ooooboooao
494 0 1983 0 46-57

46

REMARKS ON REAL-TIME DETERMINISTIC CONTEXT-FREE LANGUAGES

Yoshihide Igarashi
Department of Computer Science

Gunma University, Kiryu, 376 Japan

1. Introduction

The context-free languages are most important 1énguage family for the
study of éompiler design techniques and language specifications. In parti-
cular; characterizations of deterministic context-free languages by automata
are important for parsing algorithms [3][7]. Several subclasses of determi-
nistic context-free languages have been studied in a way that we ask whether
placing restrictions on the deterministic pushdown automata affects the
family of languages accepted [4][5][6][10]. The real-time deterministic
context-free languages are one of such subclasses.

In this paper we establish a pumping lemma for the real-time determi-
nistic context-free languages. The lemma is an interesting character of the
subclass and useful to show that a given deterministic context-free langu-
age is not real-time.

In the main we employ the definitions and notation given in standard
texts such as [3] or [8]. If w is a word (i.e., a string of symbols), lW‘
denotes its length. ¢ denotes the word of zero length. If x is a pair
of words, |x| denmotes the length of its second component (i.e., if x =
(@, @), |x| = |a|). If s is a set, #(S) denotes the number of elements
in S. A deterministic pushdown automaton (abbreviated DPDA) is a determi-
nistic acceptor with a one-way input tape, a pushdown tape, and a finite

state control. It can be specified by a 7-tuple (Q, I, T, &, > Zg> s

where
(1) Q 1is a finite set of states,
(2) £ 1is a finite set of input symbols (the input alphabet),
(3) T 1is a finite set of pushdown symbols (the pushdown alphabet),
4) is in Q (the initial state),
(5) Z_, is in T (the start symbol),
(6) F € Q (the set of final states), and
(7) 6 1is a mapping from Q X (ZU{e})XT to the finite subsets of QxT*
which has the following restrictions: for each q in Q and Z in T
(a) either 6(q, a, Z) contains exactly one element for all a in I
and 8(q, €, 2) = @, or 8§(q, €, Z) contains exactly one element and
§(q, a, Z) = ¢ for each a in I, and (b) if S8(q, m, ZO) # 9 for
m in ZV{e}, then §(q, m, ZO) = {(p, ZOY)} for some p in Q and Yy
in T*. |
Certain strings over I are interpreted as the contents of the pushdown
store. We assume that the bottom of the store is on the left and top on the
right. A configuration is a pair from QXT*. The initial configuration
(qo, ZO) is denoted by cg- A DPDA makes a move (q, aA)Fﬂ-(p, ay) if and
only if there is some transition G(q,’n, A) = (p, v). In particular, if
T = g, it is called an e-move. 1If ﬁ.is in I, then this‘symbol is considered
to have been read. A computation is a sequence of such moves through suc-
cessive configurations. Suppose w is a string over . If we obtain confi-
guration c¢' from configuration c. by the successive read of w, the computa-
tion is denoted by cky-c'. A word w is accepted by DPDAM = (Q, , T, 6§,
SNy ZO’ F) if for some configuration ¢ with the first component of c belong-
ing to F, (qo, ZO)FE'C.\ The language accepted by M is denoted by L(M). That

is, L(M) = {w in I* l e, = (qo, ZO)FZ-C, the first component of ¢ belongs

-2 -

48

to F}. The language accepted by a DPDA is called a deterministic context-
free language (abbreviate& DCFL).

Let cpl'c' be a computation: ¢y is a stacking configuration in the
computation if and only if it is not followed by any configuration of height
is a stacking confi-

< lc in the computation. Note that, whether or not c

1 1

guration depends on what computation is considered. That is, if we say that
¢, is a stacking configuration in the computation c}—c', it means that cr

. . . . i
is a stacking configuration for the whole of cj—c'.

DPDAM = (Q, Z, T, &, 9y ZO, F) is said to be quesi-real-time if and

1] 1

only if there exists an integer t > 0 such that for any q, q' in Q and Y, v
in % (q, Y)FE'- .. }E-(q', v') implies that the number of steps of this
computation is.not greater than t. In particular, M is said to be real-time
if and only if t = 0 (i.e., if and only if &(q, €, Z) = § for all q in Q
and Z in T). A language L is called (quesi-) real-time if and omnly if L =
L(M) for some (quesi-) real-time DPDA M. Our (quesi-) real-time DCFL's
correspond to AO—(quesi—) real-time languages defined in [4] and [6]. It is

known that the class of quesi-real-time DCFL's coincides with the class of

real-time DCFL's [4][6].

2. Pumping Lemmas for Real-Time DCFL's

The pumpihg lemma and Ogden's lemma are useful and fundamental proper-
ties of CFL's [1]1[3][9][11]. Wise has e;tablished a necessary and suffi-
cient version of the classic pumping lemma for CFL's [13], and Jaffe has
established a necessary and sufficient pumping lemma for regular languéges
[9]. Stanmat has recently shown another characterization of regﬁlar languages
using a modified pumping lemma [12]. It is also interesting to ask whether

we can derive a useful pumping lemma for each of well-known subclasses of

-3 -

[- 43

DCFL's, or to ask whether we can establish a necessary and sufficient pump-
ing lemmé for such a subclass.

In this section we first show a simple pumping lemma for real-time
DCFL's. ' Then we show a version of the pumping lemma which will be useful to
show that a ianguage is not a real-time DCFL.

Definition 1. Let L be a language (i.e., a subset of I*). x in I* is

equivalent under L to y in I#* (denoted by x = y) if and only if for any w

in X* both xw and yw are in L or both xw and yw are not in L.

The relation =L is an equivalence relation on I*, x éL y means that x

and y are not equivalent under L.

Lemma 1 (Simple pumping lemma for real-time DCFL's). Let L be a real-

time DCFL. Then there are a pair of constants k

1 > 0 and k2, depending only

on L, that satisfy the following property (%*):

(*) If X1s K55 + - .,X aren strings on I such that

2,
(*~1) for any 1 < i < j <n x, éL x., and

‘ = = i]
(*-2) for each i (1 ¢ i < n) there is vy in I* satisfying

(*%-2-1) XY is in L, and

(%-2-2) |y,| ¢ (log, n)/kl + k

2’
then for at least one r (1 < r < n) we may write x_ = Xx_ X X
=" = T r.'r, r
1273
such that
(*-3) lx | > 1, and
r, =
(%*-4) for all t >0 x (x)t x_y 'is in L.
= T, r;or

Proof. Let L be recognized by a real-time DPDAM = (Q, z, T, 6, dps Z0

F). Without loss of generality we may assume that #(T') is not less than 2.

For w in I* let CONFM(W) be the configuration of M when input string w has
, _ w

been read (i.e., cg = (qo, ZO)F—'CONFM(W))- Let kl

logz(#(r) - 1) - log2 #(Q))/log2 #(r) - #Q#(T) - 1. Let x

= log2 #(I') and kz = (
1’ X be

-4 -

50

n strings over I that satisfy (*-1) and (*~2) above, and let h = max{lCONFM(
x)| | 121 gnb. From (%-1) all of CONF,(x;), CONFy(x,), . . . ,CONE,(x)
are distinet. Therefore, #(Q)(1 + #(T) + . . . + (#(F))h—l) > n. Note that

the leftmost symbol of the pushdown store is always Z Solving this in-

0
equality we have
h > (log, n + 1og2(#(r) -1) - 1og2#(Q))/10g2#(I‘)

= (log2 n)/kl + k, + #Q#(T) + 1.

2
Let r be an index such that h = ICONFM(xr),. From this inequality and

- (*-2-2) ICONFM(xr)l > #(Q)#(P) + 1 + Iyrl. Therefore, for the whole compu-
tation of the input string x;.yr there are at least #(Q)#(T) + 1 stacking
configurations among the configurations from g to CONFM(xr). Hence,there
~are at least two configurations in this part such that their pairs of the

states and top pushdown tape symbols are identical. Let these .configurations

. . A S
be CONFM(Xrl) and CONFM(xrlxrz) Since x y, 1is in L, forvall t >0
t o _ »
X (xr) x_y_is in L, where x x_x_x_ and Ixr I

i 1. Q. E. D.
1 %2 3 £ 1 T2 T3 2

Iy

. The notation CONFM introduced in the above proof will be used in the

following. The above lemma is not strong enough to use it as a tool for

proving that a given DCFL is not real-time. For example, L = {aibjckai l
i>0,32k> O}‘is not ‘a real-time DCFL. However, we cannot lead any
contradiction by using Lemma 1 from the assumption that L is a real-time
DCFL. We, therefore, are requested to prepare a powerful version of Lemma 1
for this purpose. This situation is analogous to the fact that Ogden's
lemma is more powerful than the classic pumping lemma for CFL's. The next
lemma is such a version for real-time DCFL's.

Lemma 2 (Strong pumping lemma for real-time DCFL's). Let L be a real-

time DCFL. Then there are constants k k2> 0 and k3, depending only on L,

l,
that satisfy the following property (*):

The proof will proceed as the proof of the previous lemma. Let k

Q@ + #T) + . . .+ @FDy g k, = log, #(r), and let k

(*) Let n be an integer such that n > kl, and let m be an integer. If

there are n strings x ©X on ¥ such that for each pair of i

1o

and j (1 <i<n, 1 <]

fin
A

m) there is a string yij satisfying

(*-1) for each i (1 i

A

n) and for any pair of j1 and j2v(1 < jl
A Xiyijz’

" . . .
(*#-2) for any pair of i1 and i, (1 ¢ i,

<Jp s Xy,
» 1

< i, < n) and for any pair

of jl and j2 1 < j1 <m, 1 § j2 < m) the concatenation of X

1
and any initial substring of vy j and the concatenation of
v 171
x, -and any initial substring of y., ., ‘are not equivalent under
2 t2d2
L (i.e., if y, . is an initial substring of y, . , and if
i.j i.]
171 11
y. . 1is an initial substring of y, , , then x, y, . %
1,3 S Rb) 45 Tk
X, V. .), and
T2 tady
(*-3) for each pair of i (1 £ 1 <n) and j (1 ¢ J £ m) there exists
a string Wij such that Xiyijwij is in L and [Wijl (1og2 m)/k2

A

+ k3,

then there exists at least one pair of p and q (1 < p

A

n, 1gaqg
m) such that

(*-4) we may write x = x X_ , where pr | >1, and

X
Py Py Pj

(*-5) for all t >0 x (x)tx Vv W is in L.
- Pl p2 P3 Pq pq :

Proof. Let L be accepted by a real-time DPDA M = (Q, Z, T, 6, qps ZO’

Without loss of generality we may assume that #(T') is not less than 2.

1

3 = (

log2 (#(T) - 1) - log2 #(Q))/log2 #(T) - #(Q#(T) - 1. If m <k, then (

l’

log2 m)/k2 + k3 < 0. 1In this case, for any pair of i (1 <ig n) and j (1

3z m) there does not exist wij satisfying (*-3). Therefore, in this case

the assertion of the lemma holds. We suppose that m > k

1 and that there

exist x, (1<i<n),y_,(1<iin,l_<_j_<_m)andwij (1 <i<mn, 1<
. 1 = = = = = = = =

1]
< m) satisfying (*-1), (*-2) and (*-3), where n > kl.

Consider the following classes of strings in I%.

A(l) = {lell’ X)Vy9s 0 ¢ - ’lelng
A(2) = {x2y21, XgYogs + o ,x2Y2H3
A(n) = {xnynl, XnynZ’ . . . ’Xnynm}'
From (*-1) for each i (i < i< mn) all of CONFM(xiyil), e e . ’CONFM(Xiyim)

i A

should be distinct. Therefore, for each i (1 i n) there exists at least

J| > g, where g is

one element in A(i), say X594 , such that !CONFM(X v
' i

the least integer satisfying #(Q)(1 + #(T) + . . . + (#(F))g—l) >m. Let

i7ij.
Jg

3 > . /\‘
these strings be leljl’ e . ’xnynjn' For each i (1 £ i g n) let yiji be
. 3 I3 . {\J . —__-
an initial substring of yiji such that |CONFM(xiyiji){ mln{[CONFM(xiyiji)|
D . e e . s v
yiji is an initial substring of yiji . From (*-2) all of CONFM(xlyljl),
o . CONFM(xn’}\fnj) should be distinct. From this fact and n > k, there
n

1

exists at least one element, say x ? . , among X ? . s s+ s X ? . such
j 1 131 n njn
v
that ICONFM(xpypj)[2 #(Q#(r) + 2. That is, for any initial substring
. P

. of) CONF. (x v .)|> #(Q)#(T) + 2. Hence, for the computation from
prp prp | conr,, pprp ERASA P -

c to CONFM(xpypj) there are at least #(Q)#(I') + 1 stacking configurations
in the first |x | steps. Since |CONF, (x . >g and [w . < (log, m)/k
x| step | CoNE, (x v ;)] g and | pjp! < (log, m)/k,
+ k3, the height of the pushdown tape during the last]ij | steps of c, =
o e e . i + 2. , T
(qO, ZO)F— f— CONFM(xpypjpprp) is at least #(Q)#(T) 2 Hence, for

the computation c .. CONF, (% ., W, the first # #(T) + 1 stack-
pu SP— F— M(PyPJp pJp) Q) #(T) ‘

ing configurations locate in the first pr| steps of the computation. Thus
there are at least two stacking configurations in the first pr| steps of the

computation c . . CONF, (x . w .,) such that their pairs of states
P s - - M pypjp PI, P

and top pushdown tape symbols are identical. Let these configurations be

53

CONFM(xpl) and CONFM(gplng)f where I%pzl 2 i.. Removing or repeatlng the

part of the computation corresponding to xP2 does not affect the last state
of the whole computation. Since xpypj w ., is in L, for all t >0 Xpl(
‘ : P P » RN

t
X X W is in L, where =j and X = X X X _. . E. D.
p2) *p3¥pq"pq A p - Fplfp2fp3t %

For a certain string in a real-time DCFL Lemma 2 specifies a range of
the pumping position of the string, whereas Lemma 1 does not. This speci-

fication of the pumping position is indispensable to use the lemma as a tool

to show that a given language is not a real-time DCFL.

3. Applications

Strong pumping lemma (Lemma 2) guarantees a scheme for proving that a

given language is not a real-time DCFL. We show this proving scheme by

examples.

Example 1. Ll = {aleal; albte® BET > 1}

Harrison and Havel proved that Ll is not a Az—real—timé language (
Theorem 2.4 of [4]). The class of Az—real—time languages is properly in-

cluded in the class of Ao—real—time languages [4] (i.e., real-time DCFL's of

this paper). By using Lemma 2 we can easily show that L1 is not a real-time

DCFL.

Assume for the sake of contradiction that Ll is a real-time DCFL. Let
kl, k2 and k3 be constants described in Lemma 2. Let n > k1 and let m be
an integer such that n < (1og2 m)/k2 + k3. We choose X, = ai, yij = bj and

w,, = a- for each i (1 i <n) and each j (1 < j < m). Then (*-1), (*®-2)

13
and (%-3) are satisfied. Then from (*-4) and (*-5) for some pair of i and j
i, i, i i i, t i
la 2a , where i2 >1 and for all t >0 a'l(a 2) a 3

A

. i -
we may write a= = a bla

is in Ll. This is a contradiction. We, therefore, conclude that L1 is not

a real-time DCFL.

Lemma 2 is powerful enough for our purpose. In fact, we do not know at
present any DCFL that is not real-time but that cannot be proved by Lemma 2
not to be real-time. However, it may be valuable to prepare a version of
Lemma 2 that seems to be easier for the reader to use it. In the rest of
this section we describe such a version although it is essentially the same
as Lemma 2.

Definition 1. Let f(n) be a function from nonnegative integers to

nonnegative integers. A language L. is f(n)-characteristic if and only
if the following property (*) is satisfied:

(*) For arbitrary positive integers n and m there exist n strings X1

A
s
A

»X and nXm strings yij (1 <i<mn, 1<j<m) such that
n = =J 2

(#-1) for each i (1 < i

A

n) and for any pair of jl and j2 (1 < jl<

(*-2) for any pair of il and 12 (1

A

il < i2 < n), any i1 and i, (

A

1< jl <m, 1¢

< j2 m), the concatenation of X, and any ini-

1
tial substring of y, . and the concatenation of x, and any
1131 12
initial substring of Vi i are not equivalent under L, and
272
(*-3) for any pair of i and j there exists a string wij such that

(*-3-1) Iwijl < f(n),
“-3—2) Xiyijwij is in L, and
(*~3-3) for any non-null substring xg of X5 there exists a non-
negative integer t such that x!(xT)t X.y..w,, is not in L,
i7d i743 43

where x, = x' x" x..
i i“i7i
Lemma 3. If there is a function f(n) such that L is f(n)-characteristic,
then L is not a real-time DCFL.
Proof. Let L be f(n)-characteristic. Assume for the sake of contra-

diction that L is accepted by a real-time DPDA M = (Q, %, T, &, dgs ZO’ F).

99

Let n and m be integers such that n > k., and f(n) < (log2 m)/k2 + k3, where

1

k., k, and k_, are constants given in the proof of Lemma 2. Let X, Tczi

1 2 3
Qlz1ign,1<j<m and i3 1z1

<mn), y., n, 1 < 3 < m) be strings

ij
satisfying conditions (*-1), (¥#-2) and (*-3) of Definition 1. These strings

A

satisfy conditions (*-1), (*-2) and (*-3) of Lemma 2. Therefore, (*-4) and
(*—S)kof Lemma 2 should hold since L is assumed to be a real-time DCFL.
However, (*-4) and (*-5) of Lemma 2 are contrary to (*-3-3) of Definition 1.
We, therefore, conclude that our assumption is wrong. ’That is, L is not a
real-time DCFL. Q. E. D.
Example 2. L, = {aibjai, aibjcbjai | i, j >1}. This language has

2
(2)

been given by Gisburg and Greibach as an example of a DCFL that is not

real-time. By using Lemma 3 we prove that L2 is not a real-time DCFL. Let
f(n) = n. For n >1 and m > 1 we choose x; = ai (1 <ig n), yij = bj
and W = al (1<i<n,1<j<m). Then (¥1), (*-2) and (*-3) in
Definition 1 hold. That is, L2 is n-characteristic. From Lemma 3 L3 is
not a real-time DCFL.
Example 3. L3 = {aibjcrai | i >1,j2r >1}. Let f(n) = n + 1. For
i

igm), v, =b Lgign L

(1 <:i<m, L<j<m)s. Then (*-1), (*-2) and (%-3) in.

n>1andm >1 we choose x, = a (1

A

i
m) and w,, = ca
1]

A

Definition 1 hold. Therefore, L., is (n + 1l)-characteristic, and from

3

Lemma 3 it is net a real-time DCFL.

Example 4. L, = fa'vicPa? | 41, 3, p, q >1, i#qand j# p}. Let

f(n) = n! + n +.1. For n > 1 and m > 1 we choose x; = ai 1<1ig<m), yij=\
™ @ <1<n, 1< <) and Wiy = e 1 <i<n, 1<i<m). Then
it is obvious that (*-1), (*-2), (*-3-1) and (*-3-2) in Definition 1 hold.
For any non-null substring a’ of ai r =]ar[is a divisor of i!. - Thus we
can write ai—r(ar)(i!/r)+1 = ai!+i. Therefore, for any.r (1 < r < i) and

- 10 -

06

. . Vi TRy D1 .
t = il/r, a’ r(ar)t+1bj+lcdl'+l = al +1b3+lc,d1 * is not in L4, . Thus

(#-3-3) in Definition 1 hold, too. Therefore, L4 is (n!4n+l)-character-
-istie, and from Lemma 3 it is not a real-time DCFL.

‘Note that L5 = {a'blc"a” | 1 <jgr, i>1} is a real-time DCFL.

Therefore, for any function f(n) L5 is not f(n)-characteristic. For
i

example, suppose that for n.> 1 and m >1 we choose X, = a 11 n),

A

and,yij =b) @ <i<n,1<j<m). In this case, when m is sufficiently

large compared with f(n), say m = 2 f(n), we cannot choose any Wij 1<icg
n, 1 < j < m) that satisfies (%-3-1) and (*-3-2) in Definition 1 simultane-
ously. Therefore, these choices of X, (1<1icg n) and yij (1 <3 <m are

not successful to show that L_ would be f(n)-characteristic.

5
We do not know at present whether Lemma 2 is a sufficient condition for
real-time DCFL's. We invite‘the reader to consider the following problems
worfhy of further investigation:
(1) 1Is Lemma 2 a necessary and sufficient condition for real—time
DCFL's ?
(2) Find an elegant characterization of real-time DCFL's that is a

necessary and sufficient condition for real-time DCFL's.

(3) . Find an elegant characterization of each subclass of DCFL's.

References

[1] C. Bader and A. Moura, A generalization of Ogden's lemma, J. ACM 29
(1982) 404-407.

[2] s. Ginsburg and S; Greibach, Deterministic context-free languages,
‘Information and Control 9 (1966) 620-648.

[3] M. A. Harrison, Introduction to Formal Language Theory (Addison—Wesley;

Reading, MA, 1978).

- 11 -

[4]

[5]

(6]

[7]

[9]

[10]

(11]

[12]

[13]

M. A. Harrison.anail.‘M. Havei, Real-tiﬁe stfict deterministic lan-
guages, SIAM J. Comput. 1 (1972) 333—349.

M. A. Harrison aﬁd i.nM. Havel, Sfrict deterministic grammars, J. Compuil
System Sci. 7 (1973) 237-277.

M. A. Harrison and I. M. Havel, On a family of deterministic grammars,
in: M. Nivat, ED;, Automafa, Languages‘and Programming (North-Holland,
Amsterdam, 1973) 413—442. |

M. A. Harrison and I. M. Havel, On the parsing of deterministic lan-
guages, J. ACM 21 (1974) 525-548.

J. E. Hopcroft and J. D. Ullma, Formal Languages and Their Relation to
Automata (Addison-Wesley, Reading, MA. 1969).

J. Jaffe, A necessary and sufficient pumping lemma for reguiar language
SIGACT NEWS 16(2) (1978) 48-49.

A. J. Korenjak and J. E. Hopcroft, Simple deterministic languages, Proc
7th IEEE Symposium on Switching and Automata Theory (1966) 36-46.

W. Ogden, A helpful result for proving inherent ambiguity,’Mathematical
Systems Theory 2 (1968) 191-194.

D. F. Stanat, A pumping lemma for regular languages, SIGACT NEWS 14(1)
(1982) 36-37. |

0. S. Wise, A strong pumping lemma for context-free languages, Theo-

retical Computer Sci. 3 (1976) 359-369.

- 12 -

