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On Subharmonic Functions

which are Bounded Above by Certain Functions
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1. Introduction

Let X=(x -,X, ) denote a point in the k-dimensional

1% 77T %y

Euclidean space Rk (kgl) and ”XH denote the norm of X.

Ixll = in+x%+———+xi.
The k-dimensional Lebesgue measure of a set S in rK is denoted
by |S|. With a non-negative measurable function f(X) defined
on RM (m>1), we associate a non-increasing function n=Ff(£) on
the interval (0,+®) such that for every t>0 the m-dimensional
measure lsf(t)[ of the set

S.(t) = {xeR"| £(X)>t}

£

is equal to the one-dimensional Lebesgue measure of the set
{€] 0<g<+=, F_(E)2t].

Such a function Ff(i) is obtained by considering the inverse

function of £=}Sf(ﬂ)l and is uniquely determined except on a

countable set. A non-negative measurable function f(X) on rR™

is said to grow slimly, if

-(m-1) m

(1) - log F (E)dE < +=.

0

We note that for a function f(x) defined on R (Rl is simply

denoted by R), (1) is equivalent to the condition

+o0
( log+f(x)dx < 4o

—co

from the definition of the Lebesque integral.
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Domar [4, Theorem 3] proved the following fact: Let a

function f£(X) be a slimly growing function on a domain D in

R™ and u(P) be subharmonic on the cylinder

E = {P=(X,y)| XeD, O<y<c},

where c is a positive constant, such that

u(P) < f£(X)
for any P=(X,y), XeD, O<y<c. Then,
u(P) < K
on every compact sgbset of E, where K 1is a constant

independent of u(P).

In this paper, given a slimly growing function f(X) on rR™

and some function h(y) on (0,+x), we consider an analogous
problem to Domar’s with respect to a subharmonic function u(P)
defined on the (m+n)-dimensional Euciidean'space R™™ such
that

u(P) < £(x)h(]x])

S OA

for any P=(X,Y), XeRm, YeR . Using an obtained result, we
give a sharpened Phragmen-Lindelof theorem which extends a
result of Deny and Lelong [1], [2] and a result of Brawn [3,

Theorem 1].
2. Statements of foundamental results
The proofs of all theorems in this section will be given in

the last section. Let yogo be a constant. A positive

non-decreasing function h(y) defined for (yo,%n) is said to
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grow regularly, if there is a constant u>1 such that

h(y+1l) £ uh(y)

for any Y>Yq-

The following result 1is essentially based on Domar’s idea

in [47.

m

Theorem 1. Let f(X) be a slimly growing function on R

and h(y) be a regularly growing function on (yo,%»), yogo,

i.e.

h(y+1l) < uh(y)
for any Y>Yq- Suppose that u(P) is a subharmonic function on
R such that

u(P) < £(x)h(f¥|)
for any P=(X,Y), XeRm, YeRn, "Y">yo.

Then, there exists a constant K dependent only on f£(X) and

U such that _
u(P) < Kh(]x[)

at every P=(X,Y), xeRr™, ver", ”Y”>y0+2.

Remark 1. If a function h(y) grows regularly, we can find
two positive constants A and B such that
h(y) < aeBY
to every y>y0. In fact, let vy, y}yo, be any number and take
a non-negative integer n satisfying
n < y-y, < n+l.
Then,

(y-y4)
Whiyg+l) < w0 nty D) = ae®Y,

A

h(y) 2 h(yy+(n+l))

where



Yo
A =1U h(y0+l), B = log u.
But, the converse 1is not always true. Consider the

non-decreasing function h(y) on (0,+~) defined by

e¥
n(y) = { ¢(t)ae
0
where
t te(0,1)
b(t) ={
(n-1) ¢ te[(n-1)!,nt) (n=2,3,---).

Then, since ¢(t)<t, we have

hy) < 2 1e?Y

On the other hand, for a sequence {yn}, y,=log n! (n>2),

en! 2n! 2
h(l+y ) = ( ¢(t)dt > | o(t)dt 2 (nt)
0 n!
and
n!
nh(yn) =n f¢(t)dt < n(n-1)!n! = (n!)z.
0

This shows that h(y) does not grows regularly.

It follows from Remark 1 that h(y) in Theorem 1 must
satisfy the growth condition
(2) h(y)=0(eBY)  (y+e)
for some constant B>0. The following Theorem 2 analogous to

Otsuka’s [6] shows that (2) is almost sharp.

Theorem 2. For any € >0, there exists a subharmonic

function ue(P) on gD satisfying the following conditions (i)

and (ii);

(i) for a slimly growing function fg(X) on R™

g l+¢
u (p) < £ (x)el¥l
€ = [

— 4 —



at any P=(X,Y), XeR", Yer",

1+€
(ii) sup uE(P)e "Y" = 4o,
P=(X,Y), XeR™, YeR"
v , 1+¢
Question. The function h(y)=ey does not grows regularly
because it grows quickly. Is it possible to find any result

similar to Theorem 2 for a slowly growing function h(y) which

does not grow regularly?
The following Theorem 3 shows that the exponent -(m-1)/m of
the condition (1) for slim growth of f(X) is best wvalue in

Theorem 1.

Theorem 3. There exists a subharmonic function u(P),gE

RN satisfying the following two conditions (i) and (ii);

(1) for a non-negative measurable function f(X) satisfying

sg_zlog+Ff(g)dg < 4o  for any 2<(m-1)/m
0

and a regularly growing function h(y) on (0,+x),

u(P) < £(X)h(fy])

at every P=(X,Y), XeR™, YeRrR", l¥l+o.

.. -1
(ii) sup a(B)h(fY]) " = 4.
P=(X,Y), XxeR™, ver", |y|to
3. Extended Phragmen-Lindelof theorems
By R+, we denote the set of positive real numbers. Let G

_— 5 —
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pe a domain in Rk (k>2) and denote the boundary of G by 9dG.
When a function u(P) on G is given, we say that u(P) satisfies

the Phragmen-Lindelof boundary condition on 3G, if

1im u(P) <0
PeG, P-Q
m

for every Qe€dG. When a domain D in R and a function
u(P)=u(X,Y) on

XeD, YeR™}

DXxR™ = {P=(X,Y)erR™ "]

are given, the maximum modulus M(u,y) of u(P) is defined on rRY

by
M(u,y) = sup u(X,Y),
xeD, YerR", |y|=y

Hardy and Rogosinski [5] proved:

Theorem HR. Let D be an open interval (a,B8) and u(z) be a

subharmonic function in the half-strip

A = {z=x+iy| xeD, y€R+}

such that wu(z) satisfies the Phragmen-Lindeldof boundary

condition on 3\ and

-1
lim M(u,y)e~(8-a) my

Y—KX)

< 0.

Then

u(z);O

on A.

Deny and Lelong [1], [2] generalized Theorem HR to a
function defined on a half-cylinder in the Euclidean space of
higher dimension. In the following, a bounded domain in R™

having sufficiently smooth boundary (if m=1, an interval) is

—_— 6 ——
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A

called a bounded regular domain. For a given bounded regqular

domain D, let Ab>o be the first eigenvalue of the boundary

Value problem with respect to D:

A + A\ f =0 in D, f =0 on 3D
2
where A denotes the Laplace operator (if m=1, A=<12)_ If D

dx
1s an interval (o,B) in R, we easily see

JX; = (B—G)_lﬂ.

Theorem DI.. Let D be a bounded regular domain in rR™ (m;l)

and u(P) be a subharmonic function in T =DxR’ §E£E_EEEE u(P)

satisfies the Phragmén-Lindelof boundary condition on 8T and

_JXBY

y=e B

u(P)<0

On the other hand, Brawn [3, Theorem 1] generalized Theorem

HR to a subharmonic function in the strip (O,l)XRn in Rn+l

(n>1).

Theorem B. Let u(P) be a subharmonic function in

Q= (0,1)xR"  (n>1)

such that wu(P) satisfies the Phragmén—Lindeléf boundary

condition on 3Q and

Iim M(u,y)e_ﬂyy(n~l)/2 < 0.
Yo B
Then
u(P) <0
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. on §.

Now, we shall give  a generalized form of Theorem DL and

Theorem B.

Theorem 4. " Let D be a bounded regular domain in rR™ (m2>1)

and u(P) be a subharmonic function on the domain I =pxR"® in

R™™ such that u(P) satisfies the Phragmen-Lindelof boundary

condition on 9l and

-Jigyy(n—l)/Z

lim M(u,yle < 0.
Y'—)OO
Then,
u(pP) < 0
on IT.

Now, we shall give an extension of Theorem 4.

Theorem 5. Let D be a bounded reqular domain in Rm.(m;l)

and u(P) be a subharmonic function on the domain n=bxR™ such

that u(P) satisfies the Phragmén-Lindelof boundary condition

on 3. Suppose that for a slimly growing function f(X) on rR™

ol aa /e

u(p) ¢ elflyh£x)e

at every P=(X,y), XeD, YeR", "Ychp, where €(t) is a function
on R satisfying |
e(t) >~ 0 (tro ).
Then,

u(P) < 0



Remark 2. If n=1, Theorem 5 extends Theorem DL. If D is

(0,1) in R, Theorem 5 extends Theorem B.

The following Theorem 6 shows that the exponent -(m-1)/m in
the condition (1) for slim growth of f(X) is best value in

Theorem 5.

Theorem 6. There exists an unbounded subharmonic function
u(P) on the domain H0=D0an (n>1),
D, = {xer™| [x] <2713 (m>1)

which satisfies the following conditions (i) and (ii):

(1) u(P) satisfies the Phragmen-Lindelof boundary condition
on oI,
(ii) for a function €(t) on rRY satisfying

e(t) ~ 0 (y )

and a non-negative measurable function f(X) on rR™ satisfying

f E_Q'log+Ff(£)d€ < +o  for any 2<(m-1)/m,
0 —

el
u(P) < e(fyhfx)e D ”Y"(l—n)/z

at every P=(X,y), XeD, YeR", "Y”f0~

4. Proofs of theorems

By Cm+n(P,r), we denote the (m+n)-dimensional ball having a

m+n : . '
center PER and a radius r. To prove Theorem 1, we need

‘the following Lemma which is analogous to Domar’s [4, Lemma
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21].

Lemma. Let f(X) be a slimly growing function on R™ and

h(y) be a regularly growing function on (yo,#w), yO;O, i.e.

h(y+1l) < uh(y)

for any Y>Yq- Suppose that u(P) -is a subharmonic function on
Rm+n such that
(3) a(p) < £y

for any P=(X,Y), XeRm, YeRn, "Y”>y0. Let Q and A be positive

integers satisfying

eAnA;inQ_m e < pt
where
A = w52/ 27 k1)
If there are an integer Vv satisfying
0 < lef(ev—x)ll/m <1

. m n
= Y ||> +
and a point P (Xv,Yv), XveR ’ YveR ' “ vu Yq 1

such that

V
u(p ) 2 e h("g}”),

then there also exists a point Pv+l:(xv+l’Yv+l)€Cm+n(g)’R))'
m n
X\)+1€R’Y\)+1€R’ \
_ V=A,1l/m
r\) = lef(e )[ ’
such that '
: v+1
ulkyg) z ey D
Proof. First of all, we note that
\) -— -
(4) e'n(lly. ) < ue ) < AL () S u(P)dp
V = v’ = “m+nv c (P ,r )
m+n v v’

where dP denotes the (m+n)-dimensional volume element (see
e.g. Rado [71]).
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Now, assume that

u(pP) < ev+lh(”Y")

m . _.n
for every P=(X,Y)e m+r1(P\),r\)), XeR ', YeR' . Then,
v+l v+1
(5) u(P) < e” Ty I+ ) < ueVndy I
for every Pecm+n(Pv’R))’ If we put
= V- A n
S = Cpyn (P 5, NS (" HxR7Y,
we have
Y -A -m_m+n
(6) Is| <&, r Sg(e” M) = A0 r,
and
(1) ue) < e’y ¢ @ ndly ) cue¥Pndly,
for évery P=(X,Y)eCm+r1 v 'L )~S, from (3). Thus, we obtain
-1 _-{(m+n) g u(P)dp =
m+n-v c )
m+n v’R)
-1 _—(m+n) -1 _—(m+n) (
m+nLy Lu(P)dP + Am+nrv (p —Su(P)dP
' m+n ’rv)
< Bty T ue” My !msl
_1 —(m+n) -A
* Binty Ty hle,, () r )-s]
< (ea”t A ™™ e—)‘)ue\)h(”Y\)") < e’n(ly, I
from (5), (6) and (7). But, this contradicts (4).
Proof of Theorem 1. If we put
k
ak = lsf(e )ll
then
a
oo k o a_k
Do s (Y™ =amy (g /mgg _ gy S kg (ML) /mge
k=1 k=10 k=1 a1
® ak -(m-1)/m + -(m-1)/m +
smy o (g log F.(£)dE < mf€ log*F (£)cE
k=1 a .

k+1 0

Hence, we see that the series:
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o)

=1

converges.

Now, we shall prove by dividing into two cases.

(Case 1) We consider the case where
K. 1
|see™) | >0
for any positive integer k. For the integer Q and )\ (which

are dependent on p ) chosen in Lemma, take a sufficiently large

integer Vo such that

Yo
Here, we remark that Vo depends on f(X) and u.

(8)

TR

Vv

Il
>
=<
>
™
o)

Now, assume that there is a point Pv
0
Y eR", “Yv ">>y0+2, such that

Yo 0

“on(ly |
u(P. ) > e "h(|Y ).
Vo ~ Vo

If we put

-A
_ 0 1/m
r“o —‘Q[Sf(e {
and apply Lemma, we can find a point

p =(X Y )eC (p. ,r_ ), X
\)0+l vat+1l \)0+l n+n Vo Vg \)0+l

0
such that

Here, if we see

le, ol 2y, -2, > vyt
v0+l = Vo Vo 0
and put
‘ v0+1—x
r\)O+1 = Qfsgle
we can also apply Lemma and find a point

y| 1/,

P\)O+2=(XVO+2'Y\)O+2)€Cm+n(? ), X\)O+2€ R, Y ER,

such that

v +17%v
O+l 0+l

- 12



0
u(p ) ze” ndy .
0 0
Here, we see
I - g+
\)0+2 Vg = Vg v0+l
Vo~ A vatl-X
= Q([sf(e 0 )ll/m + |Sf(e 0 )ll/m) <1

from (8), which gives
(K > Iy J-1> y,+1.

Thus, if we continue this process, we can obtain a sequence of

points
o ' m n
{p . }. ., P .=(X 4 ), X .€R", .€ER"",
v0+1_1—0 v0+1 v0+1 v0+1 v0+1 v0+1
such that
le. . -2 | <1
v0+1 vo
and
v0+i v0+i
EALRONSRRES h<l|Yv0+ill> > e hiyy+tl) »@ (i ).
These show that u(P) is unbounded above on C (p ,1). This
m+n \)0
contradicts the boundedness of u(P) on C (p ,1).
m+n \)O
Vo
Thus, if we put K=e ~, we have
u(P) < Rh(]¥])
for any P=(X,Y), xeR", Yer", "Y”>YO+2-
(Case 2) Suppose that Case 1 does not happen i.e., there is

a kO such that

]Sf(e )| = o.
Take any P'=(X',Y'), X’eRm, Y'eRn, ”Y'”>y0, and a positive
number &', 5N:min(l,“Y'”—y0).

If we put
k

st =c_, (P, 8) () {(X,¥)] XeR™, YeR®, XesS (e )},

m+n

we have
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, ko n
(9) |s*f<fsgte T[a 6" =0
and
kO -'kO
(10) u(P) < h(lth£x) < n(fy'f+6)e 7 < undfy e
for any P=(X,Y)eC_, (P',§')-S', xeR™, ver". Hence, if we
denote by M' the maximum of u(P) on Cm+n(P',6'),
a(p') < AL g0~ (min) ( u(P)dp
= “m+n c P, §)
m+n !
= At 6"(m+n)§ u(p)dp + AL g (min) ( u(p)dp
. tm+n gt m+n c (P',8')-S"
m+n !
k k
A=l o —(m¥n) ., . 0 _ . 0
SMAL S Is'| +un(fy'he ¥ =uncfy e
from (9) and (10).
k
- Thus, putting ue 0=K, we have
u(P) < kh(f¥[)
for any P=(X,Y), xerR™, ver", "Y“>YO-
Proof of Theorem 2. Given any €>0, consider the function
uE(P) on R™™ gefined by
€
I21% (coslxhyexe (11 S-Ixl 2%
u(p) = on {P=(X,Y)| xer", Ix]<2"1n, Yer"™ }

0 elsewhere.
If we write |X|=x, |Y|=y and
g(x,y)" = exp(y“g-xzys)

for simplicity, we have

8211; o, du* L, du? 5 2u*
Au* = + ‘88 + = s 326
= ax2 . X X y Y Y

g(x,y) [y Sl (1+e)%-0(1) Jcos x + y2S{a-x 2 (m-1)y €}1xsin x

v



g(x,y)[y3€{(l+e)2—o(l)}cos x + y2€{2_l 2 -o(1)1}]

P (4—lﬁ§x12—1ﬂ, v )
g(X,y)y3€{2_%ngl+€)2-0(1)—(m—l)y—zex_lsin x}

> g(x,y)y> 127 2(14e) 20 (1)} (0<x<a7h, yoe)

by an elementary computation. This sﬁows that- u;(P) is

subharmonic on {P=(X,Y)[ XeRm, YeRn, HY”>a} for a sufficiently
large a. Here, choose a constant ME so that
u*(P) <M_ on {P=(X,¥)| Xer", veR", |¥[<2a}
and define ue(P) by
uE(P) = max{ug(P), Me}‘
Then, uS(P) is a subharmonic function on R™® which. is
requested in Theorem 2.
First, for the function

(11) £_(x) = max{|x] 7%, M }

on Rm, we shall show the inequality of (i) in Theorem 2.

Set
-2 € €
P(x,y) = x "~y qu(—xzy )
for (x,y), xeR+, yeR+. Then, we have
M o (meytTl oy e x%y?* " 1yexp (-x%y%)
oY
which vanishes at y0=x_2/€. Further,
w(x,yo) = x_z—e—lx_2 >0
and
_2 - )
P(x,y)~> x as y»0 and yow .
Hence,
. -2 € 2.¢
p(x,y) >0, i.e. x "> y exp(-x"y"~)
on RYxRT. From this fact, the required inequality

immediately follows.

Here, it 1s easy to see that £ (X) in (11) is a slimly

— g —
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- growing function on R, because

_ -1,2/m
Fe (g) = (Ami )

~-m/2 &

< .
at every & AmMe

To obtain (ii) in Theorem 2, observe

1+€
a0, e Y75
uniformly as ”Y”-++w.
Proof of Theorem 3. Put
v(P) = exp(e“Y"cos”XH)cos(e”Y"sin"X")

for any P=(X,Y), XeRm, YeR"™ and consider the function

u*(p) = {v(p)}*™ 1L
defined on R™xR". If we write ”X“=x and "Y"=y, we have
ao* = (-1l Lme2) LGP + (D7) +vav]

= (2m—l)V2m~2exp(y+2eycos x)g(x,y)

where

g(x,y) = (2m-2)eY

+ cos(eysin X ) fg;lcos(x+eysin X)- mi—l‘sin(x+eysin x)}.

Here, if
0 < x < 7/2 and x + e¥sin x < /2,

we see that

y y

sin(x+e‘sin x) < x+efsin x < x(l+ey)

and hence

g(x,y) 2 (m—l)(ey—l) +-E§%cos(eysin x)cos (x+e¥sin x) 2 0.
Hence, we have

| AU >0

for any B=(x,¥), Xer™, ¥er", |xl<w2, Jxlvelsinjxl < wo.

Let

Dy = {xer™| |x|<m/2}
— 16 —
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and

1 -yl

| ver®, sinlxl <2 e 1YL, iy,

S = {(X,Y)eER XeD

OI
where y0=log 2-1“. Choose a positive constant M such that
U*(P) < M

on DOX{YeRnl ”Y“<2y0} and define the function u(P) on R0 by

; M—lmax{U*(P), M} on S
u(P) = {

1 elsewhere,
which is a subharmonic function requested in Theorem 3.
Now, if we define f(X) on rR™ by

(12) f(X) = sup u(X,Y)

Y'(-:Rn

and h(y) on rRY by

h(y) = 1,
we have the inequality of (i) in Theorem 3. Here, it is
evident that h(y) 1is a regularly growing function on rY.

Hence, we shall show that

o0

(13) (£%10g"F (6)d < +=  for any 2, £<(m-1)/m.
Put °
v(ix,y) = exp(eycos x)cos(eysin X)
for xeR, yeR, y>y0=log Z—ln. Then, for any fixed y, v(x,y)
increases from 0 to exp(eY) as x decreases from sin (27 1re7Y)
to 0. This fact gives that
u(P) > t
on the domain which is surrounded- by the set
{PeD xR"| PesS, V(P)=t}
for a sufficiently 1large t. For a given t, consider the

curve
L = {(x,y)eRzl v(x,y)=t, O§X<n/2}
in the plane and put

—_ 17 —
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X, = max X.
(x,y)eL
since

-%%-= -tan(x+eysin X)

along L, we have

Yo =
x0 + efsin x0 /2.
Hence, X satisfies
-1 . N
exp{ (2 "7~ xo)cot x0}51n Xy = t.
Since
m
|sc(0)| = A x4

for a sufficiently large t from the definition (12) of £(X),

we have

1/m -1
}cot{(Am €)

1/m

F () = exp[{2 'm-(a tg) Msin{ (a_te) /™).

Thus, for a suffiently small £ >0,
-1/m , -1/m
K,& X log Fc(8) £ K,¢&

where Kl and K2 are two positive constants. This gives (13).

The conclusion (ii) in Theorem 3 immediately follows for
these u(P) and h(y) from the fact

u(0,Y) = M_lexp{(Zm—l)e"Y“}

at any yerR" having sufficiently large |Y

Proof of Theorem 4. This theorem is proved by following
both methods used to prove Thebfem DL and Theorem B. For a
given boundéd regular domain D, we denote the positive
eigenfunction corresponding to the eigenvalue AD by fD(X) and

define hD(P) on

DxR™ = {P=(X,y)| XeD, Yer"}

by
_ 18 —
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_ 1-n/2
hy () = £,00 v I oo rpleh,

where In/z_l(y) is the Bessel function of the third kind, of

order n/2-1 (see e.g. Watson [8, p.77]). It is easy to see
that hD(P) is harmonic on.DxR". We also remark that
- -1/2_y
In/z_l(y) = (2my) e’ (1+o(1)) (y+00)

(see Watson [8, p.203]).

Now, consider the subharmonic function ul(P) on II defined
by
1(P) = u(P) - nlhD(P) (”1>0)'

Take a closed ball BCD and choose a positive constant €4 such

that
fh(X) 2 g on B.

If we choose a positive constant Y, such that

ApY
-1 D 1- 2
M(u,y) < 2 elnlCDe y( n)/

for any Y2Ys where
_ [“ -1/2
CD = (2'"' )\D) ’

Foltl 1ny 2

we see that

1

uy(P) g gymCpi-2 "-o(1)}e

for any P=(X,Y), XeB, ”Y";yl. Hence, there are a value M and
d;Ban such that
(14) ul(PO) =M and ul(P) < M on B.

a point P

Next, take a bounded regular domain D*, D* Rm such that

3(D-B) J(D-B)C D* and A < A ,< A

D D D-B*

Consider the subharmonic function u2(P) on (D*—B)XRn defined

by
u2(P) = ul(P) - nth*(P) (n2> 0).
If we take a positive number €, such that

fox(X) 2

D* on 3(D-B) U (D-B)

&
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. and a number Y5 such that

ANy
D 1- 2
M(u,y) < eznch*e y( n)/

for any y2y,, we have that

uz(P) < u(P) - ﬂth*(P) ,
(rp-Ppalyl [ Ll i
2 g, MmChule b D - (1+o(1)) e’ PF Ty (1) /2
for any P:(X,Y)erRn;B, "Y"iyz. Hence, with (14) the maximal

principle gives that
uZ(P) < max(0,M) on D-B.
Thus, we have that

ul(P) < max(0,M) on D-B,
because N, is chosen arbitrarily small. Further, we have
from (14) that

ul(P) < max(0,M) on D.

By (14) and the maximal principle, this gives that
M <0 and hence ul(P) < 0 on D.

As ni+0, we can conclude that

u(pP) < 0 on D.
Proof of Theorem 5. For each positive integer m, take a
number tm such that
e(t) £ 1/m

for every t;tm. Then

v |
u(p) < f(x){m'leJ—D Jy) (2m) 72y

at every P=(X,Y), XeD, YeRn) ”Y";tm.‘ If we put

ANy o
hm(y) - m le D Y(l n)/2
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it is easy to see that hm(y) is a regqularly growing function
on (tm,+m), i.e. =
D
<
hm(y+l) e hm(y)
for every y>tm. Hence, if we also put u(P)=0 on RMI_T and
apply Theorem 1, there exists a constant K independent of m

L gl

u(P) ¢ kn_(J¥]) = m "ke I¥l

such that
'(l—n)/2

for every P=(X,Y), XeD, YeR", HYH>tm+2. This gives that
“ Y (-
j—; y(n 1)/2 <

lim M{u,y)e 0.

Y—)m

Hence, from Theorem 4, the conclusion follows.

Proof of Theorem. 6. For the 'functibn u(P) and  the
constant taken in the proof of Theorem 3, consider the
function u(P)-1 on HO=DOXRn. When we reéresent this function
by u(P) again, we shall show that u(P) is the subharmonic
function requested in Theorem 6. The statement (i) in

Theorem 6 is evident. To prove the statement (ii) in Theorem

6, define f(X) on R" by

OI

sup_ u(X,Y) on D
YeR™
£(X) = .

0 elsewhere

and e(t) on RT by
- At
e(t) = e j_; t(n—})/z
o ol
T ALY
u(p) < ellyhexre ¥ P Yy i) 2

for any P=(X,Y), XeD,, Yer", |y|4o. The finiteness of the

integral

[ £*10g%F () az
0
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for any 2 <(m-1)/m follows immediately from the proof of

Theorem 3.
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