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1. Introduction

Let G = G(x,y) Dbe a strictly positive continuous function-
kernel on a lccally compact Hausdorff space X such that every
non-empty open set in X is non-negligible.

When G satisfies the domination principle, there exists a
positive measure & everywhere dense in X satisfying

(1) G(x,y) 1is locally &-integrable,
. £ .
(2) For any f in CK(X), VGf(x) = SG(x,y)f(y)dE(y) is in C(X).

Therefore, in this case, we can consider G as a continuous
kernel on x , that is, a positive linear form on CK(X) into C(X).

We say that G vanishes uniformly at infinity and write simply
G = o(l) unif. at oo when the following condition is saﬁisfied:

Ve > o, V F;compact, 3 K;compact S—

G(x,y) < on CK x F

™

suppose that G satisfies the complete maximum principle and

that G = o(l) unif. at . Then we can easily see that

the image Vé(CK(X)) is contained in CO(X) . Therefore,



109

as an application of the theorem of G.Lion [9], there exists a

3 ) of continuous kernels associated with VE
G,p ' pro G

nos

£

v

resolvent (V

We denote by V the continuous kernel on X defined by the

v ~ )
adjoint kernel G and a measure £ satisfying the conditions

corresponding to (1) and (2). Then, can we also associate with
V% a resolvent (Vé )' of continuous kernels on X ?
G G,p pro

We stress here that the complete maximum principle is not a dual
principle and that G = o(l) unif. at o0 does not necessarily
imply ¢ = o(l) unif. at oo . Nevertheless, we can prove

the following

Theorem. Suppose that G satisfies the complete maximum
principle and that G = o(l) unif, at oo . k Then we can associate
with V& and VE the resolvents (Vg ) and (VE ) of

G v G,p p>ro v,
G G,p pro

continuous kernels on X respectively.

In relation to the probability theory, P.A.Meyer [10],
J.C.Taylor [11], R.Kondo [8] and F.Hirsch [4] developped the theory
of generalized kernel, called the proper kernel, satisfying the
complete maximum principle on the abstract measurable space.

For the existence of resolvent, they supposed that the kernel V
is regular instead of the stronger condition of Lion thatﬂ V(CK(X))
is contained in CO(X)

For the proof of our theorem, we first investigate the condition
for that there exists a resolvent (Vé,p)p;o‘ of continuous kernels
é in the case that G satisfies the domination

principle but it does not necessarily satisfies the complete maximum

associate with v

principle. The duality of domination principle plays an important

role in the rest of our proof.
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2. Reqularity of function-kernels

Definition 1. An 1l.s.c. function u(x) is said to be

G-supermedian when

Y u E.EO(G) ’ ﬂrGu(x) < u(x) n.e. on Su]
e===> | Gu(®¥) < u(x) on xJ |,

We denote by S(G) the totalitvy of G-supermedian functions on X .

For any u(x) in S(G) and for any closed set F in X , the

reduced function Rgu(x) of u(x) on F is defined by

Rgu(x) = inf { v(x) € S(G) ; v(x) 2 u(x) n.e. on F } .
Definition 2. We say that G 1is regular ( resp. weakly

regular ) when we have, for any X € X and any compact exhaustion

+00
(Kn)n=l ’
l%q; RG Gex (x) = o everywhere ( resp. nearly everywhere ) on X .
n-y+ o &
CK (o]
n

Further we say that G 1is strongly regular when we have for any

XOGE X
lim RG Ge_ (x) = o uniformly on every compact set.
nato ERC Xg
n
Lemma 3. Let u(x) be an 1l.s.c. function and N = N(x,y)
be an 1l.s.c. function-kernel defined by N(x,y) = u(x). Then

the following four statements are equivalent

(3) u(x) 1is G-supermedian.

(4) G “{ N  ( G satisfies the relative domination principle
with respect to N ).

(5) G I N ( G satisfies the transitive domination principle

v

with respect to N ).

A ~ v 4
(6) Vu E_(G) , Vv oM, Gu(x) £ Gv(x) n.e. on Su

= lmam ¢ lumavx)
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Proof. By the definition of G-supermedian function, we can
easily verify the equivalence (3)<——(4) . On the other hand,
the equivalence (4)«—(5) 1is well known. Therefore it suffices

to prove that (5) «— (6)

Suppose that ¢ = ﬁ and that, for pc¢ EO(G) and v € Mo’ the

inequality éu(x) < év(x) holds n.e. on Su . Then we have
ﬁu(x) T ﬁv(x) on X . Therefore
.
Su(x)du(X) = NEY(X)du(X) = ENU(X)dEY(X)

A

Sglv(x)dey(x) gNsy(x)d\)(x) gu(x)dv(x).

This implies (6).
Inversely we suppose (6) and that, for u € EO(G) and v € Mo’

the inequality éu(x) < év(x) holds n.e. on Su . Then

Ny (x) = SNex(y)du(y) = ju(y)du(y) < gu(y)dv(y) = gNede = NV (x).
This implies G — N and hence (5)

When G satisfies the domination principle, we can express
the reduced function of potential explicitly using the balayaged
measure. ~ For a measure yu € Moand a compact set F , we denote
by B(u,F;G) the totality of balayaged measures of u on F with

respect to G

Lemma 4. Suppose that G satisfies the domination principle.

Then, for any u = Mo and for sufficiently large n , we have

RS Gu(x) = lim feu. _(x) ,
C_K P>+ n,p
n

where Un e B(U,Can\Kp; G)

14
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Proof. Put u(x) = lim 1Gu (x) . Then, for a € E (G)
= i n,p o
and B ¢ Mo’ the inequality éa(x)ﬁé éB(x) n.e. on Sa implies
Eudu = 1lim E,Gun,pda = lim E)Gudun,
p p
£ _ (
< i } 3 = 1i G dag = d
< lim \GBdun,p im ‘g un,p B \Bu B
p - p :
Therefore, by virtue of Lemma 1 , u(x) is G-supermedian. On
the other hand, the equality Gu p(x) = Gu(x) n.e. on éﬁ;/“\Kp
14 .
implies wu(x) = Gu(x) n.e. on CKn . By the minimality of the
reduced function, we have
G ' - 1im?
R Gu(x) <€ u(x) = 1lim | Gu (x)
CK p nlp
n

Conversely, let v(x) be a function in S(G) such that
v(x) > Gu{x) n.e. on CK_ . Then Gu (x) < v(x) n.e. on
- n n,p =

CKn/\ Kp implies u(x) < v(x) on X and hence

lim TGun p(x) = u(x) ¢ RG Gu(x)

p CK_

because RG Gu(x) 1is the infimum of such v(x) .

CK
n

Theorem 5. A continuous function-kernel G verifying the

domination principle is regular if and only if its adjoint & is

regular.
Proof. Let € ( resp. € ) be a measure in
X,n,p Yy.n,p
—_— N . —— .\/
B(éx’CKn{‘Kp’G) ( resp. B(gy,CKn[\Kp,G) . Then we have
G?x,n,p(y) = ééy,n,p(x) for sufficiently large n and p

This implies
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<

G _ v
R__Ge (y) =R Gey(x)

CK CK
n n

Therefore the duality of regularity holds

3. Existence of resolvent associated with function-kernel

A positive linear form on CK(X) into C(X) 1is called a
continuous kernel on X
) of

Vp;_p>o
kernels is said to be a resolvent associated with V when

For a continuous kernel V on X ,‘a family (

(7) For any p and g > o ,

vV -V_ = - V.-V = - v .-Vv_,
b q;(qp)pq (c_[p)qp

(8) v= 1limV_ =V
o) o

€
G

the continuous kernel on X defined by G and § satisfying the

When G satisfies the domination principle, we denote by V

conditions (1) and (2) . Now we investigate the condition
for that there exists a resolvent (Vg ) associated with Vg
G,p pro G

and constituted by continuous kernels on X.
As an application of the theorem of F.Hirsch [4], the author

obtained the following lemma in [2]

Lemma 6. Suppose that G satisfies the complete maximum
principle. If for any £(x) in CK(X) , we have

lim RG G(f&) (x) = o uniformly on every compact set,

M—>+txX CK

n
then there exists a resolvent (Vé p)p\o of continuous kernels on
4 Ve
g

X associated with VG



We remark that G satisfies the continuity principle when it
satisfies the domination principle. Put
FO(G) = -iv £ EO(G) ; Gv(x) is finite and continuous on X }

For a measure o in FO(G) , we define a continuous function-kernel

K = K(le) by

K(x,y) = E;"o—}EET G(x,y) Gal(y)

Then the following lemma is an immediate consequence of the equality:

K G

R Kp(x) = R G (Ga u)(x)~Lafor any U € M
CK_ CK_ Goix) °©
n n
Lemma 7. The following statements are equivalent.
(9) G 1is regular ( resp. strongly regular }.
(10) K is regular ( resp. strongly regular ).

Now we can associate a resolvent with a kernel which satisfies
the domination principle but does not necessarily satisfiy the

complete maximum principle.

Theorem 8. Suppose that G satisfies the domination principle
and that G is strongly regular. Then there exists a resolvent
(Vg ). associated with Vg and constructed by continuous kernels.

G,p’'pro G
&

Proof. Let VK be a continuous kernel on X defined by

VK(fg)(X) = \SK(X,Y)f(Y)dE(Y) ' vE € CK(X)
First we construct a resolvent (V ) associated with V_ .

K p'pro K

We remark that K = K(x,y) satisfies the coplete maximum principle

because G satisfies the domination principle. Therefore, for
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any f ¢ CK(X) and any X € X , we can fined a constant c¢ > o
such that K(f§)(x) < c GEX (x) on X . The kernel G being

o
strongly regular, Lemma 7 asserts that K = K(x,y) 1is also strongly

regular. Therefore there exists, for any € > o and for any

compact set "F , an integer ng veryfying

Kexo,n,p(x) < € on F for every n and p with p>n 20,

i i ; . L

where Exo,n,p is a measure in B(EXO, Can\Kp K) et
~ PR

£ resp. ¢ be a measure in B( £ CK._ "K_ ; K

( g)n,p ( P x,n,p ) ( £f¢ , n D )

‘ — v
( resp. B( € CKn(\ Kp ;s K) ) . Then for any x ¢ F and

any n and p with p»>n 2ng , we have

v . _ va
K(fE)n,p(x) = JKexd(fi)n’p = SKex,n,pd(fg)n,p
B jK(fg)nrpdexlnrp - EK(fg)dEX’n’p
< c‘gKe de = c.gKe ag
X X,n,p X ,n,p X,n,p
o o”
VoA \4 dN
= c gKgx,n,pdgxo,n,p = C Kex exo,n,p
= ¢ Kg (x) < ce
X ,n,p
o}
and hence
lim RK K(fg)(x) = o uniformly on every compact set.

n=® CK
n

Therefore, by virtue of Lemma 6 , there exists a resolvent (Vg )

K,p'pro
of continuous kernels on X associated with Vg . Let Vg be

K G,p
the continuous kernel on X defie@@ by ‘
e

£ § £

Vg p(£8) (x) = Galx) Vi (goE) 00,
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£ )
G,p’'pro
and constituted by continuous kernels.,

Then we can eacsily see that the family (V is the desired

£

resolvent associated with VG

Definition 9. Let G and N be two continuous function-

kernels. We say that G vanishes uniformly and more rapidly

than N at -infinity and write simply G = o(N) unif. at & , when

the following condition is fulfiled:

VF ; compact , VYa & M 3K ; comact S—

Ge_(y) { Na(y) for x €F and vy ¢ CK

Lemma 10. Suppose that G satisfie the domination principle
and that there exists an another continuous function-kernel N
satisfying

{11) G A{ N ( G satisfies the relative domination principle
with respect to N ),

(12) G = o(N) unif. at oo

Then both G and é are strongly regular.

Proof. First we shall prove that G 1is strongly regular.
For any X € X and any compact set F , we can fined a measure
o in MO such that Ng(x) < ¢ on F . Our assumption that
G = o(N) unif. at oo asserts that there exists an integer ng
such that Ge, (x) < Na(x) on @K; for any n with n > n_
o

Let Eko,n,p ( resp. ,n,p ) be a measure in B(EXO,CKn/\KP; G)

( resp. B(Ex,éf; \KP;G) ). Then, for any n and p with p>n2ng

and for any x & F , we obtain



v Vl\/
€y 'n’p(x) = SGS (y)de ’n’p(y) = &G x’n,p(y)dsX ,n,pY)
o o o
= | = &
0% n,p Y% n,p Y SGE S 0, p )
V3 v/\/
< gNoc(y)an,n,p(y) = gNex,n, () do (y)
The inequality e (y) < Ge (y) for any y € X and the
X,n,p X )
4
assumption (11) implies the inequality Nex n p(y) < ﬁex(y) on X ,
14 ’
pecause (11) is equivglent to the fact that é Eliﬁ . Therefore
v \"4
< =
GexO,n’p(x) < Nsx’n,p(y)da(y) < Nsx(y)da(y) Na(x) < € .

Hence by Lemma 4, we obtain

1im R® Ge (x) = o uniformly on F

= +00 (:Tn X5
Consequently G 1is strongly regular.

We can prove that é is also strongly reqular. In fact, for
any X € X and any ¢ > o , there exists a measure B & Mo such
that NB(xO) < €. Our assumption that G = o(N) unif. at oo
asserts that we have, for any compact set F and for sufficiently
large n ,

Ge (y) < NB(y) for any x € F and for any y¢€ éﬁ;l

. —— \4
Let ¢ be a measure in B(e_ ,CK_.NK ;G) . Then, for any
XorDP Xo n p

x € F and sufficiently large n and p , we have

v ~ ~
Gex 'n’p(X) = gGsx(y)dsx ’an(y) < SNB(y)dEX ,n’p(y)
O (@] O
Y \%
= SNEXO,H,P(y)dB(Y) < SNEXO(Y)dB(Y) = NB(x)) <& |

10
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By virtue of Lemma 4, this implies that

v

lim RG ée (x) = o uniformly on F

T CR %o

\4
and hence that G 1is strongly regular.

v .
When G satisfies the domination principle, G satisfies the
continuity principle. Therefore there exists a positive measure

¢ everywhere dense in X satisfying

(1)' G(x,y) is locally g—integrable,

~

(2)' For any £ € Cp(X) , VoE(x) = Sé(x,y)f(y)dg(y) is in C(X).
Yy |

The following main theorem mentioned in section 1 is an

immediate consequence of Theorem 8 and Lemma 10 .

Theorem 11. Suppose that G satisfies the complete maximum
principle and that G = o(l) unif. at o . Then we can associate
with V5 and V° the resolvents (Vg ) and (VE ) of

G & G,p p>o0 &,p pro

continuous kernels on X respectively.

Examples 12. We denote by N* the riesz kernel of order o

‘on R" ;o N = Nu(x,y) = |x - Y{a~n (nz2 3, o<oa <n))

Let 6. y and R be numbers satisfying o< § <y <a <B<2 and

T,v and » be measures such that NYT(X) ’ NBv(x) R Ndm(x) are

finite and continuous on X . Put
o
N (x,y)
(a) G(x,y) = ” B
N'T(y) + N v (y)

11
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o
(b) G(x,y) = _E_észlf,
N'T(y)
a
N !
(©)  6lxy) = Geoy) - :
INTT(y) + NP (y) g N"V (x)
o
@ Gley) = ey '
N't(x) - N'1(y)
o
N '
INYr(x) + N v(x)}-{N T(y) + Nv(n)}
a
(£) Gy = —— ey '
N'T(x) - N w(y)
For every kernel G appeared in (a) to (f) , there exists
2 3 .
a resolvent (VG,p)p>o ( ;esp. (Vé p)p)o ) of continuous kerrels
on X associated with Vé { resp. VE ) . In (a), (b) and (c),
. G
¢ does not satisfies the complete maximum principle. In (d)

and (e) , G is symmetric and it does not satisfies the complete
v
maximum principle. In (f) , both G and G do not satisfy the

complete maximum principle.

4., Dominated convergence property

Definition 13. We say that G has the dominated convergence

property ( resp. the dominated convergence property in the weak sense )
when

S_Hn——> p vaguely as n. +o0 }

; 3ye M ( resp. V€ EO(G) ) GPn(x) < 6Y(x) on X for all n

-

— l:Gﬁ(x) = l;m;GFn(x) n.e. on X } .

N3+00

12



In 3], we prove the following

Theorem 14, When G satisfies the domination principle,

the following three statements are equivalent;

(13) G 1is weakly regular.
(14) G has the dominated convergence property.
v
. G )4 v
(15) lim R Gv(x) = o on X for every v € F_(G),
M CR_ °
n
\4 4 . . . .
whre FO(G) = -gv € EO(G); Gv(x) 1s finite and continuous on X } .

The author does not know whether the duality of the weak
regularity or that of the dominated convergence property hols or not.
But we can prove the duality when we limit our argument to the

property in the weak sense.

Theorem 15. If G satisfies the domination principle,
the following four statements are equivglent
(16) G has the dominated convergence property in the weak sense.

(17) G has the dominated convergence property in the weak sense.

(18) 1im R® Gv(x)

o n.e. on X for every v & FO(G) .

M-y+¢  CK_
n
.G Y v
(19) 1lim R Gy(x) = o n.e. on X for every v €& F_(G)
m-+N CK ©
n
Proot. It suffices to obtain the implications (16)—>(19)
(19) —(17)
. v
(16) —>(19) . Let v € FO(G) and 1 € EO(G) . By (16),

we can construct a balayaged meagsure Th of T on CKn,

For anf v
n,

— \%
B(v,CKnr\Kp;G) ' We have

13
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&\éﬁn,pdT = SGTdSn,p - SGTnd'\\)’n’p = 5évdTn= gGrnd\)
rhis implies (19) ,because (Tn) converges vaguely to -0 and 'Grn(x)
is dominated uniformly by Gt (x) . Thus we have (16)-—>(19)

(19)— (17). Suppose that U —> U vaguely as k— +0¢ and
that there exists a measure Vek&isuch that éuk(x) < év(x) for any k.
Then, for any T € FO(G) ’ werhave

v {
SGude = ‘SGTduk < k Gpok + j ___GTduk
V’Kn CKn

We remark

\g GTduk = lim Gpok
>+
CK_ P CK MK, )
d a Gu. d < (v a
and Gt = Gt = G S VG ‘
ok K ) np Uk "kx7n,p = )7 n,p
n p
2 v v
\4
< \gS Gv (x)dr < RS &var
CK /P CK
n n
where the last inequality is derived from Lemma 3. Therefore,

by (19) , we have, for sufficiently large n ,

v

Grduk < RG Svar < ¢

CK CK
n n

Hence

i

'

lim | Gpdr € lim| Grdy, + e < \Gdy + ¢

k=5 +00 k™ >+ SK Pk o §
n

v v
This implies that Gp(x) > 1lim Guk(x) n.e. on X . The inverse

inequality is obvious. Therefore we have (19)—(17) .

14
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