<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>REFINABLE MAPS AND SHAPE (STUDIES ON CONTINUA AND INFINITE-DIMENSIONAL MANIFOLDS)</td>
</tr>
<tr>
<td>著者(s)</td>
<td>Kato, Hisao</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (1984), 509: 23-30</td>
</tr>
<tr>
<td>発行日</td>
<td>1984-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/103788</td>
</tr>
<tr>
<td>取得形態</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>文書形式</td>
<td>Publisher</td>
</tr>
</tbody>
</table>

Kyoto University
REFINABLE MAPS AND SHAPE

By Hisao Kato

In [9], J. J. Kelley defined very important notion "property [K] and he proved that if X is a continuum which has property [K], then the hyperspace C(X) of subcontinua of X is contractible. In [6], R. W. Wardle proved that every confluent map preserves property [K]. It is well-known that every refinable map is weakly confluent (see [1]), but simple examples show that weakly confluent maps do not preserve property [K].

In [12, (16.38) Question], S. B. Nadler asked the following question: what kinds of mappings preserve property [K]? We show that every refinable map preserves property [K]. In [1], J. Ford and J. W. Rogers proved that every refinable map onto a Peano continuum (locally connected) is monotone. In [10], S. B. Nadler proved that if \(f: X \to Y \) is a near-homeomorphism between compacta and Y has property [K], then f is confluent.

Note that every near-homeomorphism is a refinable map but the converse is not true. We show that if \(r: X \to Y \) is a refinable map between compacta and Y has property [K], then r is confluent. The condition that Y has property [K] cannot be omitted. We give a example in which refinable maps are not confluent.

Also, we show that if \(r: X \to Y \) is a refinable map between continua, then X is irreducible iff Y is irreducible. Moreover, in shape theory, we have the following: If \(r: X \to Y \) is a refinable
map between compacta and \(Y \) is calm, then \(r \) is a shape equivalence. As a corollary, if \(r: X \to Y \) is a refinable map between compacta and either \(X \) or \(Y \) is \(S^n \)-like \((n \geq 1)\), then \(r \) is a shape equivalence, where \(S^n \) denotes the \(n \)-sphere (cf. [3]). Several properties concerning refinable maps have been studied in \([1, 2, 3, 4, 5, 6, 7, 8, \text{ etc.}]\).

The word compactum means a compact metric space. A connected compactum is called a continuum. If \(x \) and \(y \) are points of a metric space, \(d(x, y) \) denotes the distance from \(x \) to \(y \). For any subsets \(A, B \) of a metric space, let \(d(A, B) = \inf \{d(a,b) | a \in A, b \in B\} \). Also, let \(d_H(A, B) = \max \{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\} \). \(d_H \) is called the Hausdorff metric (see [9], [10]). A compactum \(X \) is said to have property \([K]\) (see [9]) provided that given \(\epsilon > 0 \) there exists \(\delta > 0 \) such that if \(a, b \in X \), \(d(a,b) < \delta \), and \(A \) is a subcontinuum of \(X \) with \(a \in A \), then there exists a subcontinuum \(B \) of \(X \) such that \(b \in B \) and \(d_H(A, B) < \epsilon \). Note that every locally connected compactum has a property \([K]\), but the converse is not true. A map \(f: X \to Y \) between compacta is confluent (weakly confluent) if for every subcontinuum \(Q \) of \(Y \) each (at least one, respectively) component of the inverse image \(f^{-1}(Q) \) is mapped by \(f \) onto \(Q \). A map \(r: X \to Y \) between compacta is refinable \([1]\) if for every \(\epsilon > 0 \) there exists an onto map \(f: X \to Y \) such that \(\operatorname{diam} f^{-1}(y) < \epsilon \) for each \(y \in Y \) and \(d(r, f) = \sup \{d(r(x), f(x)) | x \in X\} < \epsilon \). By definitions, each refinable map is surjective, each near-homeomorphism is refinable and if there is a refinable map from a compactum \(X \) to a compactum \(Y \), then \(X \) is \(Y \)-like (see [5] for the definition that \(X \) is \(Y \)-like). But any converse assertions of them are not true.
Theorem. Let \(r : X \to Y \) be a refinable map between compacta. If \(X \) has property \([K]\), then \(Y \) has the same property.

Corollary. If \(r : X \to Y \) is a refinable map between continua and \(X \) has property \([K]\), then the hyperspaces \(2^Y \) and \(C(\gamma) \) are contractible.

Theorem. Let \(r : X \to Y \) be a refinable map between compacta. If \(Y \) has property \([K]\), then \(r \) is confluent.

Remark. In the statement of above theorem, we cannot omit the condition that \(Y \) has property \([K]\). In the plane \(\mathbb{R}^2 \), put

\[
A = \{(2,y) \mid -1 \leq y \leq 2\}, \\
B = \text{Cl}\{(x,\sin \frac{2\pi}{x}) \mid -1 \leq x < 0\}, \\
C = \text{Cl}\{(x,\sin \frac{2\pi}{x}) \mid 0 < x \leq 1\}, \\
D = \text{Cl}\{(x,\sin \frac{2\pi}{x-2}) \mid 1 \leq x < 2\}, \text{ and} \\
E = \{(0,y) \mid -1 \leq y \leq 2\}.
\]

Also, let \(X = A \cup B \cup C \cup D \) and \(Y = B \cup E \). Define a map \(r : X \to Y \) by

\[
 r(p) = \begin{cases}
(0,\sin \frac{2\pi}{x}) & \text{if } p = (x,\sin \frac{2\pi}{x}) \in C, \\
(0,\sin \frac{2\pi}{x-2}) & \text{if } p = (x,\sin \frac{2\pi}{x-2}) \in D, \\
(0,y) & \text{if } p \in A,
\end{cases}
\]

Then it is easily seen that \(r \) is a refinable map, but not confluent.

Corollary. If \(r : X \to Y \) is a refinable map between compacta and \(X \) has property \([K]\), then \(r \) is confluent.
It is well-known that the condition that the hyperspaces 2^X and $C(X)$ of a continuum X is contractible does not imply that X has property [K]. Hence, the following question is raised.

Question. Let $r: X \to Y$ be a refinable map between continua. If the hyperspaces 2^X and $C(X)$ are contractible, are the hyperspaces 2^Y and $C(Y)$ contractible?

Recall that a continuum X is irreducible if there exist two points $p, q \in X$ such that no proper subcontinuum of X contains p and q. A continuum is hereditarily decomposable (hereditarily indecomposable) if for any non-degenerate subcontinuum A of X, there exists (there does not exist) a decomposition of A into two proper subcontinua A_1 and A_2 of A such that $A = A_1 \cup A_2$.

A continuum T is a trioid if there are three subcontinua A, B, and C of T such that $T = A \cup B \cup C$, $A \cap B \cap C = A \cap B = B \cap C = C \cap A$ and this common part is a proper subcontinuum of each of them. A continuum is atriodic if X fails to contain a trioid (\mathcal{U}).

Theorem. Let $r: X \to Y$ be a refinable map between continua. Then X is irreducible iff Y is irreducible.

To prove the above theorem, we need the following characterization of irreducible continua.

Theorem (R. H. Sorgenfrey [7]). A necessary and sufficient condition that X is irreducible is that if X is the essential sum of three proper subcontinua, then some pair fails to intersect.
Proposition. Let \(r: X \rightarrow Y \) be a refinable map between compacta. If either \(X \) or \(Y \) is a Cantor set, then \(r \) is a near-homeomorphism, i.e., \(X \) and \(Y \) are Cantor sets.

Proposition. Let \(r: X \rightarrow Y \) be a refinable map between continua. Then

1. if \(X \) is hereditarily decomposable, then \(Y \) is also,
2. \(X \) is hereditarily indecomposable iff \(Y \) is also, and
3. \(X \) is atriodic iff \(Y \) is also.

Corollary. Let \(r: X \rightarrow Y \) be a refinable map between continua. If either \(X \) or \(Y \) is the pseudo-arc, then \(r \) is a near-homeomorphism, i.e., \(X \) and \(Y \) are pseudo-arcs.

A compactum \(X \) is calm if whenever \(X \subset M \subset ANR \), there is a neighborhood \(V \) of \(X \) in \(M \) such that for any neighborhood \(U \) of \(X \) in \(M \) there is a neighborhood \(W \) of \(X \) in \(M \), \(W \subset U \) such that if \(f, g: Y \rightarrow W \) are maps with \(f \lessdot g \) in \(V \), then \(f \lessdot g \) in \(U \) for all \(Y \subset ANR \).

Theorem. If \(r: X \rightarrow Y \) is a refinable map between compacta and \(Y \) is calm, then \(r \) is a shape equivalence, i.e., \(sh(X) = sh(Y) \).

Corollary. If \(r: X \rightarrow Y \) is a refinable map between compacta and \(Y \) is an FANR, then \(r \) is a shape equivalence (see [3]).

Corollary. If \(r: X \rightarrow Y \) is a refinable map between compacta and \(Y \) is an \(AANR_N \), then \(r \) is a shape equivalence.

Remark. In the statements of above results, we cannot replace "calm" by "movable". Also, we cannot replace "\(AANR_N \)" by "\(AANR_C \)" (see [4]).
As a corollary, we have

Corollary. If $r: X \to Y$ is a refinable map between compacta and if either X or Y is S^n-like $(n \geq 1)$, then r is a shape equivalence, where S^n denotes the n-sphere.

Question. Does every refinable map preserve calmness (FANR, AANR)?
References

