ooooboooao
4950 19830 1-26

Design of Conceptual Schemes for

the Relational Database Machine Noah

Masatoshi Yoshikawa Chung Le Viet
b y o) A <
z 0| E 1z L-®w%Th- 92>
(Kyoto University) (HDR Systems Inc.)

1. Introduction

Recently, several commercial RDBMS's (Relational Database
Management Systems) and RDBM's (Relational Database Machines)
have become available. There are, however, very few database
scheme design tools which can be used in practical environment.
In this paper, we will discuss the conceptual scheme design
problem for the relational database system Noah developed by HDR
Systems Inc. [LEVI 8302] [LEVI 83]. The consideration in this
paper will provide the 1logical fundamental for the future
implementation of scheme design toolsbfor the Noah system,.

The main hardware components of the Noah are the Query
Processor and the Intelligent Database Machine (IDM)., The IDM was
designed énd developed by Britton-Lee Inc. [BLI 8109]. The Query
Processor hés its own micro-processors and system software
running on themn, and provides the wuser with a high 1level
interface to the IDM, The system software includeg'the SQL/Noah

parser and the report writer QR.

2

Utilizing this hardware architecture of the Noah, we will
propose the method to enhance the logical functions of the IDM.

IDM does not support null values, inclusion dependencies (INDs)

or object patterns. The maintenance of these semantic
constraints, however, can be achieved by the Query Processor's
transformation of data. Thus the Noah seems to provide a high

level integrity checking mechanism for the users. We will use the
terms "cohceptual scheme" and "internal scheme"¥* to represent the
conceptual schemes of the Noah and the IDM, respectively. The
Query Processor performs data transformation between the two
schemes.

To design these schemes, first the structures of real world
data are represented as an enterprise scheme using E-R model.
Then it is transformed into conceptual and internal schemes. This
design process 1is summarized in Fig.1.1.

As stated before, in our approach, data structures are first
represented using E-R model and then it is transformed into
relational conceptual schemes. In Chapter 2, we will state the
reason for the adoption of E-R model as a description tool of
enterprise schemes in comparison with other desigh approaches. We
have slightly extended Chen's original E-R model to capture the
data semantics more precisely. The detail about the extension and

- an example of enterprise scheme will also be shown. Chapter 3

¥ Note that we wuse the term "internal scheme" with different
meaning from the ordinary usage. It does not mean the physical

level detail of DBMSs.

states the transformation from the E-R model into the relational
model. The relationship between the conceptual and internal
schemes wWill Dbe given to clarify the underlying idea of the
transformation. The handling of null values is a key issue in the
transformation. In Chapter 4, the maintenance of several semantic
chstraints by the Query Processor will be shown, Chapter 5 1is

the conclusion,

2. The design of enterprise schemes using E-R model

2.1 E-R model as a description tool of real world data

As an initial step of the database scheme design, it is
important to decide what exact part of real world data is
necessary and to represent them in a comprehensive manner.

There are, in general, the following three approaches for
the description of the structure and semantics of real world data
in the design of conceptual schemes of relational databases.

(1) use of dependency theory
(2) use of unnormalized relation
(3) transformations from semantically higher data models

Theoretical research bn data dependencies has advanced for
the 1ast. several years, and many dependencies were proposed to
represent thé semantics of relational schemes, It seems, however,
to be difficult for database designers- to express the data
semantics using data dependencies other than FD. Therefore we

consider that approach (1) 1is not realistic in practical

environment.

Approach (2) is found in [KAMBK8302]. In this approach, at
first unformatted sample raw data are analyzed and unnormalized
relations are constructed. Starting from these wunnormalized
relations, designers convert the relational schemes step by step
until they finally obtain desirable normalized relations. This
approach may especially be suitable for the design of, say
research database in bottom up manner. However, we think it is
not appropriate to use this approach for the design of 1large
databases of which data structures and semantics are
comparatively clear at the initial stage of design process.

In this paper, we WwWill discuss approach (3) and adopt
Entity-Relationship model (E-R model) [CHEN 7603] as a
semantically higher model. E-R model has the following advantages.
(1) It is popular among other data models.

(2) The data structures of real world are . represented
comprehensively using Entity-Relationship Diagram (ERD).
Therefore the data semantics is easy to understand for designers
including non-professional people.

(3) It plays a role for enterprise schemes [CHEN 7706] and is
useful also for the user interface [WONGK8209].

As shown in Section 2.2, we will slightly extend Chen's

original E-R model to express data semantics more precisely.

2.2 Extended Entity-Relationship Model

In this section we will give the definitibns ‘of our E-R

model along“with each component of ERD. Also relational schemes

corresponding to each component will be given,

(I) Entity Set

In an ERD, an entity set which has A ,...,A as attributes
is expressed by a rectangular box with the lntity :et name in it.
Each attribute of an entity set is expressed by an oval, which is
linked to the rectangular box of the entity set using an edge.
There are several types of edges according to the mapping between
an entity set and an attribute. All types of edges are summarized
in Table 2.1,

In Table 2.1, "total" means that all entities in the entity
set have non-null attribute value(s), while "partial" means that
some entities may not have any value for that attribute. We use
terms such like "total-m:1-attribute”, "partial-attribute", "m:n-
attribute", etc. to denote the types of attributes explicitly. If
a combination of two or more total-m:1-attribute values has 1:1
mapping with each entity and if any subset of the attribute
combination does not have this property, it is called a total key
combination, If the combination contains at least one partial-
attribute, it is called a partial'key combination, All attributes
of ' a total (resp. partial) key combination are encircled by a
solid (resp. dashed) line; Among all total-1:1-attributes and
total key combinations in an entity set, only one is designated
as the entity key. If an entity Key is a total-1:1—attribute
(resp. total key combination), the edge of the attribute (resp.
the circle enclosing the combination) is drawn by a bold line in

an ERD.,

[Example 2.1]

Let us consider an entity set STUDENT which has attributes
S#, YE(year of entrance), SCORE(the score of entrance
examination), CAR# and SSN, The ERD of an entity set STUDENT is
shown in Fig.2.1. The attribute S# is the entity key and a set of
attributes {YE, SCORE} is a partial key combination.

The corresponding relational scheme of this entity set is
STUDENT(S#, YE, SCORE, CAR#, SSN), where null values may appear
in the attributes SCORE and CAR#. Also FDs: Sg -> {YE, SCORE,
SSN}, SSN ->‘S¢, {YE, SCORE} =-> S# hold in this scheme. Note that
the scheme is not in 2NF but in 1NF. A typical object pattern is

given in Fig.2.2 where hatched area represents null values,

(II) Relationship Set

A relationship set is a finite set of relationships among
entities of distinct entity sets, and may have its own
attributes. A relationship set 1in an ERD is depicted(by a
diamond-shaped box with the name of relationship set in it. Then
that diamond-shaped box is linked with all the entity sets, say
E,...,E , relevant to it using edges. These edges may be a solid
ol dashe? one and may have some arrow heads according to the
following rules.
(i) An edge between a relationship set R and an entity set E'

(1€igm) 1is solid/ edge if all entities in E_ ar;
participating in R and dashed edge if some entitieslin E
are not participating in R. ’

(ii) An edgeé between a relationship set R and an entity set

E (1£i<m) has an arrow head on the side of E iff a

p;rticular combination of entities (e ,.%.,e. ’

€ ye.e,€) appears at most once in‘R. (If we re;ard R ;;1a
r;I;tion Scheme with attributes E,...,E, the above

definition is equivalent to Say that1 an FDT E,...,E

E yeeeyE ===> E holds in R.) !
i+l m i

The relationship Kkey of a relationship set R is defined as the
set of all the entity keys of E.(1im) if no edge between R and
E's (1£i<m) has arrow head. étherwise, if one edge between R
a;d, say E has an arrow head, the relationship key becomes the
set of tge entity keys of E. (1£iLk=-1, k+1<idm) ., The
representation of relationship set%s attributes in ERD is same as

the case of entity sets.

[Example 2.2]

Consider two entity sets STUDENT, COURSE and a ?elationship
set ATTEND between them. Each ERD in Fig.2.3 is expressing the
following data semantics, respectively._ |
(a) (i) one course has many students as attendees.

(ii) one student can attend to many courses.

(iii) every course has at least one student as an atténdee.

(iv) every student attends to at least one course.

(v) some students attending to a course already have a score,
(b) (i), (ii), (iii), (v) in (a) and

(vi) there may be some students not attending to any course.

(e) (i), (iii), (v) in (a), (vi) in (b) and

(vii) one student can attend to at most one course,
The corresponding relational scheme of the relationship set of,
say Fig.2.3(b), is ATTEND(S#, C#, SCORE) in which {S#, C#} is the
primary Kkey. Attribute SCORE may contain null values and a
typical object pattern is shown in Fig.z2.4. When transforming a
relationship set into a relational‘ scheme, INDs between
relational scheme should also be explicitly designated. For
example, in the above case, the following two INDs hold.

STUDENT[S#] 2 ATTEND[S#]

COURSE[C#] = ATTEND[C#]

(III) Sub-entity Set
Sometimes we need to express an entity set (a sub-entity
set) which is a subset of another entity set (a super-entity set)
for the following purposes.
(i) to allow entity sets and 1its sub-entity sets to have
different sets of attributes.
(ii) to allow entity sets and 1its sub-entity sets to have
different sets of relationships.
To express a sub-entity set in ERD, we use a wide arrow
which emits from an entity set and indicates its sub=-entity set
as shown 1in Fig.2.5, where MARRIED_STUDENT is defined as a sub-
entity set of an entity set STUDENT. A sub-entity set has the
same entity key as its super-entity set. In Fig.2.5, therefore,
the entity key of MARRIED STUDENT is S#, Transforming the ERD
into relational scheme, we obtain the two schemes

STUDENT(S#, NAME), MARRIED_STUDENT(S#, SP_NAME) and the IND:

-8-

STUDENT[S#] 2 MARRIED_STUDENT[S#].

In general, one entity set may have many sub-entity sets and
each of theﬁ, in turn, may have its own sub-entity sets., Thus if
all relationship sets were deleted from an ERD, a directed
acyclic graph G(V,A) can be obtained. Here V is the _set of all
entity sets and sub-entity sets, and A is the set of all wide
arrows. Each weakly connected component of G(V,A) is called a
sub-entity structure. We assume that in each sub-entity structure
there is an unique entity set whose indegree is 0. We call this
entity set a root entity set, We use the name of the root entity
set in a sub-entity structure to represent that sub-entity
structure. All entity sets in a sub-entity structure have the
same entity key as the root entity set in that sub-entity

structure,.

[Example 2.3]

Consider two sub-entity structures in Fig.2.6. STUDENT and
COURSE are root entity sets in each sub-entity structure. All
entity sets in the sub-entity structure STUDENT (i.e.
STUDENT, MARRIED_STUDENT, FRESHMAN and MARRIED_FRESHMAN) have S
as entity keys. Also all entity sets in the sub-entity structure
COURSE (i.e. COURSE, FUNDAMENTAL_COURSE and ADVANCED_COURSE) have

C# as entity keys.

We can regard each sub-entity structure as a generic
8tructure in a similar sense of Smith and Smith's generalization

abstraction [SMITS77061].

190

(IV) Sub-relationship Set

As in the case of sub-entity sets, one relationship set is
sometimes a. subset of another, For example, consider the ERD
shown in Fig.2.7. The relationship set MARKET represents that a
part is sold by a supplier. Also BUY represents the fact thaﬁ a
project bought a part from a supplier. It is quite natural to
pose a constraint that a project cannot buy‘ a part from a
supplier unless the part is sold by the supplier. This constraint
can be represented by specifying that BUY is a sub-relationship
set of MARKET, In ERD, a wide arrow 1is used again. The
corresponding relational schemes of relationship sets MARKET and
BUY are MARKET(P#, S#) and BUY(P#, Ss, J#), respectively. The
IND: MARKET[P#, S#] 2 BUY[P#, S#] holds.

(V) Mutually Exclusive Entity Sets

There are the situations to need to pose the restriction
that several entity sets have the same key but are mutually
exclusive. For example, 1let us assume that the employees of an
airline company are consisting of pilots and stewardesses. (Here
we ignore ground crews etc.) Also assume that no employee can be
both a pilot and a stewardess simultaneously. In general,
different types of information are need to be stored for each
type of 'occupation, thus those data are better to be managed
separately. Fig.2.8 shows the ERD of this example where
maneuvable PLANEs are stored for PILOTs and LANGUAGEs they can
speak are stored for STEWARDESSes. Similar to the case of sub-

entity sets,‘E# becomes the entity key of PILOT and STEWARDESS.

-10-

1

The corresponding relational schemes are EMPLOYEE(E#, SAL),
PILOT(E#, PLANE) and STEWARDESS(Es, LANGUAGE) . Also an IND:

EMPLOYEE[E#] = PILOT[Es] + STEWARDESS[E#] holds.

OQur extension of E-R model here 1is not based on a formal
concept such as "completeness'", But we did the extension to make
our E-R model powerful enough to be able to describe the semantic
constraints which can be maintained on the Noah., Therefore, of
course, some semantic constraints cannot be represented using
only our E-R model. Furthermore, the equivalence problems of the
ERDs under ﬁhese extension is left open. For the implementation
of a wuseful design tool, these problems must be studied

theoretically.

2.3 Enterprise scheme design

As stated in Chapter 1, in our design approach first real
world data 1s represented as an enterprise scheme using E-R
model. Since this step is based on trial-and-error, the design
tool should support designers by

¥ notifying designers of violations of design rules,

¥ improving the schemes automatically, and/or

¥ prompting designers to input some parameters.

The enterprise scheme which 1is finally obtained in this step
could also be used as a user interface [WONGK82091].

As an example, assume that we have obtained én enterprise
scheme of which ERD is shown in Fig.2.9. The semantics of the ERD

- will be self-explanatory. We will use this scheme as a running

-11-

12

example in the following chapters.

3. The design of conceptual schemes

After designing an enterprise scheme, designers need to
transform it into a conceptual relational scheme. There are, in
general, a large choice of this transformations depending on

¥ the combination of attributes

¥ the handling of null values, and

¥ the handling of INDs.

Among these factors, the handling of null values and INDs on
conceptual schemes depends on the logical feature of the IDM.
Therefore, first wé will describe the relationship between

conceptual and internal schemes.

3.1 Conceptual and internal schemes in the Noah

The IDM does not directly support null values and INDs. If a
tuple 1is inserted into a relation with some attribute values
unspecified, "O" is put 1in as a default value when the type of
the attribute in question is integer. When the type is character,
the attribute field of the tuple is left blank.

Null values on the conceptual scheme of the Noah are
virtually realized by the Query Processor's transformations of
queries and data. We will describe the relatiqnship between
conceptual and internal schemes using an example.

Let us assume we have obtained the entity set shown in

-12-

Fig.3.1 as a part of an enterprise scheme., Since B is a partial
attribute, the corresponding relation (let wus call it R)

‘ : E
contains null values. To cope with these null values, the

following three approaches can be considered.

(a) to allow null values on the conceptual schemes
(b) not to allow null valhes on the conceptual schemes
(b=1) decompose R vertically

(b=2) decompose R horizontally

Each approach is illustrated in Fig.3.2. Note that an IND: R [K]
2R '[K] holds in the case of (b-1), and an IND: R [KINR [g] =
) hglds in the case of (b-2). (These INDs are maiﬁ%ainedEgy the
Query Processor.) In the approach (b), conceptual schemes
directly correspond to internal schemes. However in the approach
(a) conceptual schemes need ¢to be transformed into internal
scheme where null values are not directly supported. There are

the following three variations for this transformation,

(i) Vertical decomposition
(ii) Horizontal decomposition

(iii) Introduction of a new attribute to distinguish null values

Methods (i) and (ii) are respectively based on the same idea as
the approaches (b-1) and (b-2) stated above. To recover -a
relation on the conceptual scheme, outer-join (method (i)) and

" outer-union (method (ii)) are performed by the Query Processor,

-13-

14

Internal scheme by method (iii) which corresponds to R in
E
Fig.3.2(a) is illustrated in Fig.3.3.

3.2 The design of conceptual schemes

For each entity or relationship set of an enterprise scheme,
the transformation into a conceptual scheme consists of the
following three parts.

¥ separate 1:n- and m:n-attributes to make the transformed
relational SChemes in 3NF.

¥ combine 1:1- and m:1-attributes properly.

¥ for partial attributes, apply one of the three methods

stated in Section 3.1.

Different conceptual séhemes can be obtained depending on the
combination and the order of applications of above three
transformations. Designers must select the conceptual - scheme
which is considered to be optimal for him among many variations.

An example of the transformation is shown below.

[Example 3.1]

An enterprise scheme shown in Fig.2.9 <can be transformed
into a conceptual scheme shown in Fig.3.4 where ERD is used as a
description tool of a conceptual scheme, Following the
transformation rule given in Section 2.2, the ERD in Fig.3.4

becomes equivalent to the following relational schemes.

STUDENT_WITH_DEGREE (S#, SNAME, DEGREE)

STUDENT_WITHOUT_DEGREE (S#, SNAME)

-14-

ENROLL (S#, C#, SCORE)
COURSE (C#, CNAME)
TEACH (T#, Csu)

TEACHER (T#, TNAME)

TEACHER_WITH_ROOM (I#, ROOM=)

INDs:
ENROLL[S=] & STUDENT_WITH_DEGREE[S#]

U STUDENT_WITHOUT_DEGREE([S#]
STUDENT_WITH_DEGREE[S#] n STUDENT_WITHOUT_DEGREE[Sz] = &
ENROLL[C#] = COURSE[C#]

COURSE[C#] = TEACH[C=z]

TEACH[T#] € TEACHER[T#]

TEACHER_WITH_ROOM[T#] € TEACHER[T#]
Objects:

{Sk, C#}, {S#, C#, SCORE} for ENROLL

There were three partial attributes in the enterprise scheme. 1In
the transformation process, null values in these three attributes
SCORE, ROOM# and DEGREE were coped with following the approaches

(a), (b=1) and (b-2), respectively.

4, The maintenance of semantic constraints by the Query Processor

In this chapter, we will show how the Query Processor

~15=

16

virtually realizes the conceptual schemes supported with high-
level semantic constraints such as INDs, null values and object

patterns.

(I) INDs

To maintain INDs, the Query Processor need to check whether
update operations issued by users are violating the INDs or not.
For example, let us consider an IND: TEACH[T#] € TEACHER[T#] in
Example 3.1. The following two kinds of update commands‘need to
be checked for the maintenance of the IND,

(i) an insertion of tuple(s) into the relation TEACH

(ii) a deletion of tuple(s) from the relation TEACHER

For (i), if a command
append to teach(t# = '3', c# = '310'") (4-1)

is issued by a user, the Query Processor need to transform it

into the following commands,

range of tr is teacher

append to teach (t# = '3', c# '310') (4=-2)

where count(tr.tt where tr.t# '31) >0

n

Furthermore, 1if the response of the IDM to the command (4-2) is
"0 tuples affected", the Query Processor should inform a user
that the command (4-1) caused no effect to the current instance

of the database.

-16-

Next in the case of (ii), for example, if a user issued the

following command (4-3), the Query Processor transforms it into

the one in (4-=4),

range of tr is teacher

, (4=3)
delete tr where tr.tg = '5?
range of tr is teacher
range of t is teach
(4-14)

delete tr where tr.tg = '5!

and count(t.t# where t.te = '5') = 0

In this case if the IDM replied as "0 tuples affected", the Query
Processor either informs the user of this fact or deletes a tuple

of which Tg-value is '6' from the relation TEACH,

(II) Null values

As shown in Section 3.1, there are three methods to cope
with null values in conceptual schemes. Consider the attribute
SCORE in Fig.3.4, and assume that method (iii) of Section 3.1 is
used. Although the relational scheme having the attribute SCORE
is ENROLL(SE, Caz, SCORE), the corresponding internal scheme needs
one more attribute, say IS_SCORE, to explicitly represent the
existence of values in SCORE. For example, "O" and "1" are used
to imply that the SCORE-value of the tuple is null and non-null,
respectively. (See Fig.3.3.) The detail of the technique is given
in [BLi 820417,

-17-

18

(III) Objects

Let us consider the running example in Example 3.1 again}
Object sets {S#, C#} and {St, C#, SCORE} are posed for the
relation ENROLL. Therefore, if a user tries to insert a tuple of
which S#-value 1is not specified, the Query Processor ~should
rejeéf ﬁhe insertion request. Similarly all the attempts of
updates such that the resultant relation violates the object sets

restriction should be rejected.

5. Conclusion

We have ; described the design principle of
conceptual/internal schemes of the Noah, and proposéd the
enhancement of logical power of the IDM by the Query Processqr.
For the implementation of this enhancement, several problems must
be solved which include the handling of data dictionary (called

system relation in the IDM.)

Acknowledgments

| The authors would like to express their sincere
appreciations to Professor Yajima and Associate Professor
Kambayashi for their continuous encouragement. The authors also
wish to thank to the members of Yajima Laboratory for their

fruitful discussions,

-18-

[BLI 81091

[BLI 8204]

[CHEN 76031

[CHEN 77061

[KAMBK8302]

[LEVI 8302]

[LEVI 83]

[SMITS7706]

[WONGK82091]

18

References
Britton-Lee, Inc;, ~ "IDM 500 Software Reference
Manual", Version 1.3, Sept. 1981.
Britton-Lee, Inc., ~ "NULL DATA VALUES on the IDM",

Britton-Lee, Inc., Technical Bulletin, No.TB-001,
pp.3-5, Apr.1982. “

Chen,P.P., "The Entity-Relationship Model - Toward a
Unified View of Data", ACM Trans. on Database
Systems, Vol.1, No.1, pp.9-36, Mar. 1976.

Chen,P.P., "The Entity-Relationship Model - A Basis
for the Enterprise View of Data", Proc. of AFIPS NCC,
pp.77-84. June 1977. L

Kambayashi,Y., Kojima,I.; Yazaki,T. and Yajima,S., "A
Micro-Computer-Based Relational Database System with

Database Preparation Facilities", Proc. of the
Conference , on » Relational DBMS
Design/Implementation/Use in a Micro-Computer

Environment, Feb. 1983.

Le Viet,C., "The Noah Database Machine", Proc. of
IEEE COMPCON, pp.364-368. Feb.-Mar. 1983,

Le Viet;C., "Noah - A Relational Database System
Based on the Intelligent Database Machine", to
appear 1in a special issue of "bit";

Smith,J.M. and Smith,D.C.P., "Database Abstractions:
Aggregation and Generalization", ACM Trans, on
Database Systems, Vol.2, No.2, pp.105-133, June 197T7.
Wong,H.K.T. ‘and Kuo,I., "GUIDE: Graphical User
Interface for Database Exploration”, Proc. of 8th
International Conference on VLDB, pp.22-31, Sept.
1982. '

-19-

e

real world

Enterprise Scheme

R

‘ Noah

Query
Processor

IDM

”

Conceptual Scheme

T~

Internal Scheme

Fig.1l.1 The configuration of the design process.

£ 1:1 m:1 m:n 1:n
mapping) A;LA Bt LT N
total A O O
i | Be® |30 | B0 | B

Table 2.1 Types of edges between an entity set and an

its attribute.

~-20-

21

STUDENT

il e

STUDENT

Fig.2.1 An entity set and its attributes. S# | YE YSCORE CAR# SSN

Fig.2.2 A typical object pattern
of the relation STUDENT.

(a)- - _-_..;__

| stupent-+

(b)

(c) { I R ‘
7 LsTunent-+ COURSE |

Fig.2.3 Some types of relationship éePs.

-21=-

- ATTEND
S# | C# | SCORE , @ STUDENT

Y l

MARRIED

Fig.2.4 A typical object _STUDENT
pattern of the =_

&

relation ATTEND.

Fig.2.5 A sub-entity set.

sTUDENT}i"1!!" | couRsE

FRESHMAN

FUNDAMENTAL _ ADVANCED_
COURSE o COURSE

[MARRIED_
STUDENT

MARRIED_
FRESHMAN

Fig.2.6 Sub-entity structures.

-22-

SUPPLIER

PROJECT

Fig.2.7 A sub-relationship set.

STEWARDESS

Fig.2.8 Mutually exclusive entity sets.

-23-

NGUAG

23

24

| S.TU]:JENV‘T

Fig.2.9 An enterprise scheme.

Fig.3.1 An entity set with
a partial attribute.

=2k

(a)
Re
£ K|A|B
%
> | %
(b~1) ' RE
@t ® [
' N
EI
Re:
i KB
&
(b-2)
E e
K[A
Re,
E; E, KTATB

Fig.3.2 Thrée approaches to cope with null values.

-25=-

26

N
1

7.

Fig.3.3 Introduction of a new
attribute which ditin-

guish null values.

 COURSE

STUDENT STUDENT
WITH WITHOUT
DEGREE DEGREE

@b & @

"TEACHER
WITH ROOM#
-ROOM

Fig.3.4 A conceptual scheme.

-26-

