り一群が表すホモトピー要素について

大阪市大南春男(Haruo Minami)

コンパクト・連結リー群をG、その左不変な枠組をよとする。これでは(G,Z)からトム・ポントリャーギン構成法によってえられるホモトピー要素[G,Z]を元気(役し、d=dimG>0)について一つの補足(命題1)とこれまでの結果及かそか二、三について証明に用いられた主な道具を紹介する。

7. 命題1 Gかその固定集合Kの余次元が奇数であるよう方対合的自己同型をもつとき。

例 この命題が適用出来るGとしては、SU(4n+3)、 SU(4n)、SO(2n)、Spin(2n)がある。

この内 SO(2n)については後で述べるようにBecker-Schultgによって 2[SO(2n), 2]=0であることが知られている。また次に示す Ossa の定理から命題が意味をもつのは3-成分のみ

である。

2. [G,Z] の位数の評価で最も一般的なものは次のO as a の結果である。

定理(Ossa[6],1982) 72[G,Z]=0.

定義から次のことが分かるか、このことは[G,Z]の決定は 半単純群の回題に帰着されることを示す。

- 1) [s/z]= 2 e スs (よりプ写像)
- 2) G は 非 可 校 見つ Z(G)) T (輪 環 程) F ら は " $[G, \mathcal{L}] = [T, \mathcal{L}][G/T, \mathcal{L}]$
- $[G,\mathcal{L}][H,\mathcal{L}] = [G \times H,\mathcal{L}]$
- ハン同様に[S^{3} Z]は γ_{5} のホップ写像レを表すことか分かる。更にSO(3) については[SO(3), Z] = 2ν か示されている[τ]。 又2)から [U(n), Z] = γ [SU(n), Z]をえる。

階数2の単純群については、最初にSmith[7]によって $[Sp(2), Z] = B, (3) \in \Sigma_0$, $[SU(3), Z] = \overline{\nu} \in \Sigma_0$ が証明され、つついて $Steen[8] と 2wood[9] によって <math>[SU(3), Z] = \overline{\nu} \in \Sigma_0$, $[G_2, Z] = x \in \Sigma_0$ が証明された。この後 Becker-Schults[2] Xnapp[4] × 続くか結果については Ossa の表を次に掲げて

おく。Becker-Schultsはこれるの結果から[2](1977)の中で次の予想を立てた。 rank G > 10? をら [G, Z]=0

Rk	d	G	[G, Z]	77.S
/	J	SU(Q)	ν	Z_{24} ν
		SO(3)	<i>-</i> ≥ <i>Y</i>	
2	8	SUBI	$\overline{\mathcal{V}}$	Z2 @ Z2 D
	10	Sp (Z)	B, (3)	Z ₆
		50(5)	- B, (3)	
	14	Gz	K	Zz & Zz X
	6	50(4)	0	
્ર	15	SU(4)	KZ	Z480 @ Z2 X2
		50(6)	0	
	2/	Spin(7)	0	Z2 @ Z2
		50(7)	0	
		Sp(3)	$\sigma^3 + \bar{\chi}\gamma$	
4	24	SU(5)	7*07 02 0	Z6 € Z2.7*07
	36	Spin(9)	0	Z_{6}
		SO(9)	0	
	La de la Civilla	Sp(4)	?	
	28	Spin(8)	0	Z_{2}

	50(8)	0	
52	F4	?	Z, \$2-primary

註) 国氏から[SU(5), 2]=0であることを教えられた(2. U. Schoenの結果)。

3 先の四氏の主定理を述べる。

Becker-Schultg $K \xi G \circ$ 閉部分群とする。 $K \chi G$ $\rightarrow K \xi K \bot \circ$ 積 $K \chi G \rightarrow K \chi G \xi f (元 8) = (元 28)$ $\chi \in K$, $g \in G$ で定義されるバンドル写像とする。また Dold $\chi \in K$ $\chi \in$

 $U \subset G$ を単位元の局所座標近傍とし、 自然方射影 $G_+ \rightarrow G/G - U = S^d$ を てて表す。 このとう、 $\pi_a^S - \pi_s^S (S^d)$ $\xrightarrow{\mathcal{T}_a^*}$ $\pi_s^S (G_+)$ は単射で、 且つ $\pi_s^* [G, \mathcal{L}] = I_G(G)$ なることか分かる。

例 $\chi(SO(2n)/U(n)) = 2^{n-1}$, $\chi(SU(n+1)/U(n)) = n+1$, $\chi(SO(2n+1)/SO(2n)) = 2$, $\chi(G_2/SO(4)) = \chi(F_4/Spin(9)) = 3$.

 $2 \text{ H D } \hat{S} [U(2n), \mathcal{L}] = 2 [SO(2n), \mathcal{L}] = 3 [SO(4), \mathcal{L}] = 3 [Spin (9), \mathcal{L}]$ $= 0 \text{ & λ } \hat{S}.$

定理 [G, L]_(p) ∈ F rank G, d+ rank G

註)つ、の言葉で atiyah-Smith[1]の結果は次の様に記述される: $e_c[G,Z]_{cp}$,=o であるための父要十分条件は $[G,Z]_{cp}$ 、 $\in F^{2,d+2}$ である。

この定理とEsitの消滅に関するJahler, Smillerの結果を用りて次の結果を得た。

 $[SU(2n+1), \mathcal{L}]_{(p)} = 0$ (2n < p(p-1)-2),

 $[F_4, Z]_{(p)} = [E_6, Z]_{(p)} = [E_7, Z]_{(p)} = 0 (p > 5)$ [E₈, Z]_(p) = 0 (p > 7). 他の名話によって [F4, Z]₍₃₎ = 0 か電配料されている。

Qua SをGのサークル部分群、VをSの雑自明な

一次元複素表現とする。またて: $\Sigma'(CP_+^{\infty} \to QS^{\circ})$ なS'-物送 写像とする。このときて*: $\Sigma_{A-1}^{\circ}(CP_+^{\infty}) \to \Sigma_{A-1}^{\circ}$ は[G/S, Z, S]を[G, Z] に移すことが知られている。こゝて、 $S: G_S V \to G/S$ 。 $B \in R(S^{\circ})$ な Bott 要素, $[G/S] \in \Sigma_{A-1}^{\circ}(G/S_+)$ なG/S の基本 類とするとき、次の定理を証明した。

定理 $T_*[G/S, Z, S] = -\langle J(8S), [G/S] \rangle$ 即す $[G, Z] = -\langle J(8S), [G/S] \rangle$ 。但し、エは複素エー写像を、 〈、〉はクロネッカー積を表す。

これは次のXnappの結果を用いて示される:

$$\Sigma'CP^{\omega}_{+} \xrightarrow{7} QS^{\circ}$$

$$R \downarrow \qquad \qquad \int_{J}$$

$$U$$

は反可換である。こ>でRは反射写像を示す。

Sをうま(選が、JGS)にadami予想を適用して多るの 冒頭に述べた定理を証明して。

4. 命題フの証明 Mを(P+8)次元可微分乙一用多 様体で、その接バンドルでについて次のバンドル同型をもつ とする。

$\bar{\Phi}: \ 7\oplus R^{\hat{\iota}}\oplus\hat{\jmath}\underline{L} \xrightarrow{\cong} R^{\hat{\iota}+\hat{g}}\oplus (\hat{\jmath}+P)\underline{L}$

(あるらよに対して)。ことでくはるの雑魚明ケー次元実表現を、人はみをファイバーにもつ績バンドルを表す。このとう
(M,更)を(ル8)-粋組をもつ効様体と呼ぶことにする。
(何,更)でるの作用を忘れるとき、またその固定定集合を参えるとき、それらは枠組をもつ効様体になる。それらを
(M,4更)、(M²,4更)、で表す。

775.8 を Landweder [5]の同変安定ホモトロー群, z.e. 775.8 = $\lim_{z \to 0} [\Sigma^{pril,870}, \Sigma^{ci,\sigma}]$, $\Sigma^{ci,\sigma} = \mathcal{R}^{i}$ $\mathfrak{g}(L)$ \mathfrak

命題2 户加奇数与了, [M,短](odd)=0

例 Mとして命題1のGをとると、Gは(d-dim K, dim K) -枠組をもつ効様体になる。従って、これから命題1を得る。

命題2の証明 $\lambda_{P,8}^{S} = \lim_{\zeta,\bar{s}} [\Sigma^{P+\zeta,8+\bar{s}}/\Sigma^{0,8+\bar{s}},\Sigma^{\zeta,\bar{s}}] \times \pi \langle$ \times , ユフアイブレイション $\Sigma^{0,8} \to \Sigma^{P,8} \to \Sigma^{P,8}/\Sigma^{0,8}$ は完全列 $\to \lambda_{P,8}^{S} \to \tau_{P,8}^{S} \to \tau_{P,8}^{S$

 Z_2 - 同型 $J: R^{it} \theta (j+p)L \to R^{it} \theta (j+p)L & J(\chi_1,...,\chi_{it}, y_1,...,y_{j+p})$ T 定義するとき, $\mathcal{G}[M, \Phi] = \mathcal{G}[M, J \Phi]$, $\mathcal{F}[M, J \Phi] = -\mathcal{F}[M, \Phi]$

文献

- 1 Atiyah Smith: Compact Lie groups and stable homotopy of spheres, Topology 13 (1974), 135-142
- 2 Becker Schultz: Fixed point indices and left invariant framings, Lecture notes in math. 657, Springer, 1978, 1-31.
- 3 Bredon: Equivariant stable stems, Bull,

- amer. math. Soc. 73 (1967), 269-273.
- 4. Knapp: Rank and adams filtration of a Lie groups, Topology 17(1978), 41-52.
- 5. Landweber: On equivariant maps between spheres with involutions, ann. of math.
 89 (1969), 125-137.
- 6. Ossa: Lie groups as framed manifolds, Topology 21 (1982), 315-323.
- 7. Smith: Framings of sphere bundles over spheres, the plumbing pairing, and the framed cobordism classes of rank 2 simple Lie groups. Topology 13 (1974), 401-415
- 8 Steer: Orbits and the Romotopy class of a compactification of a classical map,
 Jopology 15 (1976), 383-393.
- 9 Wood: Framing the exceptional Die group Gs, Topology 15 (1976), 303-320.