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Atoms and Molecules on Riemannian Symmetric Spaces

Takeshi Kawazoe

Keio University

In this announcement we shall describe a relation between atoms
and molecules on a non-compact Riemannian symmetric space G/K, and
consider a multiplier operator on the atomic Hardy space. This is
continuous a line of study in [7]. The details will appear else-
where.

§1. Introduction. Before to state the aim, we shall recall some

results on the theory of Hardy space Hp(R) (0<p<w) on one dimen-
sional Euclidean space R. The classical Hardy space is the space
of analytic functions f on the upper half plane {(x,t);xeR, t>0}
with finite HP-norm:
+o
|| £]] _= sup(/ |f(x,t)|pdx)l/p < o, (1.1)
HP 50 -o
Moreover, taking the limit as t=»+0, this space is identified with
the subspace of S'(R) consisting of boundary distributions f(x,0).
In this definition the concept of "analytic functions" is neces-

sary. However, new characterizations of Hp(R) are recently

obtained without using the concept of analytic functions. That is,
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p.L.Burkholder-R.F.Gundy-M.L.Silverstein and C.Fefferman-E.M.Stein

éhowed that Hp(R) is chracterized by the tangential maximal func-
tions:
* .
f (x)=  sup lE(y,t) |, (1.2)
(y,t)el (%)

where T (x)={(y,t); yeR, t>0, |x-y|<t}. They obtained the following

meorem & ([11,151). cpll €]l < | £ ] o < Sl Ell o

Moreover, R.Coifman showed that Hp(R) (0<pil) cah be characfer—

ized in terms of "atoms“; Let (p,q,s) be a triplet such that 0<p

<1, l<g<e~ and seN, s>[1/p-1]. Then a (p,q,s)-atom is a mesurable

function on R such that the support is contained in an interval I

and satisfies the following two conditions:
CON I F I

N (1.3)
(ii)  fp £(t)£°dt=0 (0<k<s).

Then the atomic Hardy space Hg S(R) is the space consisting of
7

distributions of the form
f= 3 Aif. (1.4)
where fi's are (p,q,s)-atoms and Aiio, ZA?<w. He obtained

Th B ([2]). HP(R)=HP _(R) and £l|P < oP (£) <c || £]|P
Theorem B {[2}) (R)=Hy o (R) and c, || lal 2 Pq,s(B) = pll ‘al,
where pg,s(f) is defined by the infimum of ZA? being taken over

all decompositions (1.4).

Here let us define molecules correspdnding to atoms. For
a quartet (p,q,s,e) such that (p,g,s) is as above and e£>max(s,

1/p-1), we put a=1-1/p+c and b=1-1/g+e. Then a (p,d,s,€)-
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molecule centerd at x

o is a function f on R such that f, flx{b o

belong to Lq(R) and satisfies the following two conditions:

a/b b, 1-a/b_ "
q ol |lq ML) < (1.5)
f(x)xkdx=0 (Oikis)'

(1) l| £1
(ii) /

[| £]x-x
R

Then M.H.Taibleson-G.Weiss showed the following

Theorem C ([101]).

(iy If £ is a (p,q,s)-atom, then f is a (p,q,s,c)-molecule for

all >0 and M(f)<C, where C is independent of the atom.

(ii) If £ is a (p,q,s,e)-molecule, then feH® (R) and pP _(f)<
d,s g,s -

C'M(f), where C' is independent of the molecule.

By many people, these concepts: maximal functions, atoms and
molecules on R were extended to R" and moreover, to the general

setting of spaces of homogeneous type (cf. [3],[6]1,[8]). But,

our aim in this note is to extend these concepts to non-compact
symmetric spaces G/K, which are not of homogeneous type. 1In §2,
we shall give some notations about G, and in 83, define "radial
maximal functions" and "atoms" on G/K and obtain a relation be-
‘tween them. In §4, we shall introduce "molecules" on G/K and
obtain a theorem corresponding to Theorem C in R. Next we shall
constract an atomic Hardy space by using the K-biinvariant, (p,q.
s)-atoms on G centered at the unit element of G, and in §5, give
a slightly simple characterization of this spce. 1In last §6, we
shall consider convolution (or multiplier) operators on it.

We are grateful to Prof. H.Miyazaki for the many helpful dis-

cutions.
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§2. Notations. Let G be a connected, real rank one semisimple

’Lie group with finite center, G=KAN an Iwasawa decomposition of

G and g=kt+atn the correéponding decomposition of the Lie algebra
g of G. For any real vector space V let Vc and V* denote the com-
plexification and the dual space of V :espectively. Let o be a
reduced simple root of (9.,2;) and H, the element of a such that
u(Ho)=l- In the following we identify A (resp. EZ) with R by a,=
exp(tHO)++a(log(ét))=t (resp. ) ++A(HO)) and moreover, by using the
Cartan decomposition G=KCL(A+)K of G, we identify each K-biinvar-
iant function f on G with the even function on R defined by, which

we denote by the same letter, f(t(x))=f(a )=f(x) for x=k

t(x) 1%t (x)

ngCL(Af)K. Let ml and m, denote the multiplicities of the root

a and 2g respectively and put p=(ml+2m2)/2. Then for any K-biin-

k

variant functions f on G with compact support its integral on G
m m
2,

is given by the integral on R+ with weight A(t)=(sht) l(sh2t)

oo

fo(x)dx= ;O E(v)A(v)dat. (2.1)
0 ,

Let B(r,x) denote the open ball with radius r and centerd at
X and |B(r,x)| the volume of it, i.e. B(r,x)={yeG; o(x—ly)<r},
where o(x) is the Riemannian distance between x and the unit

element e of G, and |B(r,x)|= [ ldg= ng(t)dt. For simplic-

“B(r,x)
ity we put B(r)=B(r,e). Then the order of |B(r)| with respect to

r is given by
O(e2pr) (r->w)
B(r) = ml+m2+l (2.2)
O(r ) (r~>0).

This property means that G is not of homogeneous type in the

sence of [3].
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§3. Maximal functions and atoms on G/K. First we shall define

maximal functions on G/K (see [7,83]). Let ¢ be a K-biinvariant
function on G with finite Lt -norm. Then for a positive numbere>0,
we put

g =L A(t(x) /e)

b c o (t(x)/e). (3.1)
A(E(x))
Now for any locally integrable functions f on G/K, we define the

radial maximal function M f 9£ f as follows.

¢

M f(x)= sup|f*¢_(x)|, (3.2)
¢ e>0 &

where % is the convolution on G. Then the following theorem is

valid (see [7, Theroem 3.3]).

Theorem 3.1. If there exist a constant C and a positive number
-2po(x)/8§

§>0 such that |¢(x)|<Ce (xeG) , the operator M, is of

¢

‘type (Lp,Lp) (l<p<x) and of weak type (Ll,Ll).

Next we shall define atoms on G/K (see [7,84]). Let (p,g,s) be a
triplet such that 0<p<1, 2(a+l)/3<qim and seN, s>[2(a+1)/(1/p-1)1,

where o and B are defined by m.=2(a~f) and m2=26. Then we say that

1

a function f on G/K is a (p,q,s)-atom centered at x if the support

is contained in an open ball B(r,x) and satisfies the following

conditions:

. 1/q-
) Ll < B VTR,
d
(ii) 1if r<rp=(u+l)p/p(l—p), then (3.3)
;£ (t)tkA(t)dt=0 (0<k<s),
0 x,K =
where £ is the K-biinvariant function on G defined by f (g)=
x,K x,K ,



fo(xkg)dk. of course,\if we put o=f=-1/2, i.e., A=1 and p=0,
this definition of atoms on G/K coincides with one on R. If £
satisfies the condition (ii) of (3.3), we say that £ Has vanishing
monents. Here we define the modified radial maximal function

i M&f for feLq(G/K) (l<g<=) as follows.

M'f(x)= sup [f*¢€(x)|, (3.4)
¢ O<e<e

where sp=(l—l/6)/(l—l/p) if |¢(t)!iCe_20lt|/6. Then the following

theorem was obtained in [7,Therocem 4.1].

Theroem 3.2. Let G#SL(2,R) and (p,q,s) be as above. If there

exist a constant C, 0<8<1 and A>1/p (0<p<l) such that.

I((%E)%(t))(1+|t|)’L|'§Ce'?‘p|tl/5(1+l-t])’X for all 0<f<s+1, then

there exists a constant c=c(C,p,q,s,8,\) such that IIMéfx KHp<
such that , <

c for all (p,q,s)-atoms f on G/K.

§4. Molecules on G/K.  In the following we shall restrict our

attension to K-biinvariant functions on G. Then the natural ex-
tension to G/K of the definition of molecules centered at 0 in R
is given as follows. Let (p,q,s,c) be a quartet such that (p,q,s)

is as above , g>l/p-l and put a=1-1/p+e, b=1-1/g+e. Let B(x)

denote the K-biinvariant function on G defined by B(x)=|B(o(x))|.

Then we say that a function f is a K-biinvariant, (p,q,s,e)-mole-

cule centered at e if it satisfies the following two conditions:

: @ £ PN ) P <
(ii) S £(t)tFA(t)dt=0 (0<k<s) (4.1)
) <k<

or || £]| 4 < |B(xy) |70



78

Of course, if we put o0=B=-1/2, this definition coincides with
one of (p,q,s,c)-molecules centered at 0 in R. Then we can

obtain the following

Theorem 4.1.

(i) If f is a K-biinvariant, (p,q,s)-atom centered at e, then f

is a K-biinvariant, molecule centered at e for all €>0 and M(f)i

C, where C is independent of the atom.

(ii) If £ is a K-biinvariant, (p,q,s,e)-molecule centered at e

with vanishing moments, then f has an atomic decomposition f=

infi such that fi‘s are K-biinvariant, (p,q,s)-atoms centered

at e with vanishing moments and A >0, (ZA?)l/p§C'M(f)(l+N(f))S,

where C' is independent of the molecule and N(f) is defined by
a-b

| £l =M(E) [BON(E) |

Sketch of the proof: As in R, (i) is obvious from the definition.

To prove (ii), without loss of generality, we may assume that

M(f)=1. We define the number N=N(f) by |lf|[q=|B(N)|a‘b and k|
k
by the smallest integer such that 2 ONzl. Then we put
B(0,N) (k=0)
(4.2) 6=U B,, B =1 B2 N,2%N) (0<k<k.)
k=0 k k —
B(Ny+k-ko=1,N +k-ko)  (ky<k),
ko
where B(r,r')=B(r)cr\B(r') and N0=2 N. Let fk denote the re-
striction of f to Bk' Obviously, f=ka and fk's are K-biinvari-

ant functions on G. To obtain the desired decomposition, we
modify this to the desired one as in R (see [10,Theorem 2.91]).

In this step we use the following lemma.
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i

Lemma 4.2. For each k, there exist K-biinvariant functions hk

(0<i<s) satisfying the following conditions:

(1) sugp(hi) ¢ B, (0<ics),

(i1)  f motda(oae=s;,  (0<i,j<s),
0
(iii) Yy
(N (i+20+2) (k=0, N<1)
: 1\15‘1113(1\1)|'l (k=0, N>1)
Ihll o €4 %o - (i+20+2)
' (2 N) (0<k<kg)
s-i s-i -1
LNy~ (k=kj) |B (Ny+k=kg+1) | ~(k,<k).

loe]

Remark 1. If we use the decomposition of G such that G=k¥0Bi,

B£=B(2k_lN,2kN) instead of (4.2) (this corresponds to the case

of R), we have an atomic decomposition f=ZAifi such that (Zkg)l/p
<c'm(f) 2PN (D)

Remark 2. When f is a K-biinvariant (p,g,s,e)-molecule (0<p<l)
which satisfies the latter condition of (ii) in (4.1), the simi-
lar result is valid. 1In this case f has an atomic decomposition

consisting of atoms which satisfy (i) in (3.3) only.

§5. Atomic Hardy space on G/K. Let (p,qg,s) be as above. Now

let LE=L§(G//K) denote the space of all K-biinvariant functions

f on G having a non-increasing, K-biinvariant function f+€Lp(G)
such that {f{§f+. We call such a £’ the LP non-increasing domi-
nator (LP n.i.d.). In this section we shall consider the follow-

ing three spaces:

°LE={f€Lp; f has a IP n.i.d. £  such that

IB(r) |7t s £(x)dx < £ (r)}. (5.1)

B(r)C



uP= {feL G//K ; MéfeLE for all ¢ satisfying the

condition in Theorem 3.2}.
q S—{f Lajfi; all £:'s are K-biinvariant, (p,q,s)-atoms
centered at e, kizo and ZAE<®}.

Then we put pE(f)= inf |E+§|g for fe°LE, where the infimum being
£

taken over all LP nmi.d. £ of £ satisfying (5.1), pp(f)= sup inf
¢

|](M'f)+i|g for fer, where the supremum (resp. the infimum)

being taken over all ¢ satisfying the condition in Theorem 3.2.
with C=1 (resp. all P n.i. d. of M'f) and pq (£)= inf pr for £

eHg , where the infimum being taken over all K-biinvariant (p,q,s)
, .

—atomic decompositions of f. Obviously, Hg sC Hp s (g>q'). The

following proposition was obtained in [7,Prop081tlon 5.17.

Proposition 5.1. HY < HP,
q,8

Moreover we can prove

P _o¢P p P
Theorem 5.2. Hw,O L+ and pwlofbp+.
Sketch of the proof: Let f be in Hz 0° Then f has an atomic
4

decomposition f=ZAifi such that all fi's are K-biinvariant, (p,«,0)

-atoms centered at e. That is, supp(f;) CB(r;) and |]fi|

IB(r,) | "Y/P. -1/p.

i Here

There fore, |fI§ZAi|fi| (X§<r xi|B r.)|
i

we define f' by the right hand side. Then we can show that £t is

P

a n.i.d. of f satisfying the condition (5.1). To prove the

converse, we use Theorem 4.1 (ii) and the similar argument in the

proof of the theorem.

Corollary 5.3. Hz 0 is complete.
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Conjecture. gP  =opP=gP,
e ®,s +

Remark. As in R, if the integral: ]B(r)l_l Il f(x)dx can be

B(r)
N ' C .
expressed suitably in terms of the convolutions on G and be bound-

ed by the maximal functions of £, this conjecture is wvalid.

§6. Multiplier operators on Hg s In this section we shall con-
14

sider convolution (or'multiplier) operators on Hg s First, as
14

in R, we see that

Proposition 6.1. If a linear operator T maps each K-biinvariant,

(p,g9,s)—-atoms centered at e into aK-biinvariant, (p,q,s)-molecule

T(f) éentered at e and M(T(f))<C, where C is independent of the

p
a,s’

atom £, then T is a bounded operator on H

By using this proposition we can obtain the following results.

For a K-biinvariant function f on G (resp. an even function ypon

* , _ y
a ) with a suitable condition, the Spherical Fourier transform f
of £ (resp. the inverse Fourier transform ﬂ of u) is defined as

follows (cf. [11,Chap.9.2]).

S

f(v)y= 7/ f(x)¢v(x)dx
Gy 2
(resp. Ti(x)= J ,u{v)¢, (x)[C(v) [ av).
a

i V . -
Now we put F(£)={vegc; |Im(g) [<€p}. Then we have the following

. *
Theorem 6.1. Suppose that p is an even function on a such that

p is bounded and holomorphic on F(§) (éi/p—l) and u(v)(1+|v|)l_[p]

C(—v)_lsLl(R+/—lgp). Then if the multiplier operator Tu, i.e.,

/
,0)

Tu(f)=(uf) , is of type (Lm,ﬁn), Tp is also of type §ild HE

oo,O’

for 20+2/20+3<p<1.

10




S
.
K.

Moreover, using this theorem and Corollary 5.3, we can obtain

Corollary 6.3. Suppose that m is a K-biinvariant function on G

with finite Ll—norm and ﬁ(v) C(—v)-lsLl(R+/-lp). Then

the convolution operator Tm' i.e., Tm(f)=m*f, is of type (Hl 0’
- oy

1
Hw’o).
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