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ABSTRACT

In this paper we first present a formal definition of
dictionaries and introduce a semantic space of dictionaries
which is used for giVing formal meanings of entry words. Then we
show that the semantic space is uniquely determined up to
isomorphism. We also construct the semantic space which consists
of infinite trees with no leaf and some other trees where only
leaves are labeled. So it is enough to take this constructed

semantic space when considering semantics of dictionaries.

1. Introdﬁction

Dictionaries aré indispensable not only for our daily lives
but also for computerized systems such as database systems and
knowledge systems [1,2].

According to the dictionary [3], "dictionary" is "a book

containing a selection of the words of a language, usually
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arranged alphabetically giving information about their meanings,
pronounciations, etymologies, inflected forhs, etc., expressed in
either the same or another language." However in the present
paper we simply take a dictionary as a book containing words of a
language ana their meanings expressed in the same language.

Although there may be several standpoints té treat meanings
of words in a dictionary, we take them in the following manner.
Consider our consulting a dictionary for the meaning of a word.
The explanation of the word is expressed with a finite sequence
of words in the dictionary. But if we find unknown words in it,
we may again consult the dictionary for them. In this way we
will get the meaning of a word by consulting a dictionary
finitely many times.

As far as the author's knowledge is concerned, no formal
definition of a dictionary has been given and semantics of
dictionaries has not yet been studied in a mathematical way. So
in this paper we give a formal definition of a dictionary and a
semantic space of dictionaries. A dictionary is made up of a set
of entry words, their explanations which are expressed with
finite sequences of entry words in the dictionary and possibly
undefined words. A semantic space is made up of a set Y and a
bijection # from Y* (the union of‘n—products of Y) to Y
.satisfying some commutative diagram.

In Section 2 we present a formal definition of a dictionary,
which gives the framework of a dictionary and enables a
mathematical discussion. In Section 3 we introduce a semantic

space to treat formal meanings of words in a dictionary. Then
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we show that the semantic space is uniquely determined up to
isomorphism. In Section 4 we construct the semantic space which
made up of infinite trees with no leaf and some other trees where

only leaves are labeled.

2. Dictionary

We give in this section a formal definition of a dictionary.
In general explanations of entry words in a dictionary are
expressed with finite sequences of entry words and possibly
undefined words.

Notation. Let X be a set. Then X 1is defined by:

T =X +x2+ ...+ X0+ ..,

where X% is n-fold product of X and + is disjoint union.

Definition 1. A dictionary is a triple DIC = (X,A,D), where
(1) X is a nonempty set of entry words,
(2} A is a set of undefined words,

(3) D is a mapping from X to (x+a)*,

We call words other than entry words undefined words and also
call D(x) the explanation of x. The mapping D cofresponds to the
action of consulting a dictionary. If A is empty, we call a

dictionary complete.

Example. We give examples.
D(concept) = (a, general, notion, or, ideé),

D(notion) = (a, general, or, vagque, idea),
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D(idea) = (any, conception, existing, in, the, mind),
D(general) = (of, or, pertaining, to, all, persons, or, things,
belonging, to, a, group, or, category),
D(mind) = (the, part, in, a, human, being, that, reasons,
understands, perceives).

For clearness, the expression D(x) = (xl,xz,".,xn) may be

illustrated by using the following tree (Fig 2.1):

D(x):

Fig 2.1 D(xX) = (X3,%X9,...,%p).

Next we consider semantics of dictionaries. Several
approaches to the semantics may be considered from the various
standpoints, such as linguistic, philosophical and mathematical
standpoints. But we here take the semantics formally
(mathematically) in the following way, that is, a formal meaning
of any word in a dictionary is obtained by combining those of the
words which appear in the explanation.

For exmaple 1let us consider the semantics of very tiny
dictionary (X,A,D), where

X = {x1,%2,x3},

A {a},
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and D is defined by:

D(x1) = (x1,%2)7
D(Xz) = (a), -
As D(x3) = (x3,%X3), the formal meaning of xj; is the

combination of those of x; and x3. Now let us see the process

of getting the meaning of X7 (Fig 2.2).

1st step.
*1 %2

2nd step.
Xi X, a

3rd step.
a

a
X1 %2

Fig 2.2 The first three partial meanings of X1.
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The first stepAshows the (partial) formal meaning of the
word xl‘consulting the dictionary one time, the second step two
times and the third step three times respectively. That is, the
(total) meaning of x; is gained by consulting the dictionary
repeatedly. This may be the process by which we acquire
meanings of words. If we encounter undefined words (here "a"),
then this process partially stop there. Since we cannot consult
them for the dictionary any more. This is the same for x5, Xx3.
So we may take the meanings of X1rX9,x3 as the following tree

diagrams respectively (Fig 2.3):

X1 Xg: X3:

Fig 2.3 The formal meanings of xj,x; and x3.
As looked at above, in order to consider semantics of
dictionaries, we are necessary some space which is used for
giving formal meanings of words such as trees illustrated above.

So in the next section we introduce a semantic space of

dictionaries.
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3. Semantic space

We first define a semantic space of dictionaries and state
the reason why this definition is sound. Then we show that
semaﬁtic spaces are isomorphic., (

Now we define a semantic space formally.
Definitioh 2., A semantic space for dictionagies is a pair

(Y,#) with the following conditions:

(1) Y is a set.

(2) # : Y* > Y is a bijection.

(3) For any dictionary DIC = (X,A,D), théﬁe exists only one
mapping, called a semantic mapping, s : X » Y such that
for any mapping S : X+A + Y with §|X = s the diagram

below commutes:

v
<

(x+a) " +

v
<

where s* = g + sl + ..., + s + ..,

We explain briefly the reason why this definition is sound.
It should be natural that we require the semantics s(x) of a

entry word x in X is uniquely determined. This semantics s(x) 1is
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successively obtained along the commutative diagram above.
Firstly, the word x in X is expressed with the finite sequence
X]1reeerXpy (n 2 1) of entry words and possibly undefined words by
using the mapping D, that is,
D(x) = (Xl,...,xn).

Secondly the semantics of the explanation of x is defined

by:
S(D(x)) = SM(Xy,eeerxy) = (S(X1)reeers(xy)).

Here if x; is in X, then g(xi) = s(xj). Otherwise, that is, if
X; is undefined words ( %xj in A), the semantics may be any
element of Y as long as our definition is satisfied.

Lastly the semantics s(x) of x in X is obtained by combining
these semantics s(xj),...,s(x,) using the mapping #, that is,

s(x) = #(g(xl),...,é(xn))-

The mapping # should be a bijection, since if the semantics of
the explanations of words are mutually distinct, so should be the
semantics of the words, and since extra semantics is not in Y,
that is, any semantics of Y is always the combination of some
finite number of semantics of Y.

By this definition, we get the following proposition, which
asserts that any semantic spaces are isomorphic.

Proposition 3. Let (Y;,#;) (i = 1,2) be semantic spaces.
Then

(Yy,#1) = (Y5, %))

holds.

proof. #7l : ¥; + vy} (i = 1,2) are considered to be

complete dictionaries. Let £ : Yy + Y, andg: Yy, =+ Y; be the
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semantic mappings. Then the following commutative diagram holds:

Yy > Y —> er :
-1 -1
#l #2 #2 #l 4
+
+ + N Y
Yl — > Y2 — g 1
f .
and the diagram
i
Y, Ly
Y, > 1
-1
1 #1
YI N YI
7
Y

also holds, where iy the identity mapping. By the uniqueness of
semantic mapping we have gf = iy. Similarly we have fg = iy.

‘Therefore the proposition is obtained. ‘ 0

4, A semantic space construction
We now construct the semantic space which consists of
infinite trees with no leaf and some other trees where only

leaves are labeled. For this end, we first give some notions on

trees.
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semantic mappings. Then the following commutative diagram holds:

f g9 N v
Y > ¥, e 1
1
-1 -1
#q *5 #5 #l
+
vt > vr > Yy
l ~+ 2 ~+
f g
and the diagram
i
Yl - ¢
Yl > 1
-1
A 1
Y+ N Y+
1 -t - 1
1
Y1

also holds, where iy the identity mapping. By the uniqueness of
semantic mapping we have gf = iy. Similarly we have fg = iy.

Therefore the proposition is obtained. 0

4. A semantic space construction
We now construct the semantic space which consists of
infinite trees with no leaf and some other trees where only

leaves are labeled. For this end, we first give some notions on

trees.
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Definition. - Let J, = {l,...,n} and let
J* = JI + ... + J; + +e. . Then J* > ¢ is said to be a tree if
the following conditions are satisfied:

(1) st e o implies s € d;

(2) sk € @ and k € N imply s{l,...,k} < ¢,

where N denotes the set of all natural numbers.

Any tree is finitely branching. A and L(¢) denote the set
of all trees and the set df all leaves of a t;ee @, respectively.

Definition.

o is a partial tree iff L(a) # 4.

a is a total tree iff ‘L(a) = 4.

Partial trees are trees with leaves. Total trees are
(infinite) trees with no leaf. We denote by Ap Ay the set of all
partial trees and the set of all total trees, respectively.

Clearly 4 = Ap + A, We also define labeled trees.

Definition. Let Z be a labéled‘set. Then the set of all z-

labeled trees is

ZA#agA{mlm:a"’Z},
and the set of all trees where only leaves are Z-labeled is

LA = Ypfe-L(a)m | m : L(a) + Z }.

- 10 -



Example. Fig 4.1 is an example of a tree a.

1 2
il 12 13
131 132 133
Fig 4.1

Leaves are marked by underlines, that is,
L(e) = {11,12,131,132,... }

Fig 4.2 is an example of Z—labeled tree.

Fig 4.2

For example 2z means that leaf 2 is labeled by zj.

- 11 -
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Now we define a pairv (T,#) as follows:
(1) T = At + {.L}A'
(2) # is a mapping from Tt to T such that

o~

#(allotclu ={x}+lal+ o-¢+na

n) n*

Then we get:
Theorem 4. (T,#) is a semantic space.

proof. Clearly # is a bijection. So it suffices to show
the uniqueness and existence of the mapping s satisfying the

following commutative diagram:

S
X > T
D #
(x+a)* s 7t
~t
S
where we define for any a in A, st(a) = {i}.

First we show the uniqueness of the mapping s. Let t, s be

the semantic mappings satisfying the above commutative diagram.

~ Then for any x in X with D(X) = (Xj,.../Xp)r We get

£(x) = {A} + 1E(xy) + 2E(xy) + ... + nt(x,),

s(x) = {a} + 1s(x7) + 28(%Xp) + ... + ns(x,).

- 12 -
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As t(x) and s(x) are the trees with the same root {)}, we can say

that t(x) and s(x) are the same trees if all the children of the
root {A} are the same. Indeed if x; is in A, then by the
definition of s, g(Xi) = t(x;) = {L}. Otherwise, that is, if X
is in X, then E(xi) = t(x;) and g(xi) = s(x;). But t(x;) and
s(xj) are the trees with the same root {}}, so all the children

are the same.

Next we show the existence of the mapping s. We consider

the following commutative diagram:

>
X > Ty
D *y
+
(x+a)7 > Ty
~+
Sm-1

where (1) T =8y + 4,34,
(2) #, is a bijection from T* to T (like #),

(3) s (m 2 0) is a mapping from X+A to T such that

m
(i) EnlX = spr
(ii) For any a in A, sp(a) = {1},

(iii) sg(x) = {*} + 1{x3} + 2{xp } + ... + n{x,};, where

D(X) = (XyreeerXp)e

Thus for any x in X with_D(x) = (xl,“.,xn), the following

expression holds for any m 2.1:.

- 13 -
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(*)  sSp(x) = {A} + 1Sp-71(x]) + ... + nsp_7(x,).

By the way we consider the order in T in the following way.

Notation. a(Xj,...,x,) denotes the tree a with the leaves
X1reesrXp, and o = “(xl'"'“i'"'xn) denotes the treéﬂreplacing
X; with the tree ¢j.

For any @, @ in Ty, we define the order > by:
w >0 iff @ = 0(Xy,.0,0,007%Xp) fog some xj and ¢; in Ty.
Then it is easy to show that (Tx'>) is a poset. By this
definition and the equation (*), we have smgx) > sp-1(x) for any
m 2 1. Ty has a closure property, so we get

s(x) = sup sm(x) in T,

Therefore by taking the sup of (*), we get

s(x) = {A} + 15(x]) + ... + ns(xp,). O

5. Concluding remarks

We have given a mathématical framework of a dictionary in
which semantics of words are specified by elements of our
semantic space. Our basic idea was based on the observation that
any word x in a aictionary is expressed with a finite sequence
X1re.erX, of words in it and that semantics s(x) of a word X is
obtained by combining the semantics s(x7),...,s(x,) of words
XlreeerXpe

This approach may be the first trial on dictionary semantics
and will also support the semantic description of data models.
We will use this framework for the semantic description of our
data model called bottomless data model [4].

The next target of our study will be a rational property of

- 14 -
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I

dictionary semantics [5]. Another interesting mathematical

problem is to solve the dictionary domain equation:X® +...+X = X

[61.
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