ooooobpooooo
3010 19770 80-92

80

ERIE (Hxshiv\g) £ Lo

CRK YR 6% k-
(A A

1. MEREEBED > 2 7 L4 .
A a 0 RN %E 2%t Gt ARTain-Fopzp, vl
7T ondhamrh b, BRELE %%é%zxnﬁu&
VRFFRA AT R 203, FORTRAN &6 e 7 248
RHRIEO 0558 « "BREY, AR, BT Loy
TOLEVE L NRBIRICE (2" 4 5 27| O Bpf5(
mF16, 32, 48, 4%tk < k> 2 Bha3) o BEL 0B
Bredmfizto. BE « ohk4EHMBEBEL B
T2 T T &3 0%, FORTRAN =, (4 & 2B EERE RAfn
Ve d % L y &A1 (Syrtactic SugarB) B <L 24 Bu e
Q7703 HERA. ARG K-I+T, K- %] ned
<m@%n—M)Qﬁﬁquﬂfw—%ycwéﬁm%<
I ABREES NREBE RE L2 Wyatt b0
LIEHE FORTRAN Precompiler (10" 058 3 05, "BER" 1<~

/

81

VTEFEZ N FA NG ot AEL W i o2 v tau,
 MAENEEERN IR @B AT L2 d, B
g2 T (1, 2] 4% . >Wid, Zi=x+Y LK
X e Y 0 dLaN, A 2 F RGN w T HhE
b, awm‘m;@’k’wiw «’r?y Valhy. 20K
LB e L "BEL 4 E L CRBABITAGR LAY
f3L13v. % Hearn o REDUCE2 > 25 o ¢t Btk
Wi Bm sy . FEEboTiL- 7rabhoREo
REGREH B nafZe FERI LI V2o, "B
v GEIRG o AR A B v TNBBA R G2 0 W%
Pd§hltu. k<% FORTRAN ¢ ALGOL ¢
LISP s udnandhaok@ishrL. Loy "Bi"
RBEENEL e 0 BBERA (V7 L) RLATS &£%
L. (7] 20 & RABRDBEERLCRRL Yo v 7|
WL T2RAF G, "B BE- l?)é@n‘c:@ﬁz“ﬁ%%
N BRoOEI Y7 FTRAGHRAETL 0 T, HERA
FBG. CHEELTHRIF, €D L2 V7 - 9% (B
510 B RAGoREE N- FO1 7T 20 E %), %
n—oaRBAEE BIIRLK. tRind&ATI - FOHL
TH#o BLATS 38 otkst, 8L % 4 LT,
% BEGFTHE, "B KRB o § (S

82

Sr- vk, BeoRtBhon-Feyy hedndble o
A" PREE 0l 5.

2. BRI (Hashing) L Zaicd
TRLA (Bwe) R BELI 220 Hh3 T - 9 idend
27T 2% B0 EEEHL, F-908%, - N A
X, AR T3 REURER T S Es A FERGEE
(Associative Mc-mor)/ ¢ Content Addressed Memory)
i vy, Arhefle - 9 - N- 2o AR CER
$en A P B 4 % BRAYE 9 ¢, BE R
75 ¢ m%%?&ﬁrﬂﬁ‘éﬁ\ﬁ*hz VA, L LI mm%l'ﬁb
25 a | B3t R LARL TR T v 1SR2E T M2 7y
R (O A= F, BErART» e hdFGa |87
B lM@ecdbizd)cd, chs GRAETKRRTL N-F
"‘7 17T (Time Complexity m%\nﬁ\’z;’d?\él%ﬁh t?%;n(@ﬁn
cERHT 00) E' R Hashing ¢ v FRB Y 7L - '7
T THA (HE R GHITF9 o)) bz vz,
Hashing 07 k- Dz 7 ¢ N- P &P AR F&E}p"& \?
BB, (91 R ehB ok L, 2 SR X m/_\’Elﬂl‘;z;
eRSRE ANy i
Hashing GBI > 145 £ Te>T TN D%

83

RHZ OGN B EET W2 - iAokt By &b
TRF 8| Ths. FE LT Witk L2, @AM ndd A
RAaBmA, (AW &B1e a7 - 9thbo ik (319K
mtEE B L) 2B o - 017 Hashing ¥ 3% v &, |
oot - FRAN, BARBRWER V) oA T
L) R GR<Bmehr s rnLt. (5,6
~@) e F T el o gaig < &) B 04 ER (A E) %z;ﬁ,&:
G XAY+Z=YtX+Z=Z2+Y X . ¢ HHAE
BHEBR 5. o hoEoBd NG 274 i <
B4 1 2@0 RN BB ORE 9K 05 e &6 L2 LA,
Alzd, nlloFilokawdhr2 No DEEREGE T, B
o REUBAT 0(n?); Sorting KA AT 2 L.
‘Sortiy\g "7 O(Y\,@oé{m), Wiz 0(n) T B . LM,
X+Y+zZx%h ix, Y, 2} TEATHF,

o Y, zi=1Y, x, 2} %, B- %A =HLR
G- B WHRERA Lo on ((5,6] %%, vf
~ AR o RS GF nnhhcHL 0G0) 24802 0 AE
HokB G 2M@ a4 2 9 ok, 58 o) 21,
NELEDRNBA , 2 okBEk# A4

L= Ko+ Kidet Ket? + - Ko 2" 1RO EZ S n4d
(Koy Ky Knoy) 0vE~Z3Ba@ 217, 2 8o 6B

4

84

OB " it 1=T thn " @¥H 00 TTIT3.
(ot FReL L 00 M0 a, IF, of - %xﬁm‘me
ﬂq’Pa/J\? o(n). S SR -

off — RNERZB & LT - 7%&1?}77"12’774\&?—4 B
HEM hotbthe xRRL L, ShBa BT 3 e Py
2. (Pesl o). L hw#EL2, FEo57,
HLISP » 2 7 & o BB G s @ir A S, (FLATS
VENEFR) R Ee 5 t?“,r.w~ﬁf]£>‘lr
B, —EHE R AR HashZiedeL . &@Tﬁ
REe MO EHI DN T 5. (- RHRirfizeihd
Lvhar . taBcd, BBeAs.) Lodtks
&5 v BRI CES L recursive B LT) R A
TaT 76 =@o5 e nhD L clac BEIEIRBRALTES,
PGB LR (61, to#tAcsr nt
Fibonacei $le = BB 03t G o Gk 10 £ f&/r\ LRy, o
Sk-BleidmLTH ., |

NoABEGREIDE T 202 BIBRARIEL $n,m (BE
nrl & mxl &i&u&u%ﬁ?\n@zu’z%n‘ofz/xmﬂ)
ﬁ%m%wﬂfhdﬁlf%

I = Fim =

mzn> | mﬂf Frnom = 1t Fnine

S

85

| <m<n T&‘.ﬂl#“k%\-n,m = Fromom t B,
Cd)?ﬁf[m’\}l'&&d)%inﬁ’/z“ recursive T 7"U’7"74\f
R13%. (3] Lo, BiEig RamanuJam— Hardy o 4fif
Lrey o(e”W) eny . BRHE AR e D
G 00 € 00D oW, REREE 00D £ 0b. dhe
BRI [A 1< X BIRAk 13 a’rﬁ/&b\lﬁnwﬂz wRvBA
%< %r»—&mﬁzzém%%ﬁwumz 2R
BPRRTHS) . Brhads 56, RAREIH e 4
- HLISP 2 :dynf/i\mﬁﬂﬂ&%%&’vbf,u o

86

(1 The Mathlab Group : "MACSYMA Manual’,
MIT, Cambridge Mass, 1974, 1976.

(2] A.C. Hearn: “REDUCE-2 User's Mama.l",
Univers;ty of Utah, Salt Lake City, Uteh, 1973,

(3] D.W. Barron : " Recursive Technigues in
Progmmming" Macdonald, London and Elsevier,
New York (1968
HHREH 52,

@] W.T. Wyatt, P.W. Lozier and P J.Orser :
"A Porfable Extended Precision Arithmetic
Package and L:bmr)/ with FortFaﬂ Precompiler’
ACM . Trans . Mathematical Software wvol 2
(19%6> pp20T -23]

5] M- Sassa and E.Croto : "A Hashing Methed
for Fast Set Operations , Int . Roc. Letters
5 (197¢> 31- 34

(€) E. Goto and Y. Kanada : "Hashin; Lé’m;nas on
Time Cowxplexitc'eg with Appl.‘cat.‘ons to FHormula
Mawipulation”, ACM~ SYMSAC 76,

-

87

Yorktown Heights N - Y (Aug. 1976)
S-S -
(0 Mk~ © %% RLATS € SP 3%,
WEHE B4 8A-98%. |
Otk — | AaE -9y X8,
TRANEL o BRERRA HRAEEZ
AN I PN A L A ek 52% | A
@) thliok - 4@ - o 220 0ty (B
ey 23k 8% 395-40] (9717)
(o) E. Groto, T-Ida aud T. @l‘aulji 2 " Parallel H@A«'H?
A‘lgorifhms- ", Int. Broc. Letters. vol 6 (1277) 8-13
(1 T. Ida and E. Goto : " Performance of a Pavalle|
Hashing with Ke y Deletion @ To. apear |‘.n Proc.
[F1P - Congress 77, Toronto Aug. 1277. '
(7) thlftk — Aha k@b o P B R DELY L o SR
(BRI IERRMF AR R T

) @ﬁ%’%z—) Bi”%&m SXOELREFIVGER T3 RLACT H 34
S BRFS0F4s s FAN ERRF) = H 7= £ 0 UBY, ‘N a BEENES
LRI FERLTE. S (T E RV EERFLARY £,

&

88

%

o

Hashing Lemmas on Time Complexities
with Applications to Formula Manipulation .

EricHr Goto “

AND YASUMASA KANADA

* DEPARTMENT OF INFORMATION SCIENCE, UNIVERSITY OF TOKYO, Tokyo, 113 JAPAN
** INSTITUTE FOR PHYSICAL AND CHEMICAL: RESEARCH, WakosH1, SArtama, 351, Japan. -

I. Introduction and Summary"

Johnson{l] and Horowitz[2] applied sorting to
improve time complexity of mumltiplication.of uni-
variate polynomials.
as applications of the following LEMMA:

Sorting LEMMA. The time complexity: of sorting of N
items is O(Nlog.N) and that of binary search of
sorted N items is O(logzN).

In this paper, time complex1tles of operatlon on

"sets" and "ordered n-tuples" based on a hashing
table search technique are presented as "Hashing
LEMMAs" and :are, applled to.formula manlpulatlonL

Unique normal ‘forms for multivariite symbolic formu-

las resultlng in 0(1) time complexity for identity
checks are presented.
characteristic to sorting algorithms, is shown to
all disappear from time complexities of polynomial
manipulations.: Actual implementation of the hashing
technique is outlined and actual timing data are
presented in the appendix.

II. Hashing LEMMAs on Sets and n-Tuples.

(2.0) Denotations and Conventions:

In case x represents a set or an n-tuple, Jx|
means the number of elements.

Sets are denoted by underscored capital letter(s).
Specially,

INT is the set of (all) 1ntegers,
INTO = INT - {0}, i.e., integers except 0;
INT+ is the set of positive integers.

A BNF metaobiject is denoted by embracketing a set
in the underscoring notation between "<" and ">",
with optional commentary un-underscored letters.
This convention enables us to use both BNF and set
notations. E.g., BIT ={0,1} and <Binary digIT> ::=
ol1 , are equivalent definitions, where ", " means
the end of a BNF definition.

In order to present algorithms precisely and
concisely, Lisp with three additional data types
<ordered n-TUPle>, <§§2}"and <ASSociator> are used
in this paper. <INTeger>, <SYMbol, i.e., nonnumeric
atoms> and <CONS, i.e., data “created by Lisp func-
tions "cons" or "list"> are the three data types of
ordinary Lisps. (Floating point numbers and arrays
are omitted because of irrelevance to this paper.)
Since the time complexity of high precision arithme-
tic is not the theme of this paper, the time com-
plexities of arithmetic operations on <INT>'s are
assumed to be 0O(l) for the sake of simplicity.

<IDentifiables> are defined as:

ID = INT u SYM U TUP u SET U ASS; (<CONS> ¢ ID).

=it

Their results may be regarded -

The logarithmic factor logaWN, .

_‘of any type, to <ASS>, a.

" “.While <aSSs>'s are denoted’as {ASS>5E= (.<1m>),,

<TUP>'s and <SET>'s are denoted in accordance with
ordinary mathematical notations:
<TUP> 1:= (<ID>,400) 07 <SET> ::=:{<ID>,,..},,

 where ",,,," Mmeans nonzero repetition of the same

metaobject. Specially the O-tuple () and the null
set {} are regarded egquivalent to NIL, i. e.,
= {} = NIL.
<cons> is printed as cons[A; ()] = (Ba¥) with extra
blanks (¥'s) at both ends to dlscrlmlnate them fron

a <TUP> printed as (&) - 0 iy

(2.1) A function "tcons” appends an <ID> to a
<IUP>, e.g..,
teons [A; ()1=(2), tconsI{A 8); (c)1=({A B},C).

Lisp functions "car", "cdr", "cadr" etc. work on. .
<EH£?'S as on <Lisp LIST>'s, e.g.,] !
~ car((a,B)]=a, cdrl(A,B)]=(B), cadc{(a,B)]=B.
<TUP>'s are uniquely represented in the machine by
making use of hashing for speed:

LEMMA 1. -The time complexities .of functions -
"tcons"”, "car" and "cdr" on <TUP> are all O(1l).

{2.2) A function "settup” transforms a <TUP> into
a <§§2? with the corresponding elements; "tupset"
does the converse, e€.g.,
settup((a,B)1={a,B} or {B,A};
settup[(a,B,B)1={A,B} or {B,A}l;
tupset [{A,B}]=(A,B) or (B,A).
Specially for t e TUP, tupsetltl=t- (a coercion

~rule). Although the ordering of elements of a <SET»

is irrelevant to its identity, the ordering of the
elements. of the <TUP> used first to define a <SET>

- establishes a "canonical order” among the elements

of the <SET>. Whenever the canonical order is
needed, it can be retrieved by performing tupset
[<SET>]. <SET>'s are represented uniquely in the
machine by making use of hashing for speed:

LEMMA 2. For t € TUP, s € (SET u TUP), the time
complexities of settup[t] and tupset[s] are o(ltl)
and 0(1), respectively. :

(2.3) For x € ID the function "ass" yields an <ASS?
: ass[x]=(.x*). (* means actual datum represented
by the variable). Conversely, for a=ass[x] € ASS
the function "key" gives the <ID>, X: keylal= x and
the pseudo-function assignla; v] assigns a value V.
The value is assignl[a;vi=
v and the a551gned value can be rétrieved as the
value of the function valuefal=v. The initial val‘la
of an <ASS> is (). ~Similarly to Lisp, property
functions are defined as putlx;y;vl= a551gn[ass[t1’
[x;y11:v], getlx;yl=valuelass[tuplx;yl]] and .
remprop[x;yl=put{x;y; ()], where x, y € ID and v is 8
datum of any type. These functions are " implemented.

7

by making use of hashing for speed:

LEMMA 3. The timé complexities of "ass", "key",
"assign”, "value", "put", "get” and "remprop" are
all o(1).

Note in ordinary Lisps that properties are more
restrictive: x ¢ SYM and y € (INT v SYM), and that
in case m propertles are used on a SYM the time
complexity may increase as O(m) due to to list imple~-
mentation of properties.’

(2.4) For x, y ¢ ID, the predicate function eqlx;yl
checks the equality of x, y in accordance with the
mathematical common sense. Namely, in case x and y
are of different types, eqlx;yl=(); for x, y e INT,
eqlx;yl=T iff x and y are numerically equal; for x,
Y € SYM, eqlx;yl=T iff x and y have the same spell-
ing; for x, y € ASS, eqlx;yl=T iff key[xl=keylyl;
for x, y € TUP y SET, eq[x;yl=T iff x and y repre-
sent the same n—<TUP1e> or <SET> mathematically.
E.g.,

eql(A,B); (B,A)1=0), eq[{A,B}:{B,A}]I=T,

eql{a,B};{B,B,A})=T, eql(.(a)):(.{a)]=0).

LEMMA 4. The time complexity of "eq" is 0(1).

Note that for the equality checking of Lisp data
<CONS>, the time consuming function "egqual" has to
be used[3]. <TUPle>'s essentially differ from
<LIST>'s in this regard.

(2.5) Outline of an Implementation called HLISP
(Hashed LISP).

Each <HLISP CELL> in the FSA (Free Storage Area)
consists of three fields: <CELL> ::= [<TAG>,<CAR
field>,<CDR field>], Besides for GBC (GaxrBage
Collection) marking, the <TAG> is used to specify
the data type of the cell. Similarly to Lisp 1.5,

a <CONS CELL> ::= [CONS,x*,y*]_ is created in the
FSA as the result of cons[x;y]. The FSA itself is
used as the (only one) hash table with the size
being a prime p. For tuplx;y], a hash search (in-
sert iff absent) is made for a <TUP CELL> ::=
{TUP,x*,y*],, using Knuth's algorithm D[4, p521],
thereby ensuring uniqueness of the resultant <TUP>.
For ass[x], a hash search is made for an <ASS CELL>
::= [ASS,"don't care",x*],, using Knuth's algorithm
U2[4, p539]. The value of the <ASS> is placed in
the <CAR field>, which is not used as the key of the
hash search. A <Short_INTeger> is represented as a
pointer (placed in <CAR> or <CDR> field) to a non
existing memory address. An n-precision <INT> is
uniquely represented like a <TUP> of <Short_ INT>'s
(i, iz, ..., in) with the head cell being changed
to an <INT CELL> ::= [INT,i;,t],, where t is a
<TUPle>, (iz, ..., in). 'A <SYM CELL>, corresponding
to an atom header cell of Lisp 1.5, is the same as
an <INT CELL>, except the head cell <SYM CELL> ::=
[S¥YM,i,,t] with <Short INT>'s i,, ..., in being an
unique encoding of the character string which iden~-
tifies the <SYM>. For settuplt], t=(e,*, ..., em¥),
a <g¥Sl CELL> ::= [SYSl, "don't care", "don't
care"], is made first, where SYSl is a system data
tag. Secondly, a <TUP> t'=(e;'*, ..., en'*), free
of duplicating elements is made from t by using hash
searches for <SYS2 CELLs> ::= [SYS2, "pointer to the
SYS1l cell", ei*], for removing duplications with
time complexity O(l1) per element of t. Thirdly,
using a symmetric (in respect to permutation of
arguments) hash sequence hi(e;'¥*,
3, «.. (e.g., hy=mod(e,'*+ ... + en'*,p~1)+1, hi=
mod (i*h,;,p) with time complexity O(n+i); Algorithm
U2[ibid}, [5]), hash search is made for a cell
s=[SET,h;, "don't care"]. If unsuccessful, a new

wees en'*) i=1, 2,’

§9

<SET CELL>, <SET CELL> ::= [SET,h,,{s¥sl,|si{,t']],,
is created. If successful, s = settup[t] (redefined
<SET>) or # ‘(hash conflicting <SET>'s) is checked by
utilizing the :<SYS2 CELL>'s of t. (Time complexity
O(|t']|) at the most.) The hash search is resumed in
the latter case. The load factor q of the FSA is
limit to a<am<l {e.g., aM=80%). When o20M the GBC
is called. A trioccupancy {("occupied" (i.e., a cell
in use), "deleted" (not in use but in hash conflict)
and "empty" (neither in use nor in conflict)) scheme
is used to reclaim the garbage <CELL>'s without w=ell
relocations and without using secondary storage. (A
detailed analysis is given in [6]; McCarthy [7],
proposed a scheme essentially the same as the pres-
ent uniquely represented n-<TUPles>. However, he
stated a difficulty in GBC: the neccesity of the use
of secondary storage.) ' If the result of GBC does
not satisfy a<am (e.g., an=60%), GGBC (Grand GBC;
more details are given in IV) is called. If o<am is
still not satisfied the job is terminated because of
insufficient storage. Note that the condition am<am<
1 ensures the time complexities as claimed in LEMMAs
1-4. If amrom=1 were used, the FSA would be usable
up to the very last one cell, but the LEMMAs would
not be valid.

III. Application to Formula Manipulation.

Let IP be the set of polynomials with integer
coefficients and positive integer exponents.

(3.1) The <Sum of Product> Normal Form.
Polynomials of IP can be expressed as sum of
products (terms), e.g.,
pl = 20v? + 3x3Y*, p2 = 3v'x3 + vov + uv?.
These expressions represent the same polynomial, &nd
they can be faithfully represented in terms of
<TUP>'s as follows:
<SP*form>::=((<TERM_ID*>,<COEFficient>),,,,), and
<TERM ID*>::=((<VARiable ID>,<EXPonent>),...) o,
where <COEF> ¢ INTO, <VAR ID> ¢ SYM and <EXP> €
INT+. E.g.,
sp* (pl)=((((v,2),(U,1)),2), (((X,3),(Y,4)),3))
sp* (p2)=((((¥,4), (X,3)),3), (((V, 1),(U 1),(V 1)) .1},
(((U,1),(v,2)),1)).
These SP* forms can be transformed into a:unique 52
normal form in the following way (a program is given
later): (1) Combine duplicating <VAR ID>'s in a
<TERM ID*> as in VUV=v2U. (2) Absorb the commutative
nature of multiplications into a SET: <TERM ID> :
{(<VAR ID>,<EXP>),,00t0+ E.9., vIu=uv? is absorbed
as {(v,2),(u,1) }={(,1), (v,2)}. (3) Combine dupli-
cating <TERM ID>'s as in V2U+V2U=2v%U. (4) Absorb
the commutative nature of additions into a SET: <SP>
::= {(<TERM ID>,<COEF>}, ,.0}e. E.g.,
splpll=splp2]={ ({(V,2), (U, 1) }.2), ({(x,3), (¥,4)},3) }.
We now define two data structures, in order to
formalize the definition of the <SP> form:
A <CLUB> is a <SET> of 2~ <TUPle>'s of <ID>'s (1nfor-
mally, <CLUB> ::= {..., (ml, gi), ...}) such that
all of the first element, to be called the (club-)
"member", of the 2-<TUPle>'s are distinct (mi#zmj for
i#j).. The second elements (gi's) of the 2-<TUPle>s
are called "grade"s. A <MULTISET> is a special
<CLUB> of which the grades are restricted to posi-
tive integers. (This agrees with the "multiset" of
Knuth[4]) by regarding the "multiplicity" as the
grade.) Thus, we can now state: "An <sP> is a
<CLUB> of <TERM ID>'s with non-zero integer grades,
called <COEF>; a <TERM ID> is a <MULTISET> of <SYM>'
s, called <VAR ID>'s; specially, for the null and

. constant polynomials,

. spto)y={}, sp(m)={({},n)}, where n ¢ INTO."

70

Since the SP form obviously represents IP polynomi-
als uniquely, i.e., for p, q € IP,

sp(p) = sp(q) (set equality) iff p-q = O,
by LEMMA 4 we obtain: :

PROPOSITION 1. Given two IP polynomials in the SP
form, the time complexity for identity checking of
the two is O(1). -

(3.2) Polynomial Manipulation in The SP Form:
A Property Adding Auxiliary Function:

addproplg;x:v:r) = progllyl;y:=getig;x];
[nullly] - prog2{putig;x;v};r:=tconsix;rl];
T - putlg;x;v+yl};sreturnir]].

'Given g, x € ID, v ¢ INT and r e TUP, if the G-
property (i.e., the value of getlg;x]) is (),
"addprop" puts v on the property and appends x to r
in the result, otherwise, v is added into the prop-
erty. By LEMMAs 1 and 3, the time complexity is
O(1). Similarly, we define:

subprop [g; x; v; r]=addprop [g;~x; -v;r].
A Property into Club-Grade Function:

clubpropO{g;rl=progllc;y;wl;w:=x;
A [null{w] - return[settuplcll];y:=get[g;car[wl];
{y#0 + c:=tcons[tcons[car|w];tcons[y; (}1]:cl] ;
) remproplg;car{w]);w:=cdrlw];goA]].

Given g ¢ ID and r, a <TUPle> of distinct <IDs>,
"clubpropQ" yields a club of the <IDs> with making
the respective G-properties into grades and exclud-
ing O-grade members. By LEMMAs 1, 2 and 3 and since
loop A is executed |r| times, the time complexity is
o(lr} + 1). 1 is added to account the time 0(1)
needed in case [r| =0, i.e., * = (). -

A Club Union. and Grade-Adding Function:

addclubip;gl=prog{{g;r;wl;g:=gensym{];w:=tupset[p];
A [null{w} -+ prog2w:=tupset{ql;go{Bl]]};
r:=addprop{g; caar[wl ;cadar[w]:r};w:=cdrlwl;go[A];
B [nulliw] - return[clubpropOig;rll];
r:=addprop(g;caar{w] ;cadar[w];r};w:=cdr[wl;go[B]].

Given clubs p, g with numerical grades, "addclub"
yields a club of the union of members of p and gq
with the grades of common members being added in and
O-grade members being excluded from the result. A
“"gensym" (i.e., a unique <SYM> generated by the
system) is used to avoid possible confusions of
properties in the auxiliary functions. Similarly,
subclublp;ql is defined by replacing the "addprop"
-in the last line only by "subprop". Since loop A is
repeated |p| times and loop B, |q| times and by
LEMMAs 1, 2 and 3, the time complexity is O(|p|+|q]
+1). 1In case p, q ¢ SP “addclub" adds the two and
gives the result in the SP normal form. Hence,

PROPOSITION 2. The time complexity of adding two
polynomials p and q in the SP form is O(l|pl+lql+1).
(Multivariateness has no effect.)

A Polynomial Multiplier Function:

mulsp[p;ql=proglig;r;u;vl;g:=gensym[];u:=tupset[pl;
A [null{u] -+ return[clubpropO[r]ll;v:=tupset[q];
B [null[v] - prog2[u:=cdrful;golAl]];
r:=addprop[g;addclublcaar[u];caar[v]];
cadar[u] *cadar[v];r];v:=cdr[v];go[B]].

Given p, q € SP, "mulsp" yields the product in the
SP form. Note that "addclub" is used to multiply
two <TERM ID>'s as in addclubl{(a,1),(B,2)};
{(8,3),(c,4)1={(A,1), (B,5),(C,4)}. For s ¢ SP,
let T(s) = |s|+ (total number of elements in

<TERM ID>'s of s). The dominating term (clubpropO[r]

@

is o(lpllgl} at the most) in the time complexity of
"mulsp" is easily seen to be O([qIT(p)+|p|T(q))'
which arises from repeating the "addclub" on :
<TERM ID>s for |pllg| times in the nested loops a
and B. Hence, we obtain:

_ PROPOSITION 3. The time complexity of m1tip1gjng

p, g € SP is O(|q|T(p)+ip|T(q)); specially in case
each term is K-variate at the most, it is O('pl.]ql'
(X+1)) and in the univariate case it is O(|pliq|),
(Factors such as log;|p| or log,|q| are absent,
Sparseness of the result has no effect.)

An SP* into SP Transformation Function:
intosp [pl=mulsplp: {({},1) }1,, where {({},1)}=sp(1),

This works correctly because of the "coercion rulew
in (2.2). Let T*(p)=|p|+(total number of elementg
in <TERM ID*>s of p ¢ SP*). We obtain: .

PROPOSITION 4. The time complexity of tzansform_ir,g
an IP polynomial p in an SP* form into the Sp norna}
form is O(T*(p)); specially in case the length of
each term of p is K at the most, it is O(lpl-(l(-fl)).
(If <TERM ID*> and SP* were sorted into a sorted
normal form, the time complexity would be
o(lpl(logaipl)(K+1l)log, (K+1)).)

(3.3) The <Signed Absolute SP> form:
Let s=sp(p) be the SP form of a polynomial p ¢
IP. As a <SET>, s can be partitioned uniquely as
s = s+ y s-, wherein all grades of s+ are positive
and those of s-, negative. Let -s- be the <SP>
obtained by reversing all signs of grades of s-,
Definition. The <Absolute SP> form asp(p) of p is
a <SET>: asp(p)={s+,-s-}; specially asp(0)={}.

PROPOSITION 5. For p, q ¢ IP,
asp(p) = asp(g) iff (p = gV p I -9).

Definition. The <SASP> normal form sasp(p) of P
is a 2-<TUPle>: sasp(p)=(asp{p), sign(p)), where
sign(p)=+1 in case the canonical order of the SET
, asp(p) is tupsetlasp(p)l=(s+,~s-), otherwise
sign{p)=-1 (c.f., (2.2)); specially, sasp(0)=().

PROPOSITION 6. For p, g ¢ IP,
sasp(p) = sasp(q) iff p = q.

(3.4) Unique Normal Forms for Rationals:

Let Q be the set of (all) rational numbers.
Hereinafter, for q ¢ Q, we use the following obvi-
ously unique representation; if g ¢ INT c Q use the
integer g itself; otherwise use the 2-<TUPle>,
(a*,b*) such that a, b ¢ INT, b>2, g=a/b and a, b
are relative primes.

SP, ASP and SASP forms can be easily generalized
to <QP, polynomials with rational coefficients and
positive integer exponents> by changing the condi-
tion <COEF> ¢ INTQ for <IP>'s into <COEF> e (Q =~ {o}
).

Let QF be the set of rational functions with
rational coefficients and integer exponents, i.e.,
QF={x/y| x € QP, ¥ € (QP ~ {01)}. Any function r €
(QF - {0}) is known to be uniquely factorizable,
except the arbitrariness of signs on the factors, as
follows:

1 et ®k
T=qpy ttt Py tttPB s
wherein q ¢ (@ - {0}), e, ¢ INTO and p; ¢ (IR - INT)
such that Py #s not factorizable into elements of

(xp - {-1,1H.) P
Definition. The <Factorized SASP> form fsasp(r) of
xr ¢ (QF - {0}) is a 2-<TUPle>: :

//

£sasp(x) = ({..., (asp(p,).e,), veeds +q) , where
e e - ek

5-(sign(pi)) °-(sign(pk)) °q;
specially, fsasp(0)=().

PROPOSITION 7. For X, y € QF,
fsasp(x) = fsasp(y) iff x = y.

PROPOSITION 8. For x, y ¢ (QF - {0}),
car[fsasp(x)] = car[fsasp(y)] iff x/y € Q.

+q = (sign(pl))

Proofs of PROPOSITIONs 5 to 8 have been omitted but
they would be easy. .
‘A Multiplier for x, y ¢ (FsasP - {()D):

mulfsasplx;y] = tcons [addclub (cax [x] ;car[yll;
tcons [mulq[cadx[x];cadriyll: ()11,

where "mulq" is a multiplication function of ration-
al numbers. For a divider "divisasp", replace
"addclub” by "subclub" and "mulg" by a rational
number divider "divq".

(3.5) Poisson series is a function as:

p = ZAai cos(ui) + Z bj SLn(vj),
3’ vy o€ ggf)
A unique normal form POIS for this series can be.
obtained by absorbing the arbitrariness caused by
cos(u) = cos(-u) and sin(v) ‘= ~sin(-v) into ASP
forms: <POIS> ::= (<POILS COS»>,<POIS SIN>),, wherein
<POIS COS> and <POIS SIN> are clubs:

<POIS COS> ::= {(asp(u),sp(a)),,eol, and

<POIS SIN> ::= {(asp(v),sp(sign(v)b))se0ste
with u ¢ QOF and a, b, v ¢ (QF - {0}). It would be
a matter of exercise to define Lisp functions to
perform addition, subtraction and multiplication on
POIS normal forms.

(3.6) The <Associator List SP> Form:

So far stress has been laid on unique normal forms
and on time complexities. However, for improvements
in actual speed of computation, constant factors
neglected in time complexities must be taken into
account. Although time complexities of cons [x;y]
and tcons[x;y] are both 0(1), "cons" would actually
work faster than "tcons" because of extra hashing
overhead time needed in "tcons” to ensure unique-~
ness. Similarly, "value®”, "key" and "assign" would
be faster than “"ass" (c.f., (2.3)). The same would
hold for the O(n) complexity fox listlx;; ,...ixnl
and settupl[t] with |t|=n. It would be a reasonable
strategy to use unique normal forms only where they
are essentially needed. For example, in the manipu-
lation (add, sub and multiply) of <IP>'s in the SP
form, use of the unique normal forms for <TERM ID>'s
is essential but use of a <SET> for sum of terms is
not. Use of the following ALSP form would be better
for the sake of speed: <ALSP> ::= (B(.(g*,<TERM ID>
)} tooo B)o. For p € IP, alsp(p) is a <LIST> of
<ASSociator>'s of 2~-<TUPle>'s of a "gensym", g* and
a <TERM ID>. <COEF>'s of the sp(p) are given as G-
properties (i.e., get[g*;<i-th TERM ID>] = <i-th
COEF>). Rewriting functions for SP forms in (3.2)
into those for ALSP forms would be a matter of exer-
cise. The similar applies to Poisson series: Use ASP
forms for u's and v's and ALSP forms for a's and b's.

i
where a,, u,, b
i i

IV. Computing Schemes with Reclaimable Hash Tables

The choice between tabulation and recomputation
is a basic problem in programming. while (hashed)
tabulation provides the best time complexity of O(1)
in many cases, extra storage space is needed to keep
the tables.

sil

In HLISP two features called tabulative and
associative computing are provided, which enable
users to utilize the full advantages of computing
with hash tables. Moreover, in order to make a
compromise between the.space and time requirements:
automatically,. a-two staged garbage collection
scheme, GBC and GGBC of (2.5), is employed. The
<«CELL>'s used for hash table entries in "tab-" and .
"assoc-comp"” schemes. are reclaimed by GGBC but not
by GBC. - Hence, these entries are termed "reclaim-
able". After having been reclaimed, the table
entries are reconstructed on .demand.

(4.1) "Tabcomp" is applied to member [x;s]=(x e s
for x ¢ ID, s ¢ SET and to n-way switching and se-
lecting functions: tabgRB[x;a;e*] with a € {a,d,q,q}
and B ¢ {g,9} . The value of a must be an n-<TUP..e>
of the form a=(..., (mi*, gi*), ...) and e* must be
a constant <ID> datum. If x matches with mi (e

ID), the resultant value is respectively cadr[(mi*,
gi*)1=gi*, cdr[(mi*, gi*)]=(gi*) or (mi*, gi*) for
o=a, 4 or q; for o=g the result is "Go TO gi*". if
no match, for B=g the resultant value is e* and for
f=g the result is "GO TO e*".

(4.2) ‘“Assoccomp" effectively avoids the recomputa-
tion of the same function for the same argument (s

by inserting the results of the previous computati.on
in the reclaimable hash table entries. Evaluation
of a function is made in the "assoccomp" mode by so
specifying to the compiler or interpreter. By
"assoccomp", the time complexity of recursive algo-
rithms such as follows can be:improved automatically
without rewriting.)
factorialinl=fclnl=[n=0 + 1;T - n*fc(n-111,.
fibonacei[nl=fb[n]=[ngl > n;T > fbin-11+£fb[n-211,
nCm=c[n;m]=[m=0 v m=n -+ 1;T + c[n-1;ml+c[n-1;m-1]1}.
(4.3)

LEMMA 5. Time Complexities of Tab- and

. Assoc-comp features. are as in the following table:

WITHOUT Tab-
and Assoc-comp

WITH Tab- or Assoc-comp

features. INITIAL REPEATED EXTRA
Function TIME TIME TIME CELLS
memberx [x,s] o(lsl) o(lsl) o(1) sl
tabaBlx,a,e*] ofjal) o(lal} o(1) lal+l
factorialln] o(n) n o(n) o(1) 2n+3
fibonacci[n] 0(1.6187) 0O(n) o(1) 2n+3
oCp=e [n,ml o(,C.) o(n?) o(1) 3m?/2

The initial time means the time complexity immg3i-
ately after a GGBC call.. Extra cells are the
number of <CELL>'s needed for reclaimable hash
entries. E.g., repeated evaluation of fb[21]1=10916
runs 30,000 times. faster in HLISP by merely feediag
a card "ASSOCCOMP ((FB))". clubmember[x;cl= tabgi
Ix;tupset]c]l; ()] checks whether x is a member of the
<CLUB>, c¢. The time complexity of O(lsl|t]) in the
pure Lisp algorithms([3] for s v t and s n t of sets
s, t is greatly improved by applying "tabcomp" to
"member" (even immediately after a GGBC call):

LEMMA 6. Time complexity of s u t and s n t for s,
t e SET is O(|s|+|tl)-

(4.4) Outline of an HLISP Implementation:

For "member" <SYS2 CELL>'s of (2.5) are utilized.
When <SYS2 CELL>'s are reclaimed by GGBC, the
<SYS1 CELL> is switched to a <S¥S1* CELL> to indi-
cate the necessity of reconstruction of the <SYS2
CELL>'s. For "tabof", initially (i.e., after GGBC)
a <SYS3 CELL> ::= [5YS3,a*,e*], is hash inserted (as
a result of an unsuccessful search) and then

/2

92

<SYS4 CELLs> ::=
hash inserted by

[SYS4, (mi*,gi*), [sYS3,a*,e*]], are
using a hash sequences deterxrmined
by mi's (not the <TUP> (mi, gi)) and the pointer to
the <SYS3 CELL>. Hash retrieval is made by utiliz-
ing these <SYS3 CELL> and <SYS4 CELL>'s, which are
all reclaimed by GGBC. In the assoccomp mode, a
function fb[n], say, is evaluated as: First, make a
hash search for <SYS5 CELL> ::= [SYS5, "don't care",
tl,, with t=tcons[n;FB], and if unsuccessful insert
a <CELL>, [SYS5,1%*,t], where 1* is a <SYStem SYMbol>
, then compute fb{n] and replace 1* by fb[n] for
future retrieval of fbin]. Else if successful
retrieve the value from the <CAR field>. Specially,
in case the <CAR field> contains 1%, there must have
been a vicious circle in the algorithm such as
fb[nl=[n<l + n; T - fb[n]+ fbln-1}). Thus a message
"CIRCULAR DEFINITION ERROR IN FB ..." is printed.
GGBC reclaims <SYS5 CELL>'s except those containing
1*, Hence,

LEMMA 7. "Assoccomp" effectively checks circular
definitions at runtime.

(4.5) For fcln], fb[n], cln,m] etc., "assoccomp" is
more convenient than "tabcomp" since the range of
argument(s) is generally not known in advance. Con-
versely, if “"assoccomp" were used for member [x;s],
say, a great number of wasteful hash entries for x

£ s would be created. Thus, "tab- and assoc-comp"
are complementary and each has its own raison d'étre.
V. Concluding Remarks

The first version of HLISP without the SET
feature has been in operation for two years([8], but
with the TUP feature alone little advantage in
fecirmula manipulation could be found. The combina-
tion of SETs and TUPs is believed to have provided a
really powerful tool for formula manipulation as
indicated in IIXI. Tab~ and assoc-comp features
would also be useful. Since the implementation of
efficient hashing and garbage collection algorithms
is a very specialized art, it would be better to

separate them from the general users.

Therefore,

external specifications of such algorithms have been
given as LEMMAs in this paper.

The following improvements are now in progress

to make the schemes presented in this paper into
truly useful tools for symbolic and algebraic
computations:

(1)
(2)

Writing of an efficient HLISP compiler(9].
Implementation of a language system called

"FLATS"™ which would enable us to absorb any existing
algorithm written in Fortran, Lisp or Algol 60; and
to write new algorithms with Tuples and Sets added
to any of the three languages F, L or A, whichever

the
(3)

user may prefer (HLISP ?EkTS).
Design of hashing, GBC and runtime type check

hardware to improve the ultimate speed of "FLATS",
The authors acknowledge Messrs. M. Terashima[l0]

and

F. Motoyoshi[9)] for their valuable contributions

in implementing HLISP.

VI.
1)
2]
3]
{4]
[51]

el

7]

18]

References

Inf. Proc. Letters 3('76)pp.31-34
S.C. Johnson, SIGSAM Bulletin, 8, 3, p.63, '73,
E. Horowitz, J. ACM, 22, 4, p.450, 1975.

J. McCarthy, et al., LISP 1.5 Programmer's
Manual, MIT press.

D.E. Knuth, The Art of Computer Programming,
vol. 3, Addison-Wesley, Reading, Mass., '73.

M. Sassa and E. Goto, A& Hashing Method for Fast
Set Operations, 3 publi
T. Gunji, Tech. Rep. 76-03, ISD (Information
Science Department, the University of Tokyo),
1976.

J. McCarthy, Page 151 of Symbol Manipulation
Languages and Technigue, D. Bobrow, ed., North-
Holland, 1971,

Y. Kanada, Tech. Rep. 75-01, ISD, 1975.

CIEPIpy- I -5 tion .

191 F. Motoyoshi, Tech. Rep. 76-05, ISD, 1976.
[10] M. Terashima, Tech. Rep. 75-03, ISD, 1975.
[11] A.C. Hearn, REDUCE2 User's Manual, 2nd. ed.,

Salt Lake City, Utah., 1973.

APPENDIX.
REMARKS: (1)

Actual Timing Data for Polynomial and Poisson Series Manipulations.
The machine used is HITAC 8800/8700 at the Computer Centre of the University of Tokyo.

(2) The same HLISP interpreter system was used as the host system for REDUCE 2{11]. The free
storage area was 75K cells in which 25K cells were reserved for <ID> objects.
(3) The data for polynomial multiplication were obtained to observe the dependence of time on n
(number of terms in polynomials) and multiplicity, K. Observed times were normalized by
n? (K+1) as PROPOSITION 3 predicate.. Unit of time is in msec. '*' means ‘not measured’.
(4) The FORTRAN data of univariate case were taken by a program with explicit code for hashing.
The program is similar to the algorithm by Gustavson and Yun to be given at this SYMSAC '76.
The hash area was selected to 5011 (a prime) and the hash probe sequence was given by
Algorithm U2 of Knuth[4, p539].
(5) The programs in HLISP were written for the ALSP and ASP forms of (3.6).
Formulas \n
t=resultant # of terms 4 8 16 32 4 . 8 16 32 16 32
n n . 1.71 1.69 1.60 1.60 {1.85 1.73 1.71 1l.67 |1.82 1.74 1.74 1.77|« HLISP
(3 a%) * (§ ad) 4.42 2.95 3.97 5.45 [3.67 3.50 4.43 7.20 |4.65 4.04 '5.54 9.10|+ REDUCE
i=1 j=1 t=2n-1 .025 .,024 .020 .0l6 < FORTRAN
no o 1.76 1.74 1.72 1.73 }1.98 1.78 1.76 1.80 |[1.81> -1.80 1.79 1.84|« HLISP
(§ ahy * (§ a7 5.50 6.08 15.4 51.3 {4.33 7.37 21.6 * 4.40 8.48 * * |« REDUCE
i=1 =1 nen .025 .028 .020 .018 <+ FORTRAN
B o4z B 3444 1.96 1.71 1.68 1.63 |(1.88 1.82 1.73 1.74 |1.84 1.83 1.79 1.77|« HLISP
(} a y*(] a7y |s.35 s5.85 8.20 14.3 [5.42 6.53 10.6 * |5.16 7.64 12.2 * |+ REDUCE
i=1 j=1 t=7n-12 .028 .,025 .,020 .0le6 < FORTRAN
K-variate l-variate (A=X) 2-variate (A=XY) 4-variate (A=XYZU)
Timing Data for Poisson Series Manipulation: HLISP REDUCE
(AL*COS (WT) +A3*COS (3*WT) +B1*SIN (WT) +B3*SIN (3*WT)) **3 1587 msec 8077 msec

/3

