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1. INTRODUCTION.

Arithmetical sequences are, in general, infinite{
sequences of positive integers, of symbols on finite»alphabet, or
of real ( complex ) numbers. Once an arithmetical sequence is
exposed, several problems will arise: How to genercte the
sequence? What is the essential property of the given.sequence?
How to characterise the sequence? How is the‘ampunt.of sequences
of given type? If we know quite well the structure of fhe
sequence, we can reply to all these problems easily.

Even in high-school mathematics syllabus, the simplest
cases are already given, such as, arithmetical progression,
geometrical series, linear recurrence sequences of second order,»
etc... But distribution properties or number-theoretical
properties, like divisibilityk are on question, then we are soon

confronted with certain difficulty.



By using Fourier analysis ( harmoniq analysis), we
cannot say too much on number-theoretical properties, but we are
able to give a fairly good discgiption of distribution properties
of arithmetical sequences, which indicates the degree of
complexity of them.

Let us start’with too extremes with respect to .
distribution‘properties. Periodic sequences have extremely
simple structure and we can‘conclude almost all questions on
them. Starting from the periodicity several attempts have been
made toward more complicatedﬁsequences.

Random sequences are supposed to be another extreme.

The notion of random sequeﬁces is in itself contradictory. It is
always possible to clarify an aspect or several aspects of
randomness, but ihpossible to explain‘evefy property of the
notion of randdmness, to Whiéh We won't enter in this symposium .

Between two extremes, we are interested in construgting
steps which characterizeqthe degree of randomness in some sense.
Several methods and théir results shall be exposed in the sequei
in this Proceedings‘( Kokyu-Roku ). . In this ?eport I will explain

normal numbers, one extreme, and dimension as a tool of steps



between two extremes.

2. NORMAL NUMBERS.

In 1909 Emile Borel defined normal numbers. At that
time modern probability theory based on Lebesgue measure theory
did not exist. Borel kept his style to write down his papers
even after the famous Kolmogorov's memorial work "Grundlagen der
Wahrscheinlichkeitstheorie" . Anyway Borel is{one of the founder
of probability theory. In his paper "lLes probabilités
dénombrables et leurs applications arithmétiques'" , he
distiguished probabilities into three types: discontinuous
probabilities, denumerable probabilities and continuous ( or
geometrical ) probabilities, and he discussed the second case.
His discussion was essentially Borel-Catelli's lemmas.

Secondly he considered the decimal fractions, that is

X eIO = [0,1) and x 1is represented by
a_ (x) b_(x)
X = § n or x = E n
n=1 107 n=1 g

where g 1is an integer superior to 1 ( expansion to base «a ).
He supposed on decimal fraction as following:

i ) the digits {a (x)} n = 1,2,,,,(:or{bn(x)} ) are independent
n . .
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ii) each digit takes one of the values 0, 1,..., 9 ( or g-1 )
with equal probability,

and he studied with his supposition the probability for which a

decimal fraction is contained in a given interval in IO = [0,1)

and concluded that this probability is equal to the length of the

given interval.

Then he took his attention to the value of a digit, say
3, and the probability for which a digit takes the value 3 is,
under his supposition, 1/10 and ‘{an(x)} n=1,2,... are
independent hence this is the divergent case of Borel-Cantelli's
lemma. The conclusion is that the value 3 appears infinitely
many times with probability one.

This led him to define normal numbers. Let us:fix the
notation. A real number x 1is represented in g-adic expansion
where q 1is an integer superior to 1 and fixed ( we call it
base ): ' ®

x = 25:. an(x) 0 = ah(x) < g-1

n=-= g

only finite numbers of terms {a 1(x), a 2(x),... 1  are nonnull.

a_ (x)
{(x} = x - [X] = E nn , the fractional part of x.



A (j3x) = #{ n <N ; = 3
Nldix) = #n < a (x) =]

and
A (B ;x) =#{ n < N ; a (x) =b , a X) =b ;...
N( Kk ) # — n( ) 1 n+1( ) 2
a (x) =b 1,
n+k-1 k
where Bk = b1b2"'bk is a block on a finite alphabet
{0, 1,... g-1 1 .

DEFINITION. A real number x 1is said to be "simply normal to
base q" 1f, for any integer j; 0 < J < q-1,

pim £ A (35ix3) = 1/q .
Borel stated thét almost all real numbers are simply normal to
base g .
DEFINITION I. A real number x 1is said tp be‘”normal to base q"
if, for any positive integer k and fof any bloék er',

Lim % A (B ix)) = 1/4% .
DEFINITION II. A real number x 1is said to be '"nmormal fo base q"
if all of the nqmbers X, qx,qu”"qu,... are simplyAnormal to
bases q, q2,q3,...
Borel's original definition was the second one and he stated the

first definition as a property. The first problem to solve was

equivalence between these two definitions.



In 1949, D.D.Wall tried this problem in his Ph.D. Thesis
in Berkeley without success but he obtained other necessary and
sufficient conditions on normality. In 1951 Niven and Zuckerman
provgd this equivalence. Their proof was simplified by Cassels
in 1953. Pillai got the following theorem in 1940:

THEOREM ( PILLAI ). A real number x is said to be normal to

base q if x 1is simply normal to the bases q, q2, q3,...

Using the result of Niven-Zuckerman, the proof of Pillai's

theorem‘was simplified by Maxfield in 1952. Ldng refined this
‘2 3 | m

result replacing the bases q, g, q°,... by %, qd%, qd%s,...,

where 1 <m < m,<m,2 ... an infinite sequence of positive

1
integers, and can't by any finite mifs.

Afterwards all of these necessary and sufficient
conditions were proved using ergodic arguement by Christién Batut
and myself. Michel Mendés France gave another necessary and
sufficient condition on normal numbers:

THEOREM ( MENDES FRANCE ). Let ¢n(x) n=20,1,2,... be the

Rademacher functions. Suppose that x 1is not dyadic rational.

Then x 1is normal to the base 2 iff

-1 |
lim._Ei X)ewr (x) =0
N+« N cbn+k (x) q)n+k

n=0 1 s
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holds for all s > 1 and all distinct nonnegative integers kl,..

This result was the first his publication (1), with
which he entered into the society of working mathematicians and
since then he is quite préductive ( see the list of hié
publications ).

Now we discuss on the explicit construction of normal
numbers. Sierpinski 1917 and Lebesgue 1917 gave a partially
explicit construction of normal numbers. A simplé exampie is due
to Champernowne in 1933 as‘following: 0.123456789101112131415...,
simply successive arrangement of every positive integer and
normal to the base 10. Shiokawa and Uchiyama obtaiged neat
results on dyadic Champernowne numbers in 1975.

Let P, be the n-th prime, O.p1p2...pn;.is normal to the
base 10 proved by Copeland-Erdos, which led a general
cqhstruction of normal numbers to the base 10, that is, the
successive arrangement of [ne] >1 (n = 1,2,... ). The best
estimation of the sum of digits of this integer sequence[ne] o> 1

was obtained by Shiokawa. Champernowne numbers are

transbendental, which was proved by K.Mahler.



It is not known that number-theoretically interesting
irrationals, such as e, =, vZ, log 2 are normal or not. An
answer related to this problem was given by Kamae and Mendés
France et al. (26) in 1977 during Kamae's stay in Bordeaux but
this is not the direct answer to the original normality of
algebraic numbers.

By the way the set of all simply ﬁormal numbers, normal
numbers are of full Lebesgue measure but these two sets are of

the first category ( see papers of Salat, Schweiger and mine ).

3. DIMENSION.

The concept of dimension has been cohsidered as a
obvious notion before Cantor's one to one correspondence between
the unit interval and a square in 1877. Peano constructed so-
called Peano Curve which maps continuously the unit interval tQ
the whole of a square in 1890. This Peano Curve is not a
topologocally homeomorphisme but these results led us to define
rigorously the concept of dimension.

Poincaré was probably the first to point out the

necessity of the mathematical definition of dimension in 1912 and



defined the dimeﬁsion induétively by’using intuitive geometrical
concepts. Brower followed on the Poincafé's line and Urysohn and
Menger established the conéept of dimension which is
topologically invariant in any compact metric space. There are
many subsequent results on dimension in an abstract topological
space, such as Hufewicz, Tumarkin, Fréchet, Kunugi, Morita,
Nagami and so on.

The dimension stated just now is topblogical invariant,
hence called topological dimension. But in order to classify the
set of nonnormal numbers, the topological dimension is not at all
a good device. What we need is fractional dimension. taking non-
integral values or Hausdorff dimension. In 1919 Hausdorff
introduced the outer measure and his dimension and calculated the
Hausdorff dimension of the ternary Cantor sef which is equal to
log 2/1og 3 .

Every linear set of positive Lebesgue measure has
Hausdorff dimension one. Furthef more‘generally every set of n-
dimensional positive Lebesgue measure has Haﬁsdorff dimension n.
Every subset of n-dimensional Euclidean space is of Hausdorff

dimension less than or equal to n
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The set of all normal numbers is a linear set’of full
»Lebgsgue measuref thgnwits Hausdorff dimension is equal to one.
The set of nonnormal numbers is henceforth a null set but we pan
classify the subsets of nonnormal numbers by their digit
properties by means of Hausdorff dimension.

The set of all numbers which are not.simply normal is»a
ngll set but of Hausdorff dimension one. This was proved by
Eggleston in 1949 and demonstrated by using A.Beyer's result by
VMendéstrance (3) in 1963 and by Billingsley in 1965 with his
powe?ful technique to calculate the Hausdorff'dimension. The set
of simply normal numberg which are not normal is of measure zero
but of Hausdorff dimension one, proved by myself in 1971.

Denote the set of all normal(numbers to the base r by
B(r). _If we translate B(r) by adding some integgr, but it still

“remains the same set B(r), because the normality -depends only on
the decimal expansion aftter the point and not on the integral
part. If we replace adding integer by a rational, the B(r)
translated still remains the séme obviqusly. But the translaﬁion
by the multiplication of non-zero ratiqnal A eQ - {Q} is not SO
evident. Maxfield proved that if x €B(r) and * eQ - {O},‘u eQ

- 10 -



11
then A x + pe B(r) in 1953. Batut and myself in 1980 gave an
extremely elementary proof of this result without any knowledge
on Fourier analysis and got also an ergodic proof.

A big problem on normal numbers is the change of base.
Cassels' paper said that Steinhauss posedvthe following problem
in the New Scottish Book as the problem 144, which we can't find
in the new edition by Birkhéuser 1981; How far the property of
being normal with respect to different bases is independent?

J.W.5.Cassels and W.M.Schmidt replied to this gestion
independently. If two positive integers r and s are
algebraically independent, that is log r/log s €Q, then
B(r) # B(s)/. The Hausdorff dimension of the difference B(r) -
B(s) is equal to one proved by myself in 1978. Relatéd problems
to base change are posed by Mendes France in Problems Session.

Let P Dbe the setkof real polynomials and let E(P) Dbe
the set of real numbers whose n-th binary digit from a certain
point on is 0O or 1 according as [o(n)] ié even or odd for
some ¢ €P . Mendes France (4) proved that no number in E(P) is
normal to the base 2 and that E(P) has Hausdorff dimension
zero. This results led him to study the specﬁrum of arithmetical

sequences; a part of Fourier analysis on arithmetical sequences.
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