<table>
<thead>
<tr>
<th>Title</th>
<th>HYPERSPACES AND WHITNEY MAPS (STUDIES ON CONTINUA AND INFINITE-DIMENSIONAL MANIFOLDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kato, Hisao</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1984), 509: 18-22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/103789</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
HYPERSPACES AND WHITNEY MAPS

By Hisao Kato

Throughout this note, the word compactum means a compact metric space. A connected compactum is a continuum. A Peano continuum is a locally connected continuum. If \(x \) and \(y \) are points of a metric space, \(d(x, y) \) denotes the distance from \(x \) to \(y \). For any subsets \(A \) and \(B \) of a metric space, let \(d(A, B) = \inf \{ d(a, b) \mid a \in A, \ b \in B \} \). Also, let \(d_H(A, B) = \max \{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \} \). \(d_H \) is called the Hausdorff metric. The hyperspaces of a continuum are the spaces \(2^X = \{ A \subseteq X \mid A \) is compact and nonempty\} and \(C(X) = \{ A \in 2^X \mid A \) is connected\} which are metrized with the Hausdorff metric \(d_H \). Let \(F_1(X) = \{ x \in X \mid x \in X \} \). A Whitney map for a hyperspace \(H \) of a continuum \(X \) is a continuous function \(w: H \rightarrow [0, w(X)] \) such that \(w(\{ x \}) = 0 \) for each \(\{ x \} \in F_1(X) \), and if \(A, B \in H \) and \(A \subseteq B \), then \(w(A) < w(B) \) (see [9]). The notion of Whitney map is an important and convenient tool for hyperspace theory. If \(w \) is a Whitney map for \(H \) and \(t \in [0, w(X)] \), then \(w^{-1}(t) \) is called a Whitney level. Whitney levels are coverings of \(X \) which, as \(t \) gets close to zero, converge to \(w^{-1}(0) = F_1(X) \subseteq X \). It is of interest to obtain information about the structure of Whitney levels and determine those properties which are preserved by the convergence of positive Whitney levels to zero level. In [1] and [8], Curtis, Schori and West proved that for any Peano continuum (locally connected continuum) \(X \), \(2^X \) is a Hilbert cube \(Q = \prod_{n=1}^{\infty} [-1, 1] \) and if \(X \) contains no free arc, \(C(X) \) is a Hilbert cube \(Q \). Recently, Goodykoontz and Nadler introduced the notion "admissible Whitney map" and they proved the following
Theorem (Goodykoontz and Nadler). Let X be a Peano continuum and let w be an admissible Whitney map for $H=2^X$ or $C(X)$. If $H=C(X)$, assume that X contains no free arc. Then for any $t \in (0, w(X))$, $w^{-1}(t)$ is a Hilbert cube and w is an open map.

Let X be a continuum. A Whitney map w for $H=2^X$ or $C(X)$ is an admissible Whitney map for H if there is a homotopy h: $H \times [0,1] \rightarrow H$ satisfying the following conditions:

1. $h(A,1)=A$, $h(A,0) \in F_A(X)$ for each $A \in H$, and

2. if $w(h(A,t)) > 0$ for some $A \in H$ and $t \in (0,1]$, then $w(h(A,s)) < w(h(A,t))$ for each $0 \leq s < t \leq 1$.

Moreover, in [4] we proved the following

Theorem [4]. Under the same hypotheses as in above theorem, the restriction $w | w^{-1}((0,w(X)) : w^{-1}((0,w(X))) \rightarrow (0,w(X))$ of w to $w^{-1}((0,w(X)))$ is a trivial bundle map with Hilbert cube fibers. If X is the Hilbert cube Q, there is a Whitney map w for H such that $w | w^{-1}([0,w(X))]$ is a trivial bundle map with Hilbert cube fibers. Also, if X is the n-sphere ($n \geq 1$), then there is a Whitney map w for $H=2^{S^n}$ ($n \geq 1$) or $C(S^n)$ ($n \geq 2$) such that for some $t \in (0,w(X))$, $w | w^{-1}((0,t))$ is a trivial bundle map with $S^n \times Q$ fibers.

Also, in [5] we showed the following

Theorem [5]. Let P_i be a 1 or 2 dimensional connected polytope for each $i=1,2,\ldots,n$. Then there is a Whitney map w for $H=\bigotimes_{i} P_i$ or $C(\bigotimes_{i} P_i)$ ($n \geq 2$) such that for some $t \in (0,w(\bigotimes_{i} P_i))$,
$w|w^{-1}((0,t))$ is a trivial bundle map with $\prod_{w_{i}}^{n} P_{1} \times Q$ fibers.

In relation to above theorems, we have the following

Proposition [5]. Let X be a compact ANR but not AR. Let $H=2^{X}$ or $C(X)$. If $H=C(X)$, assume that X contains no free arc. If w is any Whitney map for H, there is a point $t_{0} \in (0,w(X))$ such that $w|w^{-1}((0,t_{0}))$ is not a trivial bundle map.

Example [5]. Let $X=S$ be the unit circle. Let $A \in H=2^{X}$ or $C(X)$. For each $n \geq 2$, let $F_{n}(A)=\{K \subset A | K \neq \emptyset \}$ and the cardinality of K is $\leq n \}$. Define $\lambda_{n} : F_{n}(A) \rightarrow [0,\omega)$ by letting $\lambda_{n}(\{a_{1},a_{2},...,a_{n}\}) = \min\{d(a_{i},a_{j}) | i \neq j \}$ for each $\{a_{i}\} \in F_{n}(A)$, where d is the arc length metric for S. Also, let $w_{n}(A)=\sup_{n} \lambda_{n}(F_{n}(A))$ and let $w(A)= \sum_{n=2}^{\infty} w_{n}(A)/2^{n-1}$ for each $A \in H$. Then w is a Whitney map for H. Then $w|w^{-1}((0,\pi/2)) : w^{-1}((0,\pi/2)) \rightarrow (0,\pi/2)$ is a trivial bundle map with $S \times Q$ fibers, but $w|w^{-1}((0,\pi/2))$ is not a trivial bundle map. In fact, $w|w^{-1}((0,\pi/2))$ is not an open map.

Example [5]. There is a Whitney map w for $H=2^{[0,1]}$ such that for every $t \in (0,w([0,1]))$, $w|w^{-1}((0,t))$ is not a trivial bundle map.

Question [5]. Is it true that if P is a n-dimensional ($n \geq 3$) polytope, there is a Whitney map w for $H=2^{P}$ or $C(P)$ such that for some $t \in (0,w(P))$, $w|w^{-1}((0,t))$ is a trivial bundle map with $P \times Q$ fibers? (If $H=C(P)$, assume that P contains no free arc.)
As an application of hyperspace theory, we obtain the following

Theorem [6]. If a compactum X has a scalene metric, then X is an absolute retract. Moreover, if a locally compact space X has a locally scalene metric, then X is an absolute neighborhood retract.

A metric d defined in a space X is a scalene metric [6] if x_1 and x_2 are different two points of X, then there is a point x_0 of X such that for each point x of X either $d(x,x_1) > d(x,x_0)$ or $d(x,x_2) > d(x,x_0)$ holds. This notion is a generalization of norm of a linear space. A metric d defined in a space X is a locally scalene metric [6] if for each point $x \in X$ there is a neighborhood U of x in X such that $d|_{U \times U}$ is a scalene metric.

Remark [6]. Every 1-dimensional AR has a scalene metric but there is a 2-dimensional AR which does not admit a scalene metric.

Question [6]. Is it true that every locally compact polytope has a locally scalene metric?

Question [6]. Is it true that every compact strongly convex metric space admits a scalene metric? Is it true that every compact scalene metric space admits a strongly convex metric?

Proposition [6]. If d is a scalene metric and convex, then d is a strongly convex metric.
References