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On the Asymptotic Behaviors of the Generalized

Spherical Functions on Semisimple Lie Groups

Masaaki Eguchi, Hiroshima University.
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1. INTRODUCTION. This is an abstract note of [g]. Though the main re-
sult of this note is correct for more general Lie groups, called of class H,
than semisimple Lie groups, for simplicity we restrict ourselves to semisimple
case. So we now assume that G 1is a connected semisimple Lie group of the
non-compact type with finite center. Let G=KAN and g=ktatn the correspond-
ing Iwasawa decompositions of G and its Lie algebra g.

The Eisenstein integrals, that is the matrix elements of representations
of principal series for G, play an essential role in harmonic analysis on G.
Therefore it is very important to know their asymptotic behaviors. 1In fact,
the leading terms of the asymptotic expansions of them are the Harish-Chandra
C-functions and, as is well known, they relate closely with the Plancherel
measure on G[8,9,10,11]. Moreover, we need to know their behaviors of higher

order to carry out further analysis on G. 1In this note -we focus our attention

on the Harish-Chandra expansions of Eisenstein integrals and their coeffi-
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cients. For the zonal spherical function ¢v(x) = f
+
when x = h wvarying in the positive Weyl chamber A of A, ¢v(h) is expanded

into an infinite series by Harish-Chandra[7] as follows:
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Here c( ) ‘is the Harish-Chandra c-function and FA (A € L) are the coeffi-
cients. In his paper [14] Gangolli gave a remarkable estimate for these co-
efficients. The purpose of this note is to give the Gangolli estimate for

the coefficients of the Harish-Chandra expansions of the Eisenstein iﬁtegrals.

2. PRELIMINARIES. Let M be the centralizer of A din K. Denote by
FR and FC the real dual space of a and its complexification, respective-
1
ly. Write F = (-1) /ZFR. Let T = (Tl,Tz) be a double unitary represen-—

tation of K on a finite dimensional Hilbert space V. Put

Vy = {vev; Tl(m)v = VTz(m) for any m € M},
Then the following integral is called the Eisenstein integral or the general-

ized spherical function:
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Let w be the Casimir operator. Then E satisfies the following differ-

ential equation:

(2) E(vivixiw) = {<v,v> - <p,p> + Tz(wm)}E(v:v:x).
Here O denotes the Casimir operator on M.,

Let 6 be the Cartan involution of g with respect to k. Let S be
the subspace of all X € g such that ¢(X)=-X. Let h be a Cartan subalge-
bra of g such that aCh and put hk=h N k. Let I denote the set of all
roots of (g, h) and ZO={dl""’a2} the set of all simple roots in I. We

consider the lexicographic order in F_ defined by CGpseeesly and fix a com-
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hk. Let A+ denote the set

of positive roots of (QC, hC) such that &=u’a #0., For each o € A

patible order in the dual space of h"“=a+(—-l)1

+ define

the element Q& € da so that &(H)=<Q&,H> for all H€ a. For each o € A+,
o

choose the root vectors X+a eEnq so that B(Xa’ X—u)=1’ B denoting the

o I+

Killing form, and write them as X,

o Vg ¥l (L € kc s Zyy € Fe

).

The following lemma gives the radial part of the Casimir operator.

Lemma 1. Denote the radial part of w(resp. wm) by R(w) (resp. ﬁ(wm)).

Then we have
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3. THE HARISH-CHANDRA EXPANSION AND THE MAIN THEOREM. Put

L = {A=nlal+°--+nza2, n, € Z, i=1,...52}.

>\= LI = LAY 3 3
If nlul+ +n2u£ €L, m(}) nl+ +n2 is called its level. Let v be

the endomorphism of HomC(VM, ) defined by

Vi

Y(T) = [t ), 1), T E Hom (Vy, V).

M
Let YioeeeoVy be the set of all distinct eigenvalues of y with multiplic-
ities MyseeesM s respectively. It is known that they are all real. We assume

that yl<---<yt. We review the definition of FX OO €EL). Let o = 1. For

A#0, let T be the function on F with values in HomC(VM, \Y

N c ) given by

M

the following recursion formula:
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where

Denote by L' the set of >#0 in

xeL' put

Z n{Tl(YuY—a) + TZ(YuY—a)}FA—Zna’

i (1
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For each t) and

. . ={VvEF,; 2<h,v> = <A\, A> + yi}.

A,i c’

Let T denote the compliment of the set

1
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(G, A).

the set of all

Weyl group of

Theorem 2. (Harish-Chandra).

U Ug in F_ Let T' be
rel' i

A,i c

such that wv €T for all w € W, W denoting the

. +
is analytic on A .

are certain meromorphic functions on Fc

verT',

with values

(1) For a fixed v €T,
v=A
h > e(:h) = ) T (v-ph
AeL
(ii) o(vihye’ Rw)ee ) = (<v,v> - <p,p> + T,y (0 )0 (vih).
{8
(iii) hpE(v:v:h) = Z d(wv:h)C(w:v)v,
/ e
where C(w:v) (w € W)
in Homc(V , VM).
Fix a> 0 and put

R(a) = {¢+n€L'; £ €F, n €F

+
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We want to know the behavior of FA in the cone R(a) and consider the fol-~

lowing finite set (may be empty):
Li(a) = {X €L': -<x,A>+2a<h,p> - vy, > 0},

which is the set of ) € L' such that the determinant of the coefficient of

FA in (4) takes value 0 in R(a). Put
= i ! .
p,(v) = 1 if x%Ll(a),
my
Py (V) = (2<x,v> = <A, A> - yi) s
1<ist
23 )<=
d(a:n)s=v,
1 )\ =
d'(A) Z m,

1<ise, d(a:k)<—yi

for ) € Li(a), where d(a:))=<),A>-2a<i,p>. If A, A" €L and X-A'EL

X

then we denote it by A 2 A', We also put

PO = T T p, d= )  d'() <H=

AGLi(a) xeli(a)

P = [ TP ,m, am= ] a'®
S A'eL!
PR PRRSN

for X € Li(a). Then as is easily seen, all singularities of FA in the
domain R(a) concentrate on the polynomial P()). The following result is

the main theorem.

Theorem 3. There exist constants D, dl>0, depending only on 1, which

satisfy

d
1P )T, (=) < DA + [v] + m()) 20y 1

uniformly in XEL', VvER(a).
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4, A SKETCH OF THE PROOF OF THE THEOREM. We give in this section a

sketch of the proof. We need the following lemma.

Lemma 4. Put H=log h (h€éA’) and A(h) =thl (1-h"%%) (h€A). Then

a€A+
we have
1/2 ~1/2 L
(5) A(h) *Q(w)°A(h) = ﬁ(wm) + 2 Hi ~ <p,p>
' i=1
" Z <&,&> z je—Zja(H) B Z <&’&> z e—ZjG(H)—ZkB(H)
=N i>1 o, BE i>1
a#B k>0
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l/2"6?‘(w)°A(h)“l/2 in the lemma

The most important thing is that A(h)
is an operator of the Sturm-Liouville type. If we consider the function Y
given by the following in stead of ¢ itself:

+

Y2704 (v:n) h € AT,

¥(v:h) = A(h)

then Y satisfies the following differential equation:

1/2 /

(6) @R am AT 2 (v,v5 - 0,00 + 1,0 )Y

Expand V¥ dinto the series

y(wih) =0’ ¥ a)\(\))h_k heat.
=)

Then, using Lemma 4, we obtain the recursion formula for ax(v):

() 290,97 = <400y () - v(a, ()
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where Fa and Ga are defined by

Fa = Tl(YaY—u) + TZ(YaY—a); Ga = Tl(Y )°T2(Y_a).

We pay attention to the fact that all singularities of ak in the domain

R(a) are concentrated upon P and put

A

-2d()) -2d4' ()

Q, (v) = By (WM + [v] +[A]) and q,(v) = p, M@ + [v] +][xD

Moreover, we define bA(V) for all X €L by

by(v) =1 if A = 0;

—_ : )
bk(v) = QA(v)aA(v) if xelL'.
Then we obtain the following recursion formula for bx(v). We put 7Y(A:v) =

(2<h,v> = <A, A>)I - v,

(®)  yQuwb () = T [<H¥ - 8F 1q, () ] Q) (b, pa ()

o€h, i>1 Je

-3 <a’%>qx(v)j;lQA,j,k(v)bA-Zj&—Zk%(v)

a,BEA+
aFB k>0
+8 ] G 4, (V) ) Qi (b, os 1y ™)
QA =1 ) J
+
Where the polynomials Ql .y Q. . and Q2 ., are given by the relation
A, ] Asi,k As]

1 2 . -1
Qx,j(‘))Qx—?_j&(") = Qx,j,k(")QA-zj&“-Zk%(\’) = Qx,j(")QA-(zj—l)&(\’) = Qx(v)qk(v)



J1

An argument parallel to [14] leads to our assertion. For more detail, see [6].
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