<table>
<thead>
<tr>
<th>Title</th>
<th>Rational Smith Equivalence of Representations (TRANSFORMATION GROUPS AND REPRESENTATION THEORY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Petrie, Ted</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1983), 501: 74-85</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/103678</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Rational Smith Equivalence of Representations

Ted Petrie
Rutgers University and
University of Tokyo

§ 1. Statement of results.

A famous theorem of Atiyah-Bott and Milnor asserts that if a finite group G acts smoothly on a closed rational homotopy sphere Σ with $\Sigma^G = p \cup q$, then the representations of G on $T_p\Sigma$ and $T_q\Sigma$ are equal provided the action is semi-free. This is a report on joint work in progress with K.H. Dovermann where we show that for many cyclic groups of odd order, the result is false if the semi-free assumption is deleted. This is a prelude to our study where rational homotopy sphere is replaced by homotopy sphere. The author wishes to emphasize that proofs of results stated here exist in outline form only; so there may be some changes before the results obtain final form.

Let V be a representation of G and E an acyclic G space on which G acts freely. A smooth G manifold W is said to be V framed if there is a stable G vector bundle isomorphism $\beta : E \times TW \to E \times W \times V$. These bundles are G vector bundles over $E \times W$. There is an obvious notion of framed cobordism for V framed manifolds. Such a cobordism is said to be $\text{rel}(W^H|H \subseteq G \ H \neq 1)$ if it is a product on H fixed sets for $H \neq 1$. By definition W is framed if it is framed for some V.
Let U and V be representations of G. Write $U \varnothing V$ if there is a rational homotopy sphere Σ with G action such that $\Sigma^G = p \cup q$, $T_p \Sigma = U$, $T_q \Sigma = V$. We define a set S_1 of divisors of $|G|$, a subgroup $\overline{R}(G)$ of the complex representation ring of G and a homomorphism

$$\lambda : \overline{R}(G) \to \bigotimes_{d \in S_1} \mathbb{C}^X/\mathbb{Z}_2 = \Gamma.$$

Here $\mathbb{C}^X = \mathbb{C} - \{0\}$ and \mathbb{Z}_2 is the subgroup of \mathbb{M}^X generated by $(-1, -1, \ldots, -1) = -1$. Note Γ is a multiplicative group.

Theorem A: If $z \in \text{Ker}(\lambda)$, then there are representations U and V of G such that $r(z) = U - V$ and $U \varnothing V$. Here $r : R(G) \to R^n(G)$ denotes "realification".

For cyclic groups with at least four distinct primes dividing $|G|$, $\text{Ker} \lambda$ is non zero. In fact it's usually large. The main geometric ingredient in the proof of Theorem A is this theorem:

Theorem B: Let G be cyclic of odd order. Suppose W is a closed $4k$ dimensional framed manifold with G action such that

i) $\dim W^G = 0$

ii) For $H \subset G$, $H \neq 1$, the Euler characteristic of $W^H \chi(W^H)$ is 2 and $\dim W^H < \frac{1}{2} \dim W$

iii) $\text{Sign } (G, W) = 0$

Then W is framed cobordant to W' rel$\{W^H | H \subset G, H \neq 1\}$ and W' is a rational homotopy sphere.
Corollary C: \(W^G \) consists of 2 points \(p \) and \(q \) and
\[T_p^G \sim T_q^G. \]

\section{Outline of ideas used in theorems A and B.}

We briefly indicate the ideas used in A) and B). This requires additional notation. Let \(\Lambda \) be \(\mathbb{Z} \) or \(\mathbb{Q} \) and \(n \) be an even integer. Let \(W_n(G, \Lambda) \) be the equivariant Witt ring denoted by \(W_n(\Lambda, G) \) in [ACH]. Briefly \(W_n(G, \Lambda) \) consists of equivalence classes of pairs \((M, \phi) \) where \(M \) is a \(\Lambda \) torsion free \(\Lambda(G) \) module and \(\phi \) is a non singular, \(G \) invariant \(\Lambda \) valued bilinear form which satisfies
\[\phi(x, y) = (-1)^{n/2}\phi(y, x) \] for \(x, y \in M \). If \(W \) is a closed manifold of dimension \(n \) with \(G \) acting preserving orientation, then \([W]_\Lambda \in W_n(G, \Lambda) \) is the class of
\((H^{n/2}(W, \Lambda)/\text{Torsion}, \phi_W) \) where \(\phi_W \) is the cup product bilinear form on \(W \). We remark that \([W]_\Lambda \) depends only on the \(G \) cobordism class of \(W \). Note this key observation:

2.1 \([W]_\mathbb{Z} = 0 \) if \(W \) is a rational homology sphere. In the case \(|G| \) is odd [ACH] give necessary and sufficient conditions that \([W]_\mathbb{Z} = 0 \) which we exploit. To do this we henceforth suppose \(G \) is an odd order cyclic group and \(W \) is a closed oriented smooth \(G \) manifold of dimension \(4k \) and in addition we assume \(\dim W^G = 0 \). In this case there is a simple formula for the torsion signatures \(\{w_p(G, W) \mid p \text{ is a prime which divides } |G|\} \). Note that in the notation of [ACH] \(w_p(G, W) = f(T, p) \) where \(T \) generates \(G \). See [ACH] pages 149-151. Let \(p \) be a prime which divides \(|G| \) and let \(P \) be
the p Sylow subgroup of G. Call p good if there is no integer x such that $-1 \equiv p^x \mod |G/H|$; otherwise p is bad.

Lemma 2.3. Under the above assumptions on W, $w_p(G, W) = 0$
if p is good and $w_p(G, W) = \sum_{x \in W^G} \frac{1}{2}(\dim T_x W - \dim T_x W^P) \mod 2$
if p is bad. (See 2.20)

Proof: This is immediate from [ACH, 1.8 p.141 and 3.5 p.149].

We emphasize that $w_p(G, W) \in \mathbb{Z}_2$ for each prime p which divides $|G|$. These invariants are all functions of $[W]_2$.

Theorem 2.4. [ACH, 3.6 p.151] $[W]_2 = 0$ iff $\text{Sign}(G, W) = 0$
and $w_p(G, W) = 0$ for all p which divide $|G|$.

Corollary 2.5. If W is a rational homology sphere with $W^G = x \cup y$ (2 points), then $\frac{1}{2}(\dim T_x W^P - \dim T_y W^P) = 0(2)$ for each p Sylow subgroup for which p is bad.

Proof: This is immediate from 2.3 using the fact that $\dim T_x W$ and $\dim T_x W^P$ are even.

Corollary 2.5 gives an especially simple necessary condition that the representations U and V of G occur as
$(T_x W, T_y W)$ for some smooth action of G on a rational homology sphere W with $W^G = x \cup y$. Actually much more stringent necessary conditions come from the condition $\text{Sign}(G, W) = 0$.

In fact if we add the condition that W be framed, all $w_p(G, W)$ vanish. Here is the argument:

Theorem 2.6. Suppose W is framed and $W^G = x \cup y$, then $w_p(G, W) = 0$ for all p which divide $|G|$.
Proof: The results of Atiyah in [A] assert:

\[+ \) Ker(R(G) \to K_G(E) = K(E/G) = \hat{R}(G) \]
\[= Ker(R(G) \xrightarrow{\text{res}} \underset{P \text{ Sylow}}{\coprod} R(P)) \]

(The \(P \) component of \(\text{res} \) is \((\text{res})_P = \text{res}_P \) where
\(\text{res}_P : R(G) \to R(P) \) is restriction to \(P \subset G \).) Clearly
\(T_x^W - T_y^W \in Ker(R(G) \xrightarrow{\text{res}} \underset{P \text{ Sylow}}{\coprod} R(P)) \) if \(W \) is framed; so
\(T_x^W - T_y^W \in Ker(R(G) \xrightarrow{\text{res}} \underset{P \text{ Sylow}}{\coprod} R(P)). \) Now the assertion
\(w_p(G, W) = 0 \) follows from 2.3. (See 2.19)

Corollary 2.8. Let \(W \) be a framed \(G \) manifold with
\(W^G = p \cup g. \) Then \([W]_2 = 0 \) iff \(\text{Sign}(G, W) = 0. \)

Now we discuss framed manifolds and equivariant surgery. The process of equivariant framed surgery is well understood when \(G \) acts freely on \(W \). (See e.g. [W]). We treat this case first. Suppose \(G \) acts freely on \(W \) and
\(\beta : TW \cong (W \times V) \) is a stable \(G \) vector bundle isomorphism for some representation \(V \) of \(G \). Call \(\beta \) a strong framing of \(W \). Then for any \(x \in \pi_j(W) \) \(j \leq n/2 \) \((n = \text{dim } W) \), there is a \(G \) immersion (imbedding if \(j < n/2) \)
\(\iota : G \times S^j \times D^{n-j} \to W \) such that \(\iota|S^j \) represents \(x \). If \(\iota \) is a \(G \) imbedding, there is a strong framing \(\beta' \) of \(W' = W\text{-interior } (G \times S^j \times D^{n-j}) \cup G \times D^{j+1} \times S^{n-j-1} \) which agrees with \(\beta \) over \(W\text{-interior } (G \times S^j \times D^{n-j}). \) This construction \((W, \beta) \to (W', \beta') \) is called equivariant surgery and may be used to kill \(\pi_j(W) \) for \(j < n/2 \). In fact \(W \) is
strongly framed cobordant to a manifold \(W' \) with \(\pi_j(W') = 0 \) for \(j < n/2 \). For elaboration of these ideas, see [PR].

This discussion generalizes as follows:

Lemma 2.9. Suppose \(W \) is framed and \(\dim W^H < \frac{1}{2} \dim W \) whenever \(H \neq 1 \). Then \(W \) is framed cobordant rel\{\(W^H | H \neq 1 \)\} to a manifold \(W' \) with \(\pi_j(W') = 0 \) for \(j < n/2 \). (\(n = \dim W \)).

Proof: Here is an outline: Let \(W^* = W - \bigcup_{H \neq 1} W^H \); so \(G \) acts freely on \(W^* \). This means the projection of \(E \times W^* \) on \(W^* \) is a \(G \) homotopy equivalence and this means that framing and strong framing of \(W^* \) is the same notion. Next note that the inclusion \(W^* \to W \) induces an isomorphism in homotopy in dimensions not exceeding \(n/2 \); so any class \(x \in \pi_j(W) \) \(j < n/2 \) comes from a class \(x' \in \pi_j(W^*) \). Now note that the framing of \(W \) gives a framing of \(W^* \); so \(W^* \) is strongly framed. Thus we may apply the above discussion to \(W^* \) and \(x' \).

This provides a \(G \) imbedding of \(G \times S^j \times D^{n-j} \) in \(W^* \subset W \), so we can form \(W' = W \)-interior \((G \times S^j \times D^{n-j}) \cup G \times D^{j+1} \times S^{n-j-1}\) as before. (Observe that \(W^H = W^H \) for all \(H \neq 1 \). This is the reason that the cobordism asserted is rel\{\(W^H | H \neq 1 \)\}.

Lemma 2.10. Suppose \(\chi(W^H) = 2 \) for all \(H \neq 1 \) and \(\tilde{H}_j(W, \mathcal{Q}) = 0 \) for \(j < n/2 \) \(n = \dim W \). Then \(H_{n/2}(W, \mathcal{Q}) \) and \(H^{n/2}(W, \mathcal{Q}) \) are free \(\mathcal{Q}(G) \) modules.

Proof: By hypothesis \(\dim W^G = 0 \); so \(W^G \) is non empty. Let \(x \in W^G \) and let \(V \) be the representation \(T_x W \). Set \(n = 2k \) and \(S = S(V \oplus \mathbb{R}) \) where \(\mathbb{R} \) is the trivial one dimensional real
representation and $S(V \oplus \mathbb{R})$ is the unit sphere of $V \oplus \mathbb{R}$.

The Thom map $f : W \rightarrow S$ obtained by collapsing the exterior of an invariant disk centered at x has degree 1. Let M_f be the mapping cone of f. Then $\chi(M_f^H) = 1$ for $H \neq 1$ (because degree $f = 1$ and $\chi(W^H) = \chi(S^H) = 2$ for $H \neq 1$). In addition $\tilde{H}_i(M_f, \mathbb{Q}) = 0$ for $i \neq k + 1$. These two properties imply that $H_{k+1}(M_f, \mathbb{Q}) \cong H_k(W, \mathbb{Q})$ is a free $\mathbb{Q}(G)$ module. (See [0])

The obstruction to converting a framed manifold W satisfying:

2.11 $\dim W^H < \frac{1}{2} \dim W$ and $\chi(W^H) = 2$ for $H \neq 1$.

into a rational homology sphere \sum using equivariant surgery is an element $\sigma(W) \in L(\mathbb{Q}(G))$. Here $L(\mathbb{Q}(G))$ is an abbreviation for the Wall group $L^h_n(\mathbb{Q}(G), 1)$. Briefly this is an abelian group consisting of equivalence classes of triples (M, λ, μ) where M is a free $\mathbb{Q}(G)$ module, λ is a non singular, G invariant, \mathbb{Q} valued bilinear form which satisfies $\lambda(x, y) = (-1)^{n/2} \lambda(y, x)$ for $x, y \in M$ and μ is an associated quadratic form. (See [W, §5] for notation). If W satisfies 2.11, it is framed cobordant to a manifold W'' which also satisfies 2.11 and in addition, $\pi_j(W'') = 0$ for $j < n/2$ (2.9). By 2.10 $M = H^{n/2}(W'', \mathbb{Q})$ is a free $\mathbb{Q}(G)$ module. Then $\sigma(W)$ is the class of $(H^{n/2}(W'', \mathbb{Q}), \phi_w, \mu_w)$ where μ_w is the self intersection form of W'' (See [W, §5]).

There is an obvious homomorphism $\rho : L(\mathbb{Q}(G)) \rightarrow W_n(\mathbb{Q}, \mathbb{Q})$ which sends $\sigma(W)$ to $[W]_\mathbb{Q}$. Because n is 0 mod 4, ρ is
injective. We can now give a proof of Theorem B.

Proof of Theorem B: By i) and ii), \(W^G \) consists of two points \(x \) and \(y \). By 2.8 \([W]^Z = 0 \) and this implies that \([W]^Q = 0 \). But \([W]^Q = \rho \sigma(W) \). Since \(\rho \) is injective, \(\sigma(W) = 0 \). Since \(\sigma(W) \) is the obstruction to converting \(W \) to a rational homology sphere \(\sum \) and since \(\sigma(W) = 0 \), \(\sum \) exists.

Now we turn to the discussion of Theorem A. We view the cyclic group \(G \) as the subgroup of \(\mathbb{C}^X = \mathbb{C} - 0 \) consisting of the \(|G| \)th roots of unity. Let \(t^i \) denote the complex one dimensional representation of \(G \) on which \(g \in G \) acts on \(v \in t^i \) by \(g(v) = g^i \cdot v \) i.e. complex multiplication by \(g^i \).

A complex representation \(V \) of \(G \) may be uniquely written as

\[
V = \sum_{i=0}^{\lfloor \frac{|G|-1}{|G|} \rfloor} a_i t^i
\]

for some integers \(a_i \geq 0 \). For \(g \in G \),

\[
V^g = \{ v \in V | gv = v \}.
\]

When \(V^g = 0 \), we can define this complex number:

\[
2.12 \quad v(V)(g) = \prod_{i=0}^{\lfloor \frac{|G|-1}{|G|} \rfloor} \left(\frac{1+g^i}{1-g^i} \right) a_i \in \mathbb{C}^X.
\]

The assumption \(V^g = 0 \) means the denominator does not vanish. These complex numbers appear in the Atiyah Singer index formula for \(\text{Sign}(g, W) \) when \(\dim W^g = 0 \). Here is a discussion of this point. Suppose \(W^g = W^G \). (By hypothesis \(\dim W^G = 0 \).)

Let \(x \in W^G \). Since \(G \) preserves orientation, there is complex representation of \(G \) whose realification is \(T_x W \). Choose one \(T_x W \) for which the orientation given by the complex structure agrees with the given orientation on \(T_x W \). Then
2.13 \[\text{Sign}(g, W) = \sum_{x \in W} \nu(\tilde{T}_x W)(g). \]

We remark that if \(V \) and \(V' \) are two complex representations whose realifications are both \(T_x W \), then \(\nu(V')(g) = \pm \nu(V)(g) \); so there is a sign ambiguity for the right hand side of 2.13 as a function of the real representation \(T_x W \). This is ambiguity disappears when orientation is accounted for in the way mentioned. Another relevant elementary point is that if \(r(V) = T_x W \), there is a complex representation \(V' \) such that \(r(V') = r(V) \) and \(\nu(V')(g) = -\nu(V)(g) \) for all \(g \) for which \(dV' = 0 \).

Theorem B is used in the proof of Theorem A. To use Theorem B for this purpose we need to produce a framed manifold \(W \) with \(W^G = x \cup y \) (two points) and \(\text{Sign}(G, W) = 0 \). Let \(V = \tilde{T}_x W \) and \(U = \tilde{T}_y W \) and let \(g \) be an element of \(G \) for which \(W^g = 0 \). Then \(\nu^g = 0 = V^g \) and

\[\text{Sign}(g, W) = \nu(V)(g) + \nu(U)(g). \]

so

2.14 \[0 = \text{Sign}(g, W) \iff \nu(V)(g)/\nu(U)(g) = -1. \]

In summary we have obtained these conditions on two representations \(U \) and \(V \) of \(G \):

Lemma 2.15. Let \(W \) be a framed \(G \) manifold with \(W^G = x \cup y \), \(\tilde{T}_x W = V \), \(\tilde{T}_y W = U \) and \(\text{Sign}(G, W) = 0 \). Then

(i) \(V - U \in \text{Ker}(R(G) \xrightarrow{\text{res}} \prod P \text{Sylow}) \) and

(ii) \(\nu(V)(g)/\nu(U)(g) = -1 \) whenever \(W^g = W^G \).
(Note this implies \(U^g = V^g = 0 \).)

Lemma 2.15 and the discussion preceding it lead to sufficient conditions that two representations \(U \) and \(V \) occur (stably) as \(T_x^S \) and \(T_y^S \) for some rational homology sphere \(S \) with \(x^g = x \cup y \). We discuss this point.

Let \(S_1 \) be the set of divisors \(d \) of \(|G| \) such that \(|G|/d \) is a prime power and let \(S_2 \) be the set of divisors \(d \) of \(|G| \) such that \(|G|/d \) is divisible by at most three distinct primes. Let

\[
\mathcal{R}(G) = \{ U - V \in \mathcal{R}(G) \text{ such that i-iii hold}\}.
\]

i) \(V^g = U^g = 0 \) whenever \(g \in G \) and \(|g| \in S_1 \)

ii) \(\dim V^g = \dim U^g \) whenever \(|g| \in S_2 \)

iii) \(V - U \in \text{Ker}(R(G) \xrightarrow{\text{res}} \prod \text{R}(P)) \)

We define the homomorphism \(\lambda \) in Theorem A.

\[
\lambda : \mathcal{R}(G) \to \prod_{S_1} \mathbb{C}^x/\mathbb{Z}_2.
\]

If \(d \in S_1 \), the \(d \)th coordinate of \(\lambda \) is

\[
\lambda_d(V - U) = \nu(V)(g)/\nu(V)(g) \quad g = \exp(2\Pi i/d) \in G.
\]

We can only very briefly discuss the points of the proof of Theorem A. If \(z \in \text{Ker} \lambda \), there is a manifold \(W \) satisfying the assumptions of Theorem B and in addition \(W^g = x \cup y \) and \(T_x W - T_y W = r(z) \). Theorem A follows from this and Corollary C. Here are the essential points: There are complex representations \(U \) and \(V \) of \(G \) satisfying 2.16 i-iii and in
addition

2.17 \quad i) \quad r(V - U) = r(z) \\
ii) \quad \lambda(V - U) = -\frac{1}{2}.

(If \(\lambda(z) = -1 \), \(V - U = z \). If \(\lambda(z) = 1 \), then \(V - U \) is not \(z \), but \(r(V - U) = r(z) \). This is related to the discussion after 2.13.) Use 2.16 i) and the methods of [P] to produce manifolds \(X(V) \) and \(X(U) \) with these properties:

2.18 \quad i) \quad X(V)^G = x(\text{one point}), \ X(U) = y \ (\text{one point}) \\
ii) \quad X(V)^g = X(V)^G \text{ and } X(U)^g = X(U)^G \text{ whenever } |g| \in S_1. \\
iii) \quad TX(V) \text{ and } TX(U) \text{ are stably } G \text{ isomorphic to } X(V) \times V \text{ and } X(U) \times U \text{ respectively.}

By 2.16 iii) and 2.6 +), \(W = X(V) \sqcup X(U) \) is framed; moreover, \(x^g = x \cup y \) whenever \(|g| \in S_1 \) and \(T_xW = V, \ T_yW = U \) by construction. (Note 2.18 iii) which implies \(T_xW = r(V) \) and \(T_yW = r(U) \).) Whenever \(|g| \in S_1 \), \(\text{Sign}(g, W) = 0 \) because \(\lambda|g|(V - U) = v(V)(g)/v(U)(g) = -1 \). See 2.14. Of course the condition \(\text{Sign}(G, W) = 0 \) requires \(\text{Sign}(g, W) = 0 \) for all \(g \in G \) not just \(g \in G \) with \(|g| \in S_1 \). The fact that \(\text{Sign}(g, W) = 0 \) for \(|g| \notin S_1 \) and the other properties of \(W \) required for Theorem B are consequences of other properties of the construction of \(W \) which we omit.

2.19 \quad At some points in text we do not distinguish between real and complex representations. Since \(G \) is cyclic this should cause no problem.

2.20 \quad The assumption \(\dim W = 4k \) may be dropped.
References

1) [ACH] Alexander J., Conner P. and Hamrick G., Odd order
group actions and Witt Classification of inner
products, Springer Lecture Notes 625 (1977)

2) [A] Atiyah, M. F., Characters and cohomology, Inst. Hautes

3) [O] Oliver, R., Fixed point sets of group actions on finite

4) [P] Petrie, T., One fixed point action on spheres I, Adv. in
Math. 46 (Oct. 1982)

5) [PR] Petrie T. and Randall J., Transformation groups on
manifolds, Decker Lecture series, Fall (1983)

6) [W] Wall, C.T.C., Surgery on Compact Manifolds, Academic
Press (1970)