Basic Representations of Extended Affine Lie Algebras

Minoru Wakimoto

Department of Mathematics, Hiroshima University

l. As is well known, an affine Lie algebra $\underline{g}(A)$ has two kinds of natural realizations in terms of an underlying finite-dimensional simple Lie algebra. I would like to start my talk with a short sketch of them following [7]. Let $A = (a_{ij})_{i,j=0}, \ldots, \ell$ be a generalized Cartan matrix of type $X_N^{(k)}$, and ℓ the complex finite-dimensional simple Lie algebra of type X_N , where X is A, B, C,..., or G. Let μ be the automorphism of ℓ , which permutes the Chevalley generators of ℓ according to an automorphism of order k of its Dynkin diagram. Set ℓ = exp(2 π 1/k) and denote by $\ell_j(\mu)$ the eigenspace of μ with eigenvalue ℓ 1. Then $\sum_{j \in \mathbb{Z}} t^j \otimes \ell_j(\mu) + \ell c + \ell d \qquad \text{is an affine Lie algebra}$

associated to A, where c is a generator of the center and $\label{eq:def} \text{d} = \text{t} \; \frac{\text{d}}{\text{d} t} \; .$

The another realization is constructed in the following way. Let σ be a Coxeter transformation on ℓ which commutes

with μ , and h be the order of σ . Then each eigenvalue of $\sigma\mu$ has the form ω^j , where ω = exp(2 π i/kh) . Set

$$\mathcal{E}_{j}(\mu,\sigma) = \left\{ x \in \mathcal{E} ; \sigma \mu x = \omega^{j} x \right\}$$

for $j \in \mathbb{Z}$. Then one has a so-called "principal realization"

$$\underline{\mathbf{g}}(\mathbf{A}) = \sum_{\mathbf{j} \in \mathbb{Z}} \mathbf{t}^{\mathbf{j}} \otimes \hat{\mathbf{f}}_{\mathbf{j}}(\mu, \sigma) + \varepsilon \mathbf{c} + \varepsilon \mathbf{d}_{0}.$$

Note that under these two realizations d does not correspond to d₀, because < d, \angle _i> = δ _{0,i} and < d₀, \angle _i> = 1 for every simple root \angle _i.

2. Associated to either of these two realizations, an affine Lie algebra g(A) admits an extension

$$\widetilde{\underline{g}}_{J}^{i}(A) = \sum_{j \in \mathbb{Z}} t^{j} \otimes \mathcal{F}_{j}(\mathcal{M}) + \mathbb{C}c + \sum_{n \in \mathbb{K}\mathbb{Z}} \mathbb{C}d_{n}^{i}$$

or
$$\underline{\widetilde{g}}_{J}(A) = \sum_{j \in \mathbb{Z}} t^{j} \otimes \mathcal{E}_{j}(\mu, \sigma) + cc + \sum_{n \in \mathbb{Z}} cd_{n}$$
,

where $d_n' = t^{n+1} \frac{d}{dt}$ and $d_n = t^{nkh+1} \frac{d}{dt}$. Functions J' and J define the Lie brackets

$$[d_{m}, d_{n}] = (n-m) d_{m+n} + J'(m) d_{m,-n} c$$
,
 $[d_{m}, d_{n}] = (n-m) d_{m+n} + J(m) d_{m,-n} c$.

It is known that if J (resp. J') is not trivial the subalgebra $\mathcal{Y} = \sum_{n \in \mathbb{Z}} \mathbb{C}d_n + \mathbb{C}c$ (resp. $\mathcal{Y} = \sum_{n \in \mathbb{Z}} \mathbb{C}d_n' + \mathbb{C}c$) is

isomorphic to the Virasoro algebra.

In this talk, we shall call $\underline{\widetilde{g}}_J$, (A) (resp. $\underline{\widetilde{g}}_J$ (A)) the extension of the 1 st (resp. 2 nd) type.

Note that there is a remarkable difference between these two extensions. Denote by $\frac{\circ}{g}$ the finite-dimensional subalgebra of $\underline{g}(A)$ generated by $\left\{e_{\underline{i}},\ f_{\underline{i}};\ \underline{i=1,\ldots,\ell}\right\}$. Then in the lst extension $\underline{\mathring{g}}$ commutes with \mathcal{U}' , while in the 2nd extension the centralizer $Z_{\underline{\widetilde{g}}_J(A)}(\mathcal{U})$ of \mathcal{U} in $\underline{\widetilde{g}}_J(A)$ coincides with $\mathfrak{C}c+\underline{\mathring{h}}$, where $\underline{\mathring{h}}=\underline{\mathring{g}}_{0}\underline{\mathring{h}}$ is a Cartan subalgebra of \mathring{g} .

The 1st type extension may be said to be the picture of G. Segal [10] and I. B. Frenkel [2][3]. If k=1 and $J'(m)=J_0'(m)=(m^3-m)/12$, then $\mathscr X$ is just the standard form of the Virasoro algebra. We set $\underline{\widetilde{g}}'(A)=\underline{\widetilde{g}}'_{J_0'}(A)$. The basic representation of an extended affine Lie algebra $\underline{\widetilde{g}}'(A)$ was first discovered by G. Segal [10] in case of $A=A_1^{(1)}$, and the theory has been developed by I. B. Frenkel in case of k=1 and $J'=J_0'$.

It seems to me that there exists no isomorphism between \widetilde{g}'_{J} , (A) and \widetilde{g}_{J} (A).

Now I want to consider representations of the 2nd type extensions. My conjecture is that "for any dominant integral form $\Lambda \in P_+$, there will exist a unique central extension J, such that the action of $\underline{g}(A)$ on $L(\Lambda)$ can be extended to that of $\widetilde{g}_J(A)$."

At present, I can verify this conjecture only for a few special cases: $\Lambda = \Lambda_0$ and $A = A_1^{(1)}$, $A_2^{(1)}$ or $A_2^{(2)}$.

3. In case of the basic representation of $A_1^{(1)}$, the whole story is most simple and most beautiful. So, from now on, let me restrict my talk on $A = A_1^{(1)}$ and $A = A_0$. It is well known that the basic representation $L(\Lambda_0)$ of $A_1^{(1)}$ is constructed on the space $\mathbb{C}[x_1, x_3, x_5, \ldots]$ of polynomial functions in x_1 's with odd indices. We can prove that $\widetilde{g}_J(A_1^{(1)})$ acts on $L(\Lambda_0)$ if and only if $J(m) = m(2m^2+1)/6$, and that the action is given by

$$\mathcal{T}$$
: $-d_n \mapsto L_{2n} = \frac{1}{2} \sum_{\substack{j \in \mathbb{Z} \\ j = \text{odd}}} : a_j a_{2n-j} :$

where $a_j = \frac{\partial}{\partial x_j}$ and $a_{-j} = jx_j$ for a positive odd integer j, and : : denotes the normal product. These operators $\{L_{2n}\}_{n \in \mathbb{Z}}$ are called the Virasoro operators.

Now look at the weights diagram of L(Λ_0). It is known that the set P(Λ_0) of all weights of L(Λ_0) is given by

$$\mathbb{P}(\Lambda_0) = \left\{ \Lambda_0 + q \mathcal{S} + p \mathcal{A}_1 ; q \leq -p^2 \right\} ,$$

and the set of all maximal weights is given by

$$\operatorname{Max}(\Lambda_0) = \operatorname{W} \cdot \Lambda_0 = \left\{ \Lambda_0 + \operatorname{q} \mathcal{S} + \operatorname{p} \mathcal{A}_1 ; & \operatorname{q} = -\operatorname{p}^2 \right\},$$

where W is the Weyl group and $\mathcal{C} = \mathcal{A}_0 + \mathcal{A}_1$ is the fundamental imaginary root.

The multiplicity of each weight can be calculated by the Weyl-Kac character formula, and one has

$$Mult_{\Lambda_0}(\lambda - n\delta) = p(n) ,$$

where λ is a maximal weight and p(n) is the partition number, i.e.,

$$\mathcal{G}(x)^{-1} = \prod_{j=1}^{\infty} (1-x^j)^{-1} = \sum_{n=0}^{\infty} p(n)x^n$$
.

Now we are interested in the problem to write down functions in each weight space explicitly. It is easily seen that a function in a weight space $L(\Lambda_0)_{\Lambda_0} + q \delta + p \prec_1$ has the degree -(2q+p), where the degree of a function is counted with the rule that the degree of x_j is equal to j. Consider the action of the Virasoro algebra \mathcal{K} . From $[d_0, d_n] = 2nd_n$, one sees that the operator L_{2n} maps a weight space $L(\Lambda_0)_{\lambda}$ to $L(\Lambda_0)_{\lambda} + n \delta$;

$$L_{2n} : L(\Lambda_0)_{\lambda} \longrightarrow L(\Lambda_0)_{\lambda+n} \mathcal{S}$$

So $\sum_{n \in \mathbb{Z}} L(\Lambda_0) \chi_{+n} \delta$ is stable under the action of \mathcal{U} , and

by counting the multiplicity, we see that $\sum_{n\in\mathbb{Z}} L(\Lambda_0)_{\lambda+n} \delta$

is an irreducible \mathcal{U} - module. So each maximal weight vector f is described as a solution of the system of linear differential equations

$$L_{2n} f = 0$$
 for $n \ge 1$,

which are equivalent to

$$L_2$$
 f = 0 and L_4 f = 0.

It is known from the Sato's theory that maximal weight vectors cover the homogeneous polynomial solutions of the KdV-hierarchies. So we obtain the following theorem:

Theorem. A homogeneous polynomial f in $\mathbb{C}[x_1, x_3, x_5, \ldots]$ is a solution of the KdV-hierarchies if and only if $L_2f = 0$ and $L_4f = 0$, where

$$L_{2} = \frac{1}{2} \left(\frac{\partial}{\partial x_{1}} \right)^{2} + \sum_{\substack{j=1 \ j = \text{odd}}}^{\infty} j x_{j} \frac{\partial}{\partial x_{j+2}}$$

$$L_{4} = \frac{\partial^{2}}{\partial x_{1} \partial x_{3}} + \sum_{\substack{j=1\\j=\text{odd}}}^{\infty} jx_{j} \frac{\partial}{\partial x_{j+4}}$$

Owing to the \mathcal{U} -irreducibility of $\sum_{\mathbf{n} \in \mathbb{Z}} \mathbf{L}(\Lambda_0)_{\lambda + \mathbf{n}} \delta$,

all vectors in other weight spaces are obtained by iterated operations of L_{2n} 's (n < 0) to those maximal weight vectors.

4. I want to point out here that in the Segal's picture or in the Frenkel's picture, $\sum_{n\in\mathbb{Z}}L(\Lambda_0)_{\chi+n\delta} \text{ can never}$

be expected to be irreducible under the action of \mathcal{U} , because \mathcal{U} commutes with $\underline{\mathring{\mathbf{g}}}$. Let me explain about this more precisely. For a maximal weight λ , we set

$$V_{\lambda} = \sum_{n=0}^{\infty} L(\Lambda_0)_{\lambda-n} \delta .$$

Next decompose $L(\Lambda_0)$ under the action of $\frac{\circ}{g} = \underline{s1}(2, \mathbb{C})$, and for a positive odd integer n let \mathbb{W}_n denote the sum of all n-dimensional irreducible $\underline{\mathring{g}}$ -submodules of $L(\Lambda_0)$. Then it is easily seen from the weights diagram that for every $\lambda \in \mathrm{Max}(\Lambda_0)$ there exists a positive integer n_λ satisfying $\mathbb{V}_\lambda \cap \mathbb{W}_n \not= \{0\}$ for any odd integer n larger than n_λ . As to the decomposition $\mathbb{V}_\lambda = \sum_{n \geq 1} (\mathbb{V}_\lambda \cap \mathbb{W}_n)$

of V_{λ} , each $V_{\lambda \cap} V_n$ is stable under the action of \mathcal{U} , because of $[\mathcal{U}', \overset{e}{g}] = 0$. Thus we have proved that in the extension of the 1st type, each V_{λ} is not \mathcal{U}' -irreducible and so maximal weight vectors cannot be characterized as the highest weight vectors with respect to \mathcal{U}' .

5. The representation theory of extended affine Lie algebras suggests or induces some problems. Consider the group orbit through the highest weight vector 1 in the completion of $L(\Lambda_0)$. It is well known that $G(A) \cdot 1$ coincides with the set of ${\mathcal C}$ -functions of the KdV-equation. What is the differential equation which characterizes G(A)-orbit through 1 ? Or, take a subgroup $G'\subset \widetilde{G}(A)$. What is the differential equation characterizing G'-orbit through 1 ? Now I want to point out an interesting fact; take a subalgebra $\underline{g}' = \underline{s} + {\mathcal X}$, where \underline{s} is the principal subalgebra, then we have

$$f \in G' \cdot 1 \implies f \otimes f \in \underline{g'} \text{-highest component in}$$

$$L(\Lambda_0) \otimes L(\Lambda_0)$$

$$\iff \langle u, f \otimes f \rangle = 0 \quad \text{for every } u \text{ in}$$

$$lower \underline{g'} \text{-components}$$

$$\iff D(f \circ f) = 0 \quad \text{for} \quad \forall D = \text{Hirota's}$$

$$bilinear differential operator in (non-reduced) BKP-hierarchies.$$

Thus the G'-orbit is related to the non-reduced BKP-hierarchies.

According to the theory of Sato, Kashiwara, Miwa, Jimbo and Date, solutions of the BKP-equations are described by the orbit of $O(\infty)$. I cannot tell why BKP-hierarchies appear within the framework of $A_1^{(1)}$. I want to conclude this section by noticing a fact which may be related to the above phenomenon. Consider the natural inclusions $A_1^{(1)} \subset D_4^{(2)}$ and $D_n^{(2)} \subset D_{2n}^{(2)}$ for $n \in \mathbb{N}$. Then the basic representation of $D_4^{(2)}$ is irreducible when restricted to the subalgebra $A_1^{(1)}$, and it is nothing but the basic representation of $A_1^{(1)}$; i.e.,

$$L(\Lambda_0; A_1^{(1)}) = L(\Lambda_0; D_4^{(2)})$$
.

In a similar way, one has

$$L(\Lambda_0; D_n^{(2)}) = L(\Lambda_0; D_{2n}^{(2)}).$$

So, under the sequence of inclusions

$$A_1^{(1)} \subset D_4^{(2)} \subset D_8^{(2)} \subset \cdots \subset D_{2^n}^{(2)} \subset \cdots \subset D_{2^\infty}^{(2)}$$
,

one has

$$L(\Lambda_0; A_1^{(1)}) = L(\Lambda_0; D_4^{(2)}) = L(\Lambda_0; D_8^{(2)})$$

$$= \dots = L(\Lambda_0; D_2^{(2)}).$$

6. In this section, we take $V = \mathbb{C}[x_1, x_2, x_3, ...]$ and set $a_k = \frac{\partial}{\partial x_k} , \qquad a_{-k} = kx_k \qquad (\text{for } k \in \mathbb{N}),$ $a_0 = 0$

and
$$L_n = \frac{1}{2} \sum_{k \in \mathbb{Z}} : a_k a_{n-k} : \quad (for n \in \mathbb{N}).$$

We denote by \mathcal{G} the Lie algebra spanned by $\{1, a_k, L_k; k \in \mathbb{Z}\}$, and consider the representation of \mathcal{G} on V. Then we can prove that

 $f \in H \cdot 1 \implies f \otimes f \in \text{the highest component of } V \otimes V$ $\iff \langle u, f \otimes f \rangle = 0 \quad \text{for every } u \text{ in lower}$ components

 $D(f \circ f) = 0$ for V_D = Hirota's bilinear differential operator in KP-hierarchies.

These facts suggest that the Virasoro algebra is deeply related to hierarchies. Further discussions as to the relation between the Virasoro algebra and modified KP-

hierarchies will be shown in the joint work [15] with H. Yamada.

References

- [1] E. Date, M. Jimbo, M. Kashiwara and T. Miwa: Transformation groups for soliton equations Euclidean Lie algebras and reduction of the KP-hierarchy,
 Publ. RIMS, 18(1982), 1077-1110.
- [2] I. B. Frenkel: Two constructions of affine Lie algebra representations and Boson-Fermion correspondence in quantum field theory, J. Func. Anal., 44(1981), 259-327.
- [3] I. B. Frenkel: Representations of affine Lie algebras,
 Hecke modular forms and Korteweg-de Vries type
 equations, in "Lie Algebras and Related Topics",
 Springer Lecture Notes in Mathematics 933, 1982,
 71-110.
- [4] M. Jimbo and T. Miwa: Solitons and infinite dimensional Lie algebras, preprint, RIMS-439(1983).
- [5] V. G. Kac: Contravariant form for infinite-dimensional Lie algebras and superalgebras, in "Group Theoretical Methods in Physics", Springer Lecture Notes in Physics 94, 1978, 441-445.
- [6] V. G. Kac: Some problems on infinite dimensional Lie algebras and their representations, in "Lie Algebras

- and Related Topics", Springer Lecture Notes in Mathematics 933, 1982, 117-126.
- [7] V. G. Kac: Infinite-dimensional Lie algebras (Lecture at M.I.T., 1982 spring).
- [8] V. G. Kac, D. A. Kazhdan, J. Lepowsky and R. L. Wilson:
 Realization of the basic representations of the
 Euclidean Lie algebras, Advances in Math., 42(1981),
 83-112.
- [9] V. G. Kac and D. H. Peterson: Infinite-dimensional Lie algebras, theta functions and modular forms, preprint(1982).
- [10] G. Segal: Unitary representations of some infinite dimensional groups, Commun. Math. Phys., 80(1981), 301-342.
- [11] M. Sato: Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold, in "Random Systems and Dynamical Systems", RIMS-Kokyuroku 439, 1981, 30-46.
- [12] M. Sato and Y. Môri: On Hirota's bilinear equations (in Japanese), RIMS-Kokyuroku 388(1980), 183-204.
- [13] M. Sato and Y. Sato: On Hirota's bilinear equations II (in Japanese), RIMS-Kokyuroku 414(1981), 181-202.
- [14] M. Wakimoto: Basic representations of extended affine Lie algebras, to appear.
- [15] M. Wakimoto and H. Yamada: Irreducible decompositions of Fock representations of the Virasoro algebra, to appear.