|

1B ]2 = || (B*B)?||= det (B*B)

Thus we have B N-1
I | el

The second inequality similarly follows (cf. p.200 of [3]).Q.E.D.

Now we remember next fact:

[o2]

for scalar a such that 0< ]an|<l , I }an]converges
<] n=0
iff T (1- laj )< =
n=0

Theorem 4.2. Let T be a contractive weiéhted shift
defined above. Then the following are equivalents
(a) T €C,y ;
(b) D(T) € (o,c) ;
(c) T is similar with simple sift SE ;
(d) there is a &> 0 such that

I LNREEE Aox || >8||x || for every x€E and every n

Proof. (d)=» (c): For each m we have

”Am-{»n... Am X H= HAm..{..n." AmAm_EL"' AO(Am_l... Ao)-l X”
2 8| Ay_p e Bl x || 26——2——Ix || >s]Ix || ,
||Am..J Aol|

16
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because = each Ai is a contraction. Thus for each féﬂi(E) ,
we have

I| " ¢ Il >8]l for every n.
By the well known Sz.-Nagy's theorem, T is similar with an
isometry V . Since T belongs to C.o , so do V, hence V is a
unilateral shift . Since

N

I

dim N(V*) = dim N(T*) = dim E
- dimension of the wandefing space for V is N. Thus V is unitari-
ly equivalent with Sg -

(c)=(a): This is obvious .

(a)=>(d) : Set Q(x) = 1im || T {x,0,0,..} || for x€E.

>
Since  f is continuous and {(x)#0 for x#0 , there is a
§ >0 such that

Lix)> 6 for x in the unit surface of E.
Since flax)=|a|f(x) , we have |

lim || An~'-Ao x || = Q(X)i 8|l x|] for x€E.

n —>co

(b)=>(d) : From

[oe] (o]
@ > |[1-r*r|| = I |l1-a *a [l > I [l1-a *a I
: n=0 n=0

it follows that

4 | 1-2 *a 1)

o= 8

n

converges and we denote its limit by §?. In view of
1
14
1- || 1-A.*A. ||
i1

la M F= a7 1= ] (1-(@-a*a 00 ] <

17
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we have

. 2, lx Ll
N LI vy = vy oo e

n

> I, -lE-a,*a ) [Ix[1? > 8%jx||? for every-n.

(d)=(b) : Since each Al is an invertible contractive matrix,

we have ‘[l—An*An[l= 1- min {X: Xecp(An*An)}
= 1~ 1 N = 1- ll 25 2(1__1'T.
a2 At Tl

from Lemma 4.1,

I'A
N
~—~~
=t

I

From (d) and Lemma 4.1, we have

|det A [ ..... |det A, |= |det (An...Ao)[
ERIC-NE- VS o [N L
which implies that T |det Anl converges, and hence
n=0
I ||]I- A *A || <2 I (1- |det A_| )<= . Q.E.D.
n=0 nnlt="" 24 n

18
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