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1. Introduction

It is shown [1-5] that there exists a hierarchy of the classes of languages
accepted By deterministic or nondeterministic one-dimensional space-bounded
Turing machines fpr‘ranges above loglogn .

It is well-known [1,3] that the deﬁerministic or nondeterministic one-
dimensional Turing machines with space below loglogn accept. only regular
sets. On the other hand, for the two-dimensional case, as shown in [6],
there exists an' infinite hierarchy of the classes accepted by deterministic
space-bounded Turing machines even beloﬁ loglogn,

This paper inﬁestigates a space hierarchy of the classes of sets accepted
by "alternating" space-bounded two-dimensional Turing machines which have
only universal states, and whose input tapes are restricted to square ones,
and shows that there exists é dense hierarchy for the classes of sets ac-

cepted by these Turing machines with spaces less than or equal to logm.

2. Preliminaries

Definition 2.1. Let % be a finite set of symbols. A two-dimensional tape




over I is a two-dimensional rectangular array of elements of I.
The set of all two-dimensional tapes over I is denoted by 2(2). Given a

(2)

tape xel , we let zl(x) be the number of rows of x and Rz(x) be the num-
ber of columns of x. If 1siszl(x) and 1sj522(x), we let x(i,j) denote the
symbol in x with coordinates (i,j). Furthefmore, we define
x[(1,1),E",3D1,

only when lsisi'sll(x) and lsjsj'slz(x), as the two-dimensional tape z
satisfying the following:

(i) ll(z)=i'—i+l and Zz(z)=j'—j+l;

(ii) for each k, r (lsksll(z), lsrslz(z)), z(k,r)=x(k+i-1,r+j-1).

We now recall a two-dimensional alternating Turing machines introduced in

[91.

Definition 2.2. A two-dimensional alternating Turing machine (2-ATM) is a
seven—£uple
M=(Q,q,,U,F,2,T,6)
where

(1) Q is a finite set of states,

(2) qoezQ is the initial state,

(3) UcQ is the set of universal states,

(4) FcQ is the set of accepting states,

(5) ¢ is a finite input alphabet (#4¢ I is the boundary symbol),

(6) I' is a finite storage tape alphabet (B eI is the blank symbol),

(7) §<@x((Zu{#HxT) x (Q x (T -{B}) x{left,right,up,down,no movel}x

{left,right,no movel}l) is the next move relation.

A state q in Q-U is said to be existential. As shown in Fig.l, the machine

M has a read-only (rectangular) input tape with boundary symbols "#" and
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Fig.l. Two—dimensional alternating Turing machine.

one semi-infinite storage tape, initially blank. Of course, M has a finite
control, an input head, and a storage tape head. A position is assigned to
each cell of the read-only input tape and to each cell 6f the storage tape,
as shown in Fig.l. A step of M consists of reading one symbol from each tape,
writing a symbol on the storage tape, moving the input and storage heads in
specified directions, and entering a new state, in accordance with the next
move relation §. Note that the machine cannot write the blank symbol. If the
input head falls off the input tape, or if the storage head falls off the

storage tape (by moving left) then the machine M can make no further move.

Definition 2.3. A configuration of a 2-ATM M=(Q,qO,U,F,Z,F,6) is an ele-

ment of
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@ % wuioh? x Sy
where SM=Q x ( P—{B})*><N, and N denotes the set of all positive integers.
The first component of a configuration c=(x,(i,j),(q,o¢,k))¢ represents the
input to M. The second component (i,j) of ¢ reéresents the input head posi—
tion. The third component (q,0,k) of c represents the state of the finite

control, nonblank contents of the storage tape, and the storage head posi-

tion. An element of SM is called a storage state of M. If q is the state

associated with configuration c, then c¢ is said to be universal (existen-

tial, accepting) configuration if q is a universal (existential, accepting)

state. The initial configuration of M on input x is
I, (x)=(x, (1,1), (4,1, 1)).
A configuration represents an instantaneous description of M at some point

in a computation.

Definition 2.4. Given M=(Q,qO,U,F,Z,T,6), we write c%zc' and say c¢' is a

successor of ¢ if configuration c¢' follows from configuration ¢ in one step
of M, according to the transition rules §. The relation lif’is not necessar-

ily single valued, since § is not. The reflexive transitive closure of ﬁz

M

ﬁg ch (n>0), where cO=IM(x). A computation tree of M is a finite, nonempty

* .
is donoted hg- . A computation path of M on x is a sequence coﬁg-clk- see

labeled tree with the properties
(1) each node 7 of the tree is labeled with a configuration 2(m),
(2) if 7 is an internal node (a non-leaf) of the tree, 4(m) is universal
and {c lQ‘ﬂ? §EC}= {cl,...,ck}, then 7 has exactly k children Ppscees

P, Such that &(pi)ffci.

{ We note that Osisll(x)fl, OSjslz(x)+l, and 1sks|a|+l, where for any string

w, ]wl denotes the length of w (with ]K]=0, where A is the null string).
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(3) if 7 is an internal node of the tree and 2(m) is existential, then =

has exactly one child p such that 2(m) }|—2(p).
) M

An accépfing computation tree of’M on an input x is a computation tree
whése root is labeled with IM(x) and whose leaves are all labeled with ac~
cepting configﬁrations. We say that M accepts x if there is an accepting
compqﬁation tree ova on input x. Define |

T(M)k= {x 52(2) IM accepts xJ.

In this paper, we mainly concerned with a 2-ATM which has only universal
states, and whose input tapes are restricted to square ones.
We denote such a 2-ATM by 2-UTM. Byv2-ATMs we denote a 2-ATM whose input

tapes are restricted to square ones.

Let L:N>R be a function with one variable m, where R denotes the set of all
non-negative read numbers. With each 2-UT™® (or 2—ATMS) M we associate a

space complexity function SPACE which takes configurations to natural numbers.

. We

That is, for each configuration c=(x,(i,j),(q,a,k)), let SPACE(c)=|a

say that M is L(m) space-bounded if for all m and for all x with Ql(x)=22(x)

=m, if x is accepted by M‘then there is an accepting computation tree of Mon
input x such that for each node 7 of the tree,‘SPACE(R(ﬂ)) s[L(mﬂi. By
2—UTMS(L(m)) (2—ATMS(L(m))‘we denote an L(m) space-bounded 2-uTM® (2—ATMS).-
A two-dimensional deterministic Turing machine [7] is a 2-ATM whose config-
urations each have at most one successor. By 2—DTMS(L(m)) we denote an L(m)
space-bounded two-dimensional deterministic Turing machine whose input tapes
are restricted to square ones. For each X € {A,U,D}, define

L[2-XM° (L(m))] = { T | T=T(¥) for some 2-XTM" (L(m)) M}.

We need the following concepts in the next section.

3 rr] means the smallest integer greater than or equal to r.

\5\
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Definition 2,5. A function L:N-+R is two-dimensionally space constructable

if there is a two-dimensional deterministic Turing machine M such that
(i) for each m>1 and for eaéh input tape x with zl(x)=£2(x)=m, M uses at
most [L(m)] cells of the storage tape, |
(ii) for each m>1, there exists some input tape x with ll(x)=£2(x)=m on
which M halts after its read-write head has marked off exactly rL(mj]
cells of the storage tape, and
(iii) for each m>1, when given any input tape x with zl(k)=£2(X)=m, M
never halts without marking off exactly [L(mjl cells of the‘storage
tape.

(In this case, we say that M constructs the function L.)

Definition 2.6. Let Z', 22 be finite sets of symbols. A projection is a
.= (2) (2) . . . . . (T sy
mapping T:Zl > 22 which is obtained by extending a mapping T: 1 9
as follows: T(x)=x' <& (1) zk(x)=£k(x') for each k=1,2, and (ii) t(x(i,j))=

x'(i,j) for each (i,j) ¢ {(i,3) }1515;11(;:) and 1sjszz(x)}.
3. Results

It is well-known [6] that there is a dense hierarchy for the classes of
sets of sduare tapes accepted by two-dimensional deterministic Turipg ma-—
chines with non-constant spaces. The main purpose of this section is to
show that an analogous result also holds for 2-UTM®'s with spaces less than

or. equal to logm.

We first give several preliminaries to get the desired result. Let I be a
finite alphabet. For each m>2 and each l<n<m-1l, an (m,n)-chunk over I is a
patfern x over ¥ as shown in fig.2, where x, ¢ 2(2); X, 62(2), 21(x1)=m—1,
22(x1)=n, Ql(x2)=m, and %2(x2)=m-n. Let M be a 2—UTMS(£). Note that if the

numbers of states and storage tape symbols of M are s and t, respectively,
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Fig.2. (m,n)-chunk. Fig.3.

then the number of possible storage states of M is sztx. Let Z be the input
alphabet of M, and let # be the boundary symbol of M. For any (m,n)~chunk

x over ¥, we denote by x(#) the pattern (obtained from x by surrounding x by
#s) as shown in Fig3. Below, we assume without loss of generality that for
any (m,n)-chunk over ¥ (m>2, l<n<m-1), M has the property (A)i:

(A) M enters or exists the pattern x(#) only at the face designated by the
. bold line in Fig.3, and M never enters an accepting state in x(#).
Then the number of the entrance points to x(#) (or the exit points from
x(#)) for M is n+3. We suppose that these entrance points (or exit points)
are numbered 1,2,...,n+3 inen appropriate way. Let P={1,2,...,n+3} be the
set of these entrance points (or exists points). Let C={q1,q2,...,qu} be
the set of possible storage storage states of M, where u=s£t£, For each

i€ P and each qe C, let M (x(#)) be a subset of PxCu {L} which is

(i,q)

defined as follows (L is a new symbol):

J Note that for any 2-UTMS(2) M', we can construct a 2—UTMS(2) M with the

property (A) such that T(M)=T(M').
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(1) (G,p) eM q)(X(#))

(i,

& when M enters the pattern x(#) in storage state q at point i, there
exists a sequence of steps of M in which M eventually exits x(#) in
storage state p and at point j.

(2) LeM q)(x(#))

(i,
& when M enters the pattern x(#) in storage state q and at point i, there
exists a sequence of steps of M in which M never exists x(#). (Note the

assumption that M never enters an accepting state in x(#).)

Let x, y be two (m,n)-chunks over I. We say that x and y are M-equivalent

if for each (i,q) €¢P xC, M(i,q)(x(#))=M(i,qﬁY(#». For any (m,n)—cﬁunk X,,
over I and for any tape ¥ 62(2) with 21(V)=1 and Qz(v)=n, let x[vﬂ‘be the

tape in 2(2) consisting of v and x as shown in Fig.4.

The following lemma means that M cannot distinguish between two (m,n)—‘

chunks which are M-equivalent.

Lemma 3.1. Let M be a 2-UTM(Q) with the property (A) described above, and
I be the input alphabet of M. Let x and y be M equivalent (m,n)-chunks over

(2)

I (m22,1<n<m-1). Then, for any tape wv€I with 21(V)=1 and RQ(U?=D, x[v]

is accepted by M if and only if y[v] is accepted by M.
Proof. The lemma follows from the observation that there exists an accept-

ing computation tree of M on x[v] if and only if there exists an accepting

-computation tree of M on y[y], since x and y are M-equivalent. Q.E.D.

v

Fig.4. x[v]
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Clearly, M-equivalence is an equivalence ralation on (m,n)-chunks, and we

get the following lemma.

Lemma 3.2. Lét M be a 2-UTM(R) with the property (A) above, and X be the

input alphabet of M. Then there are at most
(2(n+3)u+l)(n+3)u

) : ‘ : L .
M-equivalence classes of (m,n)-chunks over I,: where u=sft”, s is the number
of states of the finité control of M, and t is the number of storage tape

symbols of M.
Proof. The proof is similar to that of Lemma 2.1 in [8]. Q.E.D.
We are now ready to prove the following key lemma.

Lemma 3.3. Let L:N-+R be a two-dimensionally space constructible function
such that L(m) <logm (m>1), and M be a two-dimensional deterministic Turing
machine which constructs the function L, Let T[L,M] be the following set,
which depends on L and M:

| T[L,M]={x €(Z><{0,l})(2) ] E{m22[,Q,1(}()=,Q,2(x)=m & (when the tape.ﬁl(x) is

presented to M, its read-writé head marks off exactly fL(m)] cells of
the storage tape and then halts) & Hi(ZSism)[Ez(x[(l,l),(l,]—L(m)'])])
=h, (x[(1,1), (G, L@ D 1Y,
where I is the input alphabet of M, and El (Ez) is the projection which is
obtained by extending the mapping hl:Z><{0,l}-* z (h2:Z><{O,l}-> {0,1}H)
such that for any c=(a,b) € L x{0,1}, hl(c)=a (hz(c)=b). Then |
(1) T[L,M] € £ [2-DTM°(L(m))], and |
(2) T[L,M] & li[Z-UTMS(L'(m))] for any function L':N->R such that

1im[L"' (m) /L(m) ]=0.
m=>e0

Proof. (1): The set T[L,M] is accepted by a 2—DTMS(L(m)) Ml which acts as

follows. Suppose that an input x with Zl(x)=£2(x)=m (m>2) is presented to
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M . First, M

1 directly simulates the action of M on Ei(x). (If M does not

1
halt, then Ml also does not halt, and will not accept x.) If Ml finds out

that M halts (in this case, note that M has marked off exactly [L(m)] cells

of the storage tape because M cdnstructs the function L), then Ml stores the

segment Hz(x[(l,l),(l,[L(mf])]) on the storage tape. (Of course, Ml uses

exactly [L(m)] cells marked off.) After that, M, simply checks that for some

l . .
i(2<i<m), Ez(x([(i,l),(i,rL(mﬂ)]) is identical with Ez(x[(l,l),(l,h(mﬂ)])

stored on the storage tape, and M, accepts the input x if this check is

1
successful. It will be obvious that T(Ml)=T[L,M].

(2): Suppose that there is a 2—UTMS(L'(m)) M2 accepting T[L,M], where
lim{L' (m)/L(m)]=0 (note that L(m) <logm (m>1)). Let s and t be the numbers
Mmoo S ,
of states (of the finite control) and storage tape symbols Of,MZ’ respec—

tively. We assume without loss of generality that when M, accepts a tape x

2

in T[L,M], it enters an accepting state only on the upper left-hand corner

of x, and that M2 never falls off an input tape out of the boundary symbol

(2)

#. (Thus, M, satisfies the property (A) above.) For each m22, let z(m)€ I

2
be a fixed tape such that (i) Ql(z(m))=22(z(m))=m and (ii) when z(m) is
presented to M, it marks off exactly rL(mf] cells of the storage tape and
halts. (Note that for each m>2, there exists such a tape z(m) because M

constructs the function L.) For each m>2, let

vam) = {x € (£ x 0,10 P | 4, =g, @=m & B, [A,1), @, L@ )]«

(2)

0,0% & B I La@l, @m <01 &5 @==m?,

Y(m) = {y e {0,1}(2) | 2,(3)=1 & g,(y)= L(a)} , and
R(m) = {row(x) | xe V(m)},
where for each x in V(m), row(x)={y € V(m) |y=ﬁé(x[(i,l),(i,rL0nﬂ )1) for

3 TL(m)]

some 1(2<i<m)}. Since IY(m)|=2 , it follows that

} For any set S, |S| denotes the number of elements of S.



er(m)]
+ ...+ ( , if zh‘(m).l >m-1;

1 2 m-1

(zhmﬂ » (@)

[R(m)| =

-1, otherwise.

(JLmﬂ (zhmﬂ> TLG)]
.ot =2

1 5 L (m)]

Note that B={p lfor some x in V(m), p is the pattern obtained from x by
cutting the part x[(l,l),(l,rL(m)-I )] off} is a set of (m,l'L(m)] )-chunks over

¥x{0,1}. Since M, can use at most L'(m) cells of the storage tape when M,

2
reads a tape in V(m), from Lemma 3.2, there are at most
+ +1, (ML(m)] +
E(my= (2 (@143 ulnl+ly (ML @)1 +3)ulm]
Mz—equivalence classes of (m, fL(m)] )-chunks (over Ix{0,1}) in B, where ulm]=

L' (m)

' ] _ . :
sL'(m)t . We denote these M,-equivalence classes by Cl’CZ""’CE(m)'

2
Since L(m) <logm and I%_iwug[L'(m)‘/L(m)]=O (by assumption), it follows that for
large m, lR(m)l >E(m). For such‘m, there must be some Q, Q" (‘Q;#.Q'l)_ in R(m)
and some Ci (1<i<E(m)) such that the following statement holds:
"There exist two tapes x, y in V(m) such that
(1) x[(1,1,Q,[Lm])I=y[(1,1),Q,TLm])] ,‘ and -}Tz(x_[ (1,1, @, [L@mH =
Fz(y[(l,l),(l,rL(mﬂ)])=p for some P in Q but not in Q"é
(ii) row(x)=Q and row(y)=Q', and
(iii) both P, and py are in Ci’ where p}'{ (py) is the (m?rL(m)T Y-chunk over
L x{0,1} obtained from x (from y) by cutting the part x| (,l;l); a,
L@ (the part y[(1,1),(1,[L@mD]) off."

As is easily seen, x is in T[L,M], and so x is accepted by M,. Therefore,

2°
from Lemma 3.1, it follows that y is also accepted by M2, which is a contra-
diction. (Note that y is not in T[L,M].) This completes the proof of (2).
Q.E.D.

From Lemma 3.3, we can get the folloWing main theorem.

Y



Theorem 3.1. For any Ll:N—>R and L2:N—>R such that (i) L2 is a two-dimen-

sionally space constructible function, (ii) Lz(m)félogln, and (iii) 1lim|
moo

Ll(m)/Lz(m)]=0, there is a set in JQIZ—DTMS(Lz(m))], but not in JZ[Z;UTMS(

Ll(m))]-

Corollary 3.1. Let leN—>R and LZ:N->R be any functions satisfying the

condition that Ll(m)fng(m) (m>1) and satisfying conditions (i) (ii) and

(iii) described in Theorem 3.1. Then
(1) Z[2-DD (L, )] S L[2-DIM° (L, (m))], and
(2) L[2-UDe (L) ()] < LI2-UTM° (L (m)) ]

(k)

For each ke N, let log 'm be the function defined as follows:

i) log(l%li =0 (@=0)
=[log ml (m>1)

D) 10,y

(k+1)

ii) log m=log

(k)

m (k>1) is two-dimension-

(k+1)m:glog(k)m (m>1)

as shown in Theorem 3 in [6], the function log

ally space constructible. It is easy to see that log

(RH1) g9 00 0O

and lim[log m]=0. From these facts and Corollary 3.1, we have
m-sc0 :

Corollary 3.2. For any keN,

(1) Z.IZ—DTMS(log(kﬂ)‘m)]E -ﬁIZ—DTMS(log(k)m)], and

2) 21201 (log “Vmy1 € L1201 (1og Pm) 1.

Remarks, It is shown [10] that Z[2-DTM®(L(m))]§ ZI2-UTM° (L(m))]1 &
li[Z—ATMS(L(m))] for any L such that %iZIL(m)/logIn]=0. It is unknown
whether a result analogous to Theorem 3.1 also holds for ZrATMS‘s. It will
also be interensting to investigate a space hierarchy property of the
classes of sets accepted by 2-ATM® ' (or Z?UTMS'S) with spaces greater than

logm.

/2



(=Y
[ o)
948

REFERENCES

[1] J.Hartmanis, P.M.Lewis II, and R.E.Stearns, Hierarchies of memory
limited computations, IEEE Conference Record of Switching Circuit
Theory and Logical Design, p.179 (1965).

[2] J.E.Hopcroft and J.D.Ullman, Introduction to automata theory, languages
and computation, Addison-Wesly, Reading, Mass., 1979.

[3] J.E.Hopcroft and J.D.Ullman, Some results on tape-bounded Turing
machines, J.ACM, 16, p.168 (1967).

[4] J.1.Seiferas, Techniques for separating space complexity classes,
J.Comp.Syst.Sci., 14, 73-99 (1977).

[5] J.I.Seiferas, Relating refined space complexity classes, J.Comp. Syst.
Sci., 14, 100-129 (1977).

[6] K.Morita, H.Umeo, H.Ebi, and K.Sugata, Lower bounds on tape complexity
of two-dimensional tape Turing machine. IECE of Japan Trans. (D), Jun.
1978, p.381.

[7] K.Inoue and I.Takanami, Three-way tape-bounded two-dimensional Turing
machines, Information Seci., 17. 195-220 (1979).

[8] K.Inoue and I.Takanami, A note on closure properties of the classes of
sets accepted by tape-bounded two-dimensional Turing machines,
Information Sci., 15, 143-158 (1978).

[9] K.Inoue, I.Takanami and H.Taniguchi, Two-dimensional alternating Turing
machines, Proc. 1l4th Ann. ACM Symp. on Theory of Computing, (May 1982)
37-46.

[10] K.Inoue, A.Ito, I.Takanami and H.Taniguchi, A note on Two-dimensional
alternating Turing machines with only universal states, Technical

Report No.AL82-45, IECE of Japan, 1982.

/3



