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1l.Introduction

This paper discusses new query processing procedures
utilizing data dependencies which include some of thé previously
known query processing procedures as special cases.

Since the cost for computing joins is often very high, there
are many papers which focus on the processing of joins. With
respect to natural joins, queries are classified into two
classes, tree and cyclic [BERNG811l1]. Tree dqueries can be
processed efficiently [BERNG811l1l], but cyclic query processing is
known to be difficult. It has been shown that any procedure for
processing cyclic querieé contains a procedure for converting
them into tree queries [GOODS8203]. The following procedures
realize the conversion.

(1) Relation merging.



(2) Tuple-wise processing.

(3) Attribute addition.
Example of these procedures will be given in Section 3. Method
(1) realizes the conversion simply by merging all relations
forming a cycle. Method (2) is known as Wong's decomposition
approach [WONGY7669], which can be regarded as a .conversion
process Dbased on tuple-wise horizontal decomposition of a
relation. By method (3) the conversion 1is realiéed by adding
attributes to relations forming a cycle [KAMBY8206]. Although
methods (2) and (3) look quite different, in this paper we will
show that method (2) can be regarded as a special case of method
(3), since horizontal decomposition of relations can be handled
by addition of an attribute which identifies each subrelation.

In this paper we will introduce a new procedure for cyclic
query processing which utilizes horizontal and vertical
decompositions of relations. Vertical decompositions can be
realized by functional dependencies (FDs) and multivalued
dependencies (MVDs). As join operations are applied to the
relations which are processed by selections, the number of tuples
is usually less than the original relations and thus there are
chances that FDs are satisfied. For a given query, we first list
possible dependencies to be wutilized and then check these
dependencies. Even if such dependencies are not satisfied by a
relation we can always obtain a set of relations satisfying the
dependencies by horizontal decomposition,

Since our purpose is to perform joins, it is natural to

obtain 1larger relations at each intermediate steps 1like
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procedures (1) and (3). Our procedures, however, show that
relation splitting is sometimes very useful to save the
processing cost. For such relation splitting only a primitive
method (procedure (2)) has been known. Our procedures utiligze
dependencies which are usually used for database design and give
very general relation splitting methods which include procedures
(2) and even procedure (3) as special cases.

In Section 2 basic definitions are given. Section 3 shows
comparison of the above three procedures and the new procedures
introduced 1in this paper using the same example. Section 4
discusses a query simplification procedure using FDs, and a query
processing procedure using FDs and horizontal decomposition,
Tuple-wise processing and attribute addition are shown to be
special cases of the second procedure. In Section 5 query
processing procedures using MVDs (or degenerated MVDs) and

horizontal decomposition are shown,

2. Basic Concepts

The following notations of the relational algebra will be

used.

Projection: R[X] = {t[X]] t €R}
®-selection: o’A,cR = {t|t[A]® c, t €R}
#-restriction: 0apgR = {tIt[A]l 6 t[B], t€R}

(Here, ¢ is a comparison operator such as =, >, <, etc.,



and ¢ is a constant value.)

Natural equi-join: RfﬂRj

={tlteR, tR;leR;, tIR;1¢Ry, R =

A query Q, which consists of a qualification g and a target

attribute set TA, maps a database state D(R ,Rn) into the

l].t.
following relation.

(Oﬁ(Rl X reeey X Rn))[TA] (2-1)

A query of which a qualification is a conjunction of clauses

of the form Ri‘Aik=R"A'h is called an equi-join dquery. If

J 3]
Aik=Ajh is satisfied for every clause Ri’Aik=Rj‘Ajh' an equi-join
query 1is <called sub-natural. Sub-natural queries of which

qualifications contain a clause Ri.Aik=Rj.Ajh for every possible
combination of Aik'and Ajh satisfying Aik=Ajh are called natu;al.
We will only consider natural equi-join queries in this paper,
since any equi-join query can be transformed into a natural one

by proper renaming of attributes. For natural equi-join queries,

the relation (2-1) becomes equivalent to the following one.
(RyM ;... X R)[TA] (2-2)

Let (Rl Foesos Rn)[Bi] be a partial solution of the join for

R;. In this paper, we will develop procedures for joins which
will obtain partial solutions for all relations involved in the

join. Since target attribute sets are not required to be
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considered in our problem, we will use g to represent a query. If
the complete result of the join is required, the process to

obtain the partial solutions can be used as a preprocessing step,

A query graph Gq=(V, E, L) corresponding to a sub-natural

query q 1is a labeled undirected graph. V is a set of vertices,
where A in V corresponds to relation Ri ‘refered in q. Two
vertices vy and vj corresponding to R, and Rj are connected by an
edge iff there is a clause Ri.A=Rj.A in q. The label of the edge
is the union of all such A. E is the set of edges and L is the
set of labels for E.

Two queries are said to be equivalent if both will produce
the same result for any database state. Two query graphs are

equivalent if the two corresponding queries are equivalent.

A query is called a tree query if it is equivalent to a

query whose query graph is circuit-free; otherwise it is called

cyclic [BERNG81l1l1].

Example 1 : Consider the following four relations.
SUPERVISOR(Professor, Student, Approver)
ENROLLMENT (Student, Subject, Approver)
CLASS(Subject, Professor, Approver)
OFFICE (Professor, Room)
Here, we use P, S, J, A and R for attributes Professor, Student,
Subject, Approver and Room, respectively. The meaning of these

relations is self-evident. We have approvers in the first three
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relations. Therqquery graph of the natural equi-join query for
this database SCheme is shown in Fig.l(a). The edge between CLASS
and OFFICE can be removéd since there are edges labeled by P
between CLASS and SUPERVISOR and between SUPERVISOR and OFFICE.
The query 1is a cyclic query whosé cyclic part consists of three
relations SUPERVISOR, ENROLLMENT and CLASS. One of the labels A-
on edges connecting three relations is redundant.

If only three relations except for ENROLLMENT are involved
in the gquery, the query graph becomes the one in Fig.l(b) which
represents a tree query.

A semi-join of Ri by Rj is denoted by RiKRj and defined
as »

R;XR, = (RiMRj)[Bi]

= RiNRj [R;N Bj]
For tree queries, there exists an efficient ’procedure to
calculate partial solutions for all relations using semi-joins
only [BERNG8111l]. If no further application of semi-join changes

the contents of a relation, that relation is called irreducible.

A functional dependency (FD):X->Y is satisfied in relation R

if and only if for any pair of tuples t and t', t[X]=t"'[X]
implies t[Y]=t'[Y]. Throughout this paper, we assume XNY=¢ for an

FD: X->Y. A multivalued dependency (MVD): X->>Y|Z is satisfied in

relation R (where XYZ = R and Y Z=g) if and only if
R = RI[XY]NMRI[XZ]

A degenerated MVD (DMVD) [ARMSD8#12] [SAGIF7903] [TANAL7808]:
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X=>>Y|Z 1is satisfied in relation R (where XNY = £ and‘XnZ =

g) if and only if R = Ry U R,

satisfied in R1 and the FD: X->% is satisfied in R2.

such that the FD: X->Y is

FD and MVD are constraints on R which must be satisfied at
all times., A dependency which cannot be derived from the set of
-such constraints may be satisfied by snapshot data. If a snapshot
relation satisfies the condition of an FD (or an MVD), we call it

a temporary FD {(or a temporary MVD, respectively). Such temporary

dependencies are especially important for query processing as

will be shown later.

3. Elementary Consideration on Cyclic Query Processing

In this section we will show the basic idea used in our new
procedure together with the three basic procedures using one
simple example query shown in Fig.l(a). Since an efficient
procedure for tree queries is known, we will only show how the

query can be transformed into a tree.

(1) Relation merging : This method transforms the given query
into a tree by merging all relations in each cyclic part of the
qguery. Since the three relations SUPERVISOR, ENROLLMENT and CLASS
form a cycle, we first apply the following join.,

SUPERVISOR M ENROLLMENT W CLASS

The resulting query graph is shown in Fig.2, which is a tree.
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(2) Tuple-wise processing : By this method we first select one
relation in a cycle and the query is decomposed into queries each
of which processes just one tuple of the selected relation. This
is known as the query decomposition method [WONGY7609]. For
example, if we select CLASS, the following union of queries is
equivalent to the given query.
tigCLASS (tiNSUPERVISOR X ENROLLMENT M OFFICE)

Each query in the union is a tree query as shown in Fig.3. Here,
relation CLASS 1is regarded as a single tuple relation and it can
be decomposed into two relations t;[PA] and t,[JAl. The edge
labeled by A connecting the two relations is redundant since

there exists another path between the two relations each of whose

edge label contains A. -

(3) Attribute addition : If we get the query graph shown in Fig.4
by adding attribute labels to edges then the edge between
ENROLLMENT and CLASS becomes redundant, that is, the query is
converted into a tree. Addition of attributes is realized during
the processing of the query. That 1is, S, A, J values of
ENROCLLMENT and P, A, J values of CLASS are required to be
transmitted to SUPERVISOR. In this particular example the' fiéthod
is equivalent to the relation merging (usually the method is
better than the relation merging).  The difference is cauéédibQ
the fact that we can encode J values. By a mutual exchange of J
values between ENROLLMENT and CLASS, we can use 1,2,... instead
of the real J values in the intersection., The method is very much

effective when there are few J values 1in common in both
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relations. A general procedure is given in [KAMBY8206].

(4) Use of dependencies : This method is newly introduced in this
paper. If FD:A->J is satisfied by CLASS, it can be decomposed
into two relations CLASS[A,J] and CLASS[A,P]. The resultant query
graph is shown in Fig.5. The query is a tree, since the edée
labeled by A between the tWo projections of CLASS is redundant,
By the conventional procedure for tree query processing, we can
get all partial solutions for relations in Fig.5. The partial
solution for CLASS can be obtained by joining the results for
CLASS[A,P] and CLASSI[A,J].

Such a decomposition of CLASS is possible when MVD:A->>P|J
ié satisfied. FD:A->P and FD:A->J are special cases of the MVD.
Degenerated MVD:A=>>P|J 1is another special case. Note that if
MVD:A->>P|J which is not FD or DMVD is used, we may not be able
to get the partial solution for CLASS by Jjoining the two
projections (Details about this problem will be discussed in

Sections 5).

4, Query Processing Utilizing Functional Dependencies

4.1 Query simplification Utilizing FDs

Theorem 1 : If a query graph G contains an edge e = <R; s

R.>
]
with label Z such that

(1) FD: X->Y is satisfied by both Ri and Rj' and
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(2) X ¢ 1z,

then the 1label of e can be replaced by Z-Y without loss of the
equivalence of the query.

Proof : Let G' be the query graph after the replacement of the
label of e, also let g and q' be queries corresponding to G and
G', respectively. It is suffice to show the both sides'
implication of q and q'.

(@ => g') Trivial.

(g' => q) Let R?' and Rg' be partial solutions of Ri and Rj for

J
q', respectively. To prove the implication, we need to show that

R?‘[xy] = Rg'[XY] holds. R?'[X] = R%'[X] holds . from the
assumption (2). (Remind that our definition of an FD: X->Y
required the condition XNnY = g.) Also (R?'[X] = R?'[X]) =>
(R?'[XY] = R?'IXY]) holds from the assumption (1). O

As a special case, when X=g, Y can be eliminated. Using the
above theorem we can simplify a given query graph utilizing FDs.
When the FD is satisfied by only one of R, or Rj (say Ri)' the
assumption of Theorem 1 is fullfilled by performing a semi-join

‘ijRi. Therefore, when proper FDs hold in relations, there are
cases in which the partial solutions of cyclic queries are

obtained using only semi-joins.
Besides the FDs given as constraints on the database, we can

use various FDs, which is summarized in the following property.

Property 1: The following FDs can be used for query

simplification shown in Theorem 1.

(1) FDs in the set of database constraints.

-10-
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(2) FDs produced by relational operations.
(2-1) If there is a selection operation.g=.a,R then there
exists an FD:g->A, where 'a' is a constant value.
(2-2) If there is a restriction operation‘£=BR then theré
exist FDs:A->B and B->A.
(3) FDs produced by an intersectibn of the two relations to be
joined.

(4) Temporary FDs produced during query processing can be utilized,

In case (3) we need to store the correspondence of X and Y in
Qfder to record Y values from the partial solution for a relation
Whoée attribute set contains X.

In the above discussion we considered the situation when Fbs
afe satisfied we will try to use them to simplify the given
query. Another approach is first to find a proper set of FDs to
simplify the duery and then select a proper proéess such that
thése FDs are satisfied in the relations. This can be realized by

horizontal decomposition of a relation.

Example 3 : We Will consider the example used in Section 3. If an
FD:A;>3 holds in the relation CLASS, we can eliminate J and the
query graph shown in Fig.6 is obtained which is a trée. -It is
another interpretation of the process discussed in Section 3 (4).
We will consider the problem that we know the FD is useful for
query simplification and it is not satisfied by CLASS. Fig.7
shows an exampie of CLASS which does not satisfy the FD. If we

decompose the relation into three relations such that one

-11-
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relation Ry has the first three tuples and the second reiation R,
has the next two tuples and ‘the third relation R3 has the last
tuple, each of the relations satisfies the FD. We can decompose
the query into three subqueries, such that in each subgquery CLASS

is replaced by R R, or R

1’ 2

original query is the union of the partial solutions for three

3 The partial solution for the

subqueries.

We have the following procedure utilizing FDs and horizontal

decomposition.

Procedure 1 : (Conversion of a query into a tree utilizing FDs
and horizontal decomposition)

(1) For each cyclic part of the query graph apply the following
steps.

(2) Select one edge labeled Z.

(3) Let X be the intersection of the 1labels of edges in the
cycle and Z=XY (see Fig.8(a)).

(4) Since if FD: X->Y is satisfied the cycle is removed by
performing a semi-join (see Fig.8 (b)), we apply horizontal
decomposition to one of the two relations corresponding to the

terminal nodes of the edge so that each subrelation satisfies

the FD.

If the given query has more than one cycle, selection of
edges at step (2) can be done by finding all edges not contained
in one particular spanning tree. Basic consideration on the

selection of such a spanning tree is given in [KAMBY8206].

-12-



314

4,2 Relationship among the Query Conversion Methods

In this subsection, we will compare the query conversion
methods presented so far and clarify the relationships among
them.

We use the relation in Fig.7 as example again. When the
relation is decomposed horizontally so that each of thé
subrelations satisfies the FD:A->J, each subquery becomes a tree
~query and processed separately. However if we handle the
subqueries simultaneously, we need to distinguish them. Thus
identifiers of subqueries must be attached when semi-joins are
performed. For example, when performing a semi-join
SUPERVISOR!ﬁCLASS, a relation with identifiers (IDs) shown in
Fig.9 is transmitted to relation SUPERVISOR. Note that the Ibs
also identify different FDs of the same syntactical form A->J.

Next we will show that when the left hand side of the FD is
@, this horizontal decomposition approach is essentially the same
as the attribute addition method. When the relation CLASS
satisfies the Fb:¢—>J, the same discussion as in the case of
FD:A->J holds since the former FD implies the latter. Thus the
query can be easily transformed into the tree vquery shown in
Fig.6. If the FD:$->J does not hold on CLASS, we decompose it
horizontally again so that each subrelation satisfies the FD.
This dec&mposition is easily achieved by first performing GROUP-
BY[J] on CLASS and then regarding each subrelation as a separate

relation (see Fig.l0 (a), (b)). When we handle these ‘subqueries

=13~



simultaneously, we require IDs to distinguish them. However, in
this case, values of attribute J can be used as IDs since there
is a one-to-one correspondence between subrelations and J-values.
Thus J-values are attached to the CLASS[P, Al relation when
performing the semi-join SUPERVISORE(CLASS (see Fig.1l0 (c), (d):
Data compression technique stated iéqSection 3 (3) is applied in
the relation of Fig.1l0 (d)). This method, however, is the
attribute addition approach.

Thus the only difference between horizontal decompositidn
approach and attribute addition approach when the left hand side
of the FD is g, is that each subquery is considered to 'be
processed separately in the former approach while all of them are
regarded to be processed simultaneously in the latter. The
horizontal decomposition by FDs with nonempty left hand side is
usually more economical than attribute addition, since the number
of subrelations usually decreases.

Wong's decomposition approach may be interpreted to mean
that we wuse the horizontal decomposition where each subrelation
consists of only one tuple. Since arbitrary FDs are satisfied in
these subrelations, we can convert the original query into a tree

query if we select at least one relation to be decomposed for

each cycle in the query graph.

5. Query Processing Utilizing Multivalued Dependencies

In this section, we will generalize the Procedure 1 in

=14~
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Section 4 utilizing MVDs.

5.1 Conversion of Queries into Tree Using MVDs

The conversion procedure from a cyclic query to a tree query
utilizing FDs (see Fig.8) can be easily generalized to the case
utilizing MVDs. Consider the cycle shown in Fig.ll (a).

(1) Select a relation, say Rﬂ, in thé cycle.'

(2) Let X be the intersection of labels of edges in the cycle,
If an MVD X'=->>Y|Z holds on R@, where RQ=X'YZ and X'¢X, then
decompose Rra into two relations Rgl(X'Y) and RQZ(X'Z).

1

(3) Since = the edge between Rg and Rg2

(b)), the original cycle is eliminated. We can use a spanning

is redundant (see Fig.ll

tree for the selection of relations to be decomposed, when there

are many cycles. A general procedure is shown below.

Procedure 2 : (Conversion of a cyclic query into tree utilizing

MVDs)

(1) Select a spanning tree in the query graph.

(2) For each edge not contained in the spanning tree, select one
relation between relations corresponding to the two nodes
incident to the edge.

(3) Determine the MVD which should hold on the relation
corresponding to the node chosen in (2), in order to remove the
cycle,

(4) Decompose the relation using the MVD.

(5) Repeat (2)-(4) for every edge not contained in the spanning

-15-~
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tree,

5.2 Query Processing Using DMVDs

In this subsection, a new query processing approach using
DMVDs is introduced. First an exampie is given. We will use the
query which consists of three relations SUPERVISOR, ENROLLMENT
and CLASS in Example 1. Assume a DMVD:A=>>P|J is satisfied in the

relation CLASS. Also let CLASS, and CLASS2 be horizontally

1
partitioned subrelations in which FDs:A->P and A->J are
satisfied, respectively (Fig.1l2 (a)). Following the discussions
of subsection 5.1, the original query can be cdnverted to tree
queries of Fig.1l2 (b) and (c). Each query graph corresponds to
CLASS

and CLASSZ, so the result of the original query is the

1
union of the results of these two queries.

As in the case of FDs, we can generalize the idea for the
situation where the original relation does not satisfy a DMVD by

horizontally partitioning relations.

5.3 Query Processing Using MVDs

Although MVDs can also be utilized for query conversion,
there is a qualitative difference between the usage of FDs (or
DMVDs) and ' that of MVDs. The difference is whether the:partial
solutions of all relations can be obtained using only semi-joins
or not. When MVDs are utilized for the conversion, the partial

solution for the relation decomposed by an MVD cannot in general

-16-
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be obtained by semi-joins only. The following example clarify

this,

Example 4 : Consider a query shown in Fig.1l3 (a). If MVD: D->>B|C
is satisfied on R3, it can be decomposed into two relations
R31(CD) and R32(BD). Thus the query can be converted into the
tree as shown in Fig.l3 (b). Therefore the partial solutions of
Rl' R2, R31 and R32 can be easily obtained, thle that of R3 is
not. To confirm this, just,observe the contents of the relation
in Fig.13 (c) where all three relations are irreducible and Ry
satisfies the MVD:D->>B|C, yet R3 is not the partial solution.

Therefore the method can be used, if the target attributes do not

contain both B and C.

In the case of FDs we used horizontal decomposition when FDs
‘are not satisfied. For MVDs we can use overlapped decomposition
called cover, If an MVD is not satisfied in the original'
relation, the covering of the relation is obtained such that each

cover satisfies an MVD (see Fig.l4).
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Fig.l A cyclic query and a tree query

; P
((SUPERVISOR W ENROLLMENT M CLASS OFFICE

'Fig.2 Conversion to a tree query by relation merging

Fig.3 Each query of the tuple-wise processing

Fig.4 Conversion to a tree query
by adding attributes
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ENROLLMENT

Fig.6 Use of an FD : A—>J for query conversion

Fig.7 Horizontal decomposition of a relation

-20-



322

XY S XY]. ) .

= I
XYZ Z=XY XY2 X

XY

Fig.8 Removal of a cycle

Fig.9 Attachment of ID's to subrelations
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Fig.1l0 Horizontal decomposition method utilizing ¢ -> J
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(a) (b)

Fig.ll Removal of a cycle by an MVD-based decomposition

CLASS
J P N
CLASS, A->P
CLASS, A->J
(a)

SUPERVISOR SUPERVISOR

AS

ENROLLMEN

ENROLLMENT-

(b) (c)

Fig.1l2 Query proceséing using a DMVD
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