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THE WEAK STABILIZABILITY OF LINEAR SYSTEMS IN HILBERT SPACE

+
HIROSHI INABA, TADASHI MARUYAM&W. AND HARUO HINATAW‘”r

ABSTRACT.

We will study the problem of stabilizing infinite
dimensional linear control systems by output feedback.
Describing such a system in the framework of Hilbert space
and employing the semigroup representation of the 'system,
we will show, under certain assumptions, a necessary and
sufficient condition for the weak stabilizability.

I. Introduction.

The problem of stabilizing dynamical systems by feedback has a very
long history, and it has always been one of the most important and
challenging problems in analyzing and designing control systems.
Particularly in the last two decades, the stabilizability problem in
linear control systems of finite dimension has recieved a great deal of
attention, and a number of useful results on the problem have been
obtained [1]-[4].

On the other hand, stabilization of infinite dimensional systems
has also been studied mainly in attempting to extend the finite
dimensional results to the infinite dimensional case. However, it is,in
general, considerably different from the finite dimensional case, and
requires more sophisticated mathematical techniques [ 5]-[12]. 1In
particular, stabilization by output feedback is much more complicated

than that by state feedback, and therefore no concrete result on the
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output feedback case have been obtained.

This paper presents a preliminary work on the output feedback
stabilizability problem for infinite dimensional systems. More precisely
we will study the weak stabilizability by output feedback for contractive
linear systems defined in Hilbert space. Our approach is based on the
work by C. D. Benchimol [8] which gives necessary and sufficient
conditions for the weak stabilizability by state feedback for contractive
systems. The main result obtained in this paper is a theorem stating a
necessary and sufficient condition for the weak stabilizability by
output feedback.

In Section II, we formulate the weak stabilizability problem for.
linear systems defined in Hilbert space. Section I is devoted to the
basic definitions and fhe‘known'resﬁits which are relevant to the méin
body of this paper. Finally, Section IV presents the main results of this
paper in which, under certain assumptions, a necessary and sufficient

condition for the weak stabilizability by output feedback is proved.

II. The Stabilizability Problem.

The linear control system we will consider is described by the
following abstract differential equation and output equation :

x(t) = Ax(t) + Bu(t), x(0) = xin X
(2.1) S
Here A is the infinitesimal._generator of a C,-semigroup { T(t) : £>0} on
a Hilbert space X (called the state space), B is a bounded linear operator

from a Hilbert space U (the control space) into X, and finally C is a

bounded linear operator from X into another Hilbert space Y (the output

space). Throughout this paper, we denote fornotational simplicity all the
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inner products and norms by (:,-) and ||-]|, respectively, without
specifying the Hilbert space in question.

(2.2) Definition. A state x in X is said to be weakly stable(w-stable)

if (T(t)x,z) - O as t + » for each z in X, and the set of all w-stable

states, denoted by X,4(T), is called the w-stable subspace of S. The

system § is said to be w-stable if Xys(T) = X //

(2.3) Definition. A state x in X is said to be strongly stable(s-stable)
if || T(t)x || + 0 as t » », and the set of all s-stable states, denoted by

Xss(T), is called the s-stable subspace of §. The system 5 is said to be

s-stable if Xss(T) = X. //
It is easily seen that both Xws(T) and Xss{T) are closed subspaces
of X. The orthogonal complement Xwus(T) of X, (T) will be called the

weakly unstable subspace of S, and similarly the orthogonal complement

Xsus(T) of X44(T) the strongly unstable subspace of §.

(2.4) Remark. We remark that the s-stability always implies the
w—-stability and that the w-stability is equivalent to the s—stability
when any one of the following conditions is met | 8]:

(1) X has a finite dimension.

(ii) A is a self-adjoint operator, i.e., T(t) are self-adjoint
opeartors for all t>0.

(ifi) A has a compact resolvent, i.e., ( AI- A {1 is a compact
operator for some A in the resolvent set p(A) of A,

(iv) T(t) are compact operators for all t>0, //

We will now formulate the stabilizability problem. As uSual, we

denote by B(Z,W) the set of all bounded linear operators from Hilbert

space Z into another Hilbert space W. For F in 5(Y,U) we set u(t) =
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Fy(t) + v(t) ( = FCx(t) + v(t)). Then the system S of (2.1) is reduced to
the following ‘syste\m :
x(t) = (A+BFC)x(t) + Bv(t), x(0)= x, in X
(2.5) = Sf :
y(t) = Cx(t)

This system Sf is usually refered to as the output feedback system of S

with output feedback gain F. When the output y(t) equals the state x(t),

i.e., C=1I, the identity operator on X, SF is called the state feedback

system. Let us denote by {TF(t);tiO} the Cy-semigroup generated by
A + BFC. Then our stabilizability problem can be stated as follows.

(2.6) The Stabilizability Problem. The system § of (2.1) is said to

be weakly (strongly) stabilizable if there exists an F in 5(Y,U) so that

the system Sf of (2.5) is weakly (strongly) stable. //

JI. Basic Definitions and Preliminaries.

Let us denote by L2\S;Z) the set of all functions f:S+ Z such that
! f(t) llz;it < » where S is an interval’ in the real line and Z is a
Hi]s.ber‘t space. Now we begin with two basic definitions for the system S
given in (2.1).
(3.1) Definition. A state x in X is said to be controllable if for
any € >0 there exist a t>0 and a u(+) in I¥[0,t];U) such that
I} x - JOtT(t—s)Bu(s)dsll <e |
The set ;)f all controllable states, denoted by X.(A,B), is called the

controllable subspace of §, and S is said to be controllable if X (A,B)

=X. //
(3.2) Definition. A state x in X is said to be observable if there
exists a finite time t2> 0 such that x is uniquely determined from

{CT(s)x; 0-<s<t}. The set of all observable states, denoted by X,(A,C),



is called the observable subspace of S, and § is said to be observable

if Xo(A,C) = X. //
We can easily prove the following proposition [11].
(3.3) Proposition. The controllable subspace Xc(
subspace Xo(A,C) of system 5 given in (2.1) are characterized by the

following identities :

(i) X (A,B) =tL=>)0T(t)BU
(i) X, (A,C) = TJT*(£)C*Y

where " *'" and '".—" indicate the adjoint and the closure, respectively.//
(3.4) Remark. It follows from the above proposition that both subspaces
Xc(A,B) and X,(A,C) are closed. The orthogonal complement X, .(A,B) of

Xc(A,B) is called the uncontrollable subspace of S, and is characterized

by
(1) Xuc(A,B) = th Ken[B*T*(t)].
Similarly, the orthogonal complement Xuo(A,C) of Xo(A,C) is called the

unobservable subspace of S, and is characterized by

(i) Xuo(a,C) = [} Ker [CT(E)].  //

Now let us mean R and C to be the real line and the complex plane,
respectively, and RY to be the g-dimensional Euclidean space.
Furthermore, let us define the symmetric set [, to be the set of all
{Al,;-gkn}€:C such that if Xj is nonreal then somekj equals the complex
conjugate X;. As usual, the notation o(K) is used to mean the set of all
eigenvalues of matrix K.

For a moment, assume that the system S of (2.1) is finite dimensional,

i.e., assume X = R", Y=R" and U=R". Then, S is said to be pole-assignable

if for any {ll,-'-,kn} in 0, an rxn real matrix F can be found so that
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o(A + BFC) is arbitrarily close te {Ay,*-- .},
(3.5) Proposition. For the finite dimensional system S the following
statements hold [2 ITal:

(i) S .is s-stable if and only if Re A<0 for all A in o(A).

(ii) S is s-stabilizable by state feedback if and only if the
strongly unstable subspace Xgsys(T) is contained in the controllable
subspace X¢(A,B).

(iii) S is pole-assignable by state feedback if and only if S is
controllable and observable.

(iv) S is pole-assignable by output feedback if S is controllable
and observable, and n+1 <m+r. //

(3.6) Remark. It is clear from the above proposition that pole-
assignability implies s-stabilizability, but the converse does not hold.//

We will now return to the infinite dimensional case. The’
stabilizability problem of the system (2.1) has been studied in. the. -
Banach or Hilbert space framework in a number of recent papers, see
e.8., [6]-[10]- The most relevant work to the present investigation ™
is that of Benchimol [g8], and his main result is cited below .

(3.7) Propos.ition. Let the C,-semigroup { T(t) ; t >0} of system (2.1)
be contractive, i.e., ||T(t)]'<1 for all t>0. Then,

(1) S is w-stabilizable by state feedback ifi and only if the
weakly unstable subspace Xuw,;s(T) is a subset of the controllable subspace
X¢(A,B), and

(ii) if S is w-stabilizable F =-B* is an w-stabilizing state
feedback gain. //

From Remark (2.4) the following corollary is immediate.



(3.8) Corollary. Assume that {T(t) ; t>0} be contractive. Then.S is
s—stabilizable by state feedback if and only if X s(A,B)DXuc(T), provided
any one of the following conditions is met :

(i) A is self-adjoint.
(id) A has a compact resolvent,
(iii) A generates a compact semigroup { T(t) ; £t >0}. //

(3.9) Remark.

(1) It is worthwhileto note that a number of systems appearing in
the practical applications satisfy one of the assumptions of (3.8).
Therefore, studying w-stabilizability is of great importance from not
only the mathematical interest but also its practical applicability.

(ii) Some sufficient conditions for s—stabilizability by state
feedback have been obtained by Slemrod [6] and Levan and Rigby [10]

(iii) Triggahi [7] has also discussed the state feedback
s—stabilizability problem in the framework of Banach spaces.

(iv) The pole-assignability problem using state feedback has been
investigated by Feintuch and Rosenfeld [9]. //

V. The Weak Stabilizability by Output Feedback.

This section is concernd with the output feedback w-stabilizability
problem. First we will prove a necessary condition for a linear control
system to be w-stabilizable. Then under certain assumptions it will be
shown that this condition is a necessary and sufficient condition for
w-stabilizability of contractive systems. The main tool for this proof
is Proposition (3.7).

Recalling that {T(%t); t>0} and {Tf(t) ; t>0} are the semigruops

associated with system 5 of (2.1) and its output feedback system Se,



respectively, we will start with proving the following lemma.

(4.1) Lemma. For any output féedback gain F in B(Y,U), the following
statements hold :

(1) The uncontrollable subspaces X, (A,B) and X,. (A +BFC,B) are
identical, and T*(t)x = Tg*(t)x for all t>0 and all x in X,.(A,B)
= Xyc(A +BFC,B).

(ii) The unobserwvable subspaces X,,(A,C) and X ,(A+ BFC,C) are
identical, and T(t)x = Tg(t)x for all t>0 and all x in X ,(A,C)
= X,o(A +BFC,C).

(proof) We first note that the C,-semigroups generated by the
adjoint operators A* and (A +BFC)* are equal to { T*(t); t>0} and
{Teg*(t) ; £ >0}, respectively. Now consider the following equation :

E(t) = A*E(t) = (A+ BFC)*E(t) = CXF*B*E(t)
from which we can easily deduce. the identity

T*(t)x:TF*(t)x—J; Te*(t-s)C*B*T*(s)xds for all x in X. (1)
Suppose x belongs to X,. (A,B). Then by virtue of Remark (3.4,i) we have
B*T*(s)x =0 for all s >0, and hence (1) implies

T*(t)x=Tg*(t)x for all t>0, (2)
So we get B*TF*(t)x=O for all t >0 proving XUC(A,B)C X,.(A +BFC,B).

To show the reverse inclusion, consider

E(t) = (A +BFC)*E(t) =A*E(t) + CXF*B¥*E(t)
which gives the identity

TF*(t)x=T*(t)xk+J; T*(t—s)C*F*B*TF*(s)ds for all x in X. (3)
Now we take x from Xuc(A +BFC,B). Then employing the same argument as
before yields B*T¢*(s)x = O for all s>0, and (3) gives

T *(t)x = T*(t)x for all t>0. (4)



Hence B*T*(t)x =0 for all t >0, and the reverse inclusion Xuc(A,B)
DXyc(A +BFC,B) obtains. This completes the proof of (i).
The statement (ii) can be shown in the same manner as in the proof
of (i) except that this time we use the following equations :
£(t) = Ag(t) = (A+ BFC)E(t) - BFCE(t)
£(t) = (A+BFC)g(t) = Ag(t) + BFCg(t)
which immediately give. the identities
T(t)x=T,:(t)x-jtTF(t—s)BFCT(s)xds for all x in X (5)
Te(t)x =T(t)x +{OT(t—s)BFCTF(s)xds for all x in X. (6)
Using Remark (3.4,i), we can easily show the statement (il). //

Now we use the above lemma to show the following theorem.

(4.2) Theorem. If the system S given in (2.1) is w-stabilizable by
output feedback, then the w-stable subspace X,s(T) of S includes both the
uncontrollable subspace X, .(A,B) and the unobservable subspace X,,(A,C).

(proof) Let F be a w-stabilizing gain of S, and x be in qu(A,B).
Then by Lemma (4.1,i) we have T*(t)x=Tg*(t)x for all t>0, and thus- for
any z in X

(T*(t)x,2z) = (Te*(t)x,2) =(x,Tp(t)z) > 0 as t+ =
which implies that x belongs to X, (T). So we obtain the inclusion
Xus(T) 2 X, (A,B).

To show X, (T)D> X, (A,C), take an arbitrary element x from XUO(A,C).
Then Lemma (4.1,ii) implies T(t)x=Tf(t)x for all t>0. Hence we obtain
for any z in X

(T(t)x,z) =(Te(t)x,2z) * O as t»=

which proves the desired inclusion X, (T)> X, (A,C). //
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Next we will prove the following lemma that plays a vital role to
show our main theorem (4.4).

(4.3) Lemma. Let L be in #(X,U) and N be in #(X,Y) such that the
range R(N) is closed in Y. Then Kerx LD KerN if and only if there exists
an F in B(Y,U) such that FN =L.

(proof) The sufficiency part is obvious. So, we prove only the
necessity part.

We define m:X *X/KezL by % x=x+KerL, L: X/KerL +R(L) by
L(x +Ker L) = Lx, and finally G R(L) » U by tu=u. Similarly define
my : X *X/KeaN, N: X/KeaN+R(N), and  : R(N)> Y. Then we can easily
see
Lx =LLﬁn X =ian for all x in X (1)
Nx:=\MNan:=Nan for all x in X. (2)
Since N is bijective, we obtain
leNx=N'1ﬁ1TLx=1er=x +Ken N. (3)
Now define L : X/Kex N+ X/KerL by (x +KeaN) =L(x +Kerz L). It should
be noted that L is well defined since Kex NCKerl by assumption. Then by
virtue of (1) and (3), we have
Lx = BN Inx for all x in X (4)
It is not difficult to see that F =\Lﬁﬁ*1 is a linear operator from R(N)
into U. Since R(N) is a closed subspace of Y, it is meaningful to define
a linear operator F : Y =+U by
Fy;kLiﬁ_g if y in R(N)
Fy =
o " if y in R(N)

.‘ A
where R(N) indicates the orthogonal complement of R(N). Then it follows



from (4) that the Lx =FNx for all x in X, i.e., L = FN. Moreover from
the closedness of R(N) and the definition of F it is not difficult to
check that F is bounded. This completes the proof. //

(4.4) Theorem. Assume for the system § of (2.1) that

(i) S is contractive, i.e., ||T(t)|l| £1 for all t2>0,

(i) AKexB*> KerC , and

(i) R(C) is closed.
Then, § is w-stabilizable by output feedback if and only if X,.(A,B)
CXus(T) and Xyo(A,C)C Xus(T).

(proof) This theorem is an immediate consequence of Proposition(3.7),
Theorem (4.2) and Lemma (4.3). //

From Remark (2.4) or Corollary (3.8) the following corollary
immediately obtains.

(4.5) Corollary. Suppose that all the assumptions (i) - (iii) of (4.4)
be satisfied. Then § is s-stabilizable by output feedback if and only if
Xuc(A,B)—Xys(T) and Xyo(A,C)TXys(T), provided any one of the following
conditions is met :

(i) A is self-adjoint.

(ii) A has a compact resolvent.

(i) A generates a compact semigroup {T(t) : t> O}. //
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