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Generalized Dynamical Systems
and

Volterra Integral Equations

By Shin-ichi Nakagiri

( Department of Applied Mathematics, Kobe University, Nada, Kobe, Japan )

1. Introduction

~The concept of local topological dynamics was first given by T.Ura [19], and
he studied this theory extensively, e.g., prolongation, stability of higher
order and isomorphism theory ( [19] and [20] ). The theory of local topologi-
cal dynamiés is motivated by the‘theory of autonomous ordinary differential
equations and quite general results of topological dynamics help us to investi-
gate many properties éf their solutions such as asymptotic behavior and stabi-
‘lity. It is well known that the solution of ordinary differential equation.
‘defines a local dynamical system (. a local flow ) if the equation is autonomous,
but the solution defines no more a local flow in an usual manner if the equation
is nonautbnomous.

However, inspiring by a technique of R. K. Miller [5],YG; R. Sell [16] has
shown how td associate in a significant manner‘a local dynamical system with a
nonautoﬁomous equation. Under such constructions, he obtained many invariance
properties for the liﬁit sets of solutions of nonautonomous equations ( [17] ).
His method to define a local flow is very natural, and therefore there appeared
many further researches in this direction. See [4] and {[9] for surveys, [3] and
[21] for applications to stability theory and [8] and [6] for generalizations.
to Volterra integral equations. ‘

In all papers cited above, it has been assumed that the solutiongof the
given equations satisfy some sort of uniqueness condition. On the other hand
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in many cases, the uniqueness condition is not needed to obtain analogous theoQ
rem about the qualitative behaviors of solutions. This suggests us the possi-
pility of treating the given equation without uniqueness by generalized dynami-
cal systems. Zubov [22], Seibert [15] and Roxin [13,14] gave similar types of
axiomatically defined géneralized dynamical systems by using a set-valued map
which normally represents the solution funnel. Their axioms of generalizéd
systems are based on differential equations without uniqueness, contingent equ-
ations and control systems governed by differential equations, but not on integ-
ral equations without uniqueness.

In the present paper we shall give the axiom of a local generalized dynamical
system which can be considered a coupling of Roxin's axiom and Sell's axiom.
This axiémyadmits us to treat Volterra integral eqﬁations without uniqueness
and this treatment seems to be new. We shall show under What conditions and
formulations this treétmentlié possible. The further theory and applications
of our local generalized dynamical systems will bé‘discussed elsewhere.

Finally we note that Sell [18] has presented an another method which allows
us to define classical dynamical systems without uniqueness asSumption in the
case of nonautonomous differential equations. HoWever,‘his method seems to bér

much- more complicated for the case of Volterra integral equations.
2. Definitions and Notations

Let X be a metric space with metric dX and 2X be the set of all subsets of
X. In order to avoid infinite distances between subsets of X, we will replace
the given metric dx(a,b) by op(a,b) = dx(a,b)/ 1+ dx(a,b). We then define thé
distance p(a,B) between a point a and a set B by
p(a,B) = infr,{ p(a,b) : be B}
and the distances p*(A,B) and p(A,B) between sets A and B by

P*(A,B) = supl p(a,B) : a ¢ A} and
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p(A,B) = p(B,A) = max ( p*(A,B), p*(B,A) ), and note that
- p*(A,B) < p(A,B) for any nonempty subsets A and B of X. According we
define an E—heghboring set of a given set AO by

V(AO;E) ={xeX: O(X,AO) <e}. | Then we have easily that

p(A,B) = inf { e : Ac V(B,e) and Bc V(A,e) } .
If Y is any function and A 1is a set, we write Y(A) for ul P(x) : xe A},
and analogously for functions of more than one Variable.

The set-valued operator F defined by the variable sets F(a) ¢ X , where

o belongs to some topological spacé D(F) , is said to be :

(I) continuous on D(F) , if for any o. e D(F) and for every &> 0

0

there exists some neighborhood of a say V , such that for all

0 b
a eV : p(F(oc),F(oaO)) < § ;
(I1) upper semi-continuous on D(F) , if in the condition (1) the distance

p 1is replaced by the distance p* .

Definition 2.1. Let X be a metric space. For each p e X , let there be
giveh a halfropen interyal Ip = [O,QP) , where ap > 0. Let D be the set
D= {(t,p) :pe X and t eIp } . A set-valued function m :D-—" X
is a local genefaliied semi-flow ( or a local generalized semi-dynamical system )
on X, if the féllowings hold : ‘
(1)7 The set ﬂ(t,p)l is.nonempty and closed for all (t,p) €D ;
in particular m(0,p) = { p} for each pe X .
(2) If te Ip and s e n{ Iq : qe m(t,p) }, then t + s € IP and
uw(t + s,p) = w(t,m(s,p)) = { m(t,q) : qe m(s,p) } .
(3) Each Ip “is magimal in the sense that if Ip = [0,ap) then either
,dp = or the closure of the set u{m(t,p) : te [O,GP) } is not
compact in X .
(4) D 1is open in R x X .

5) w:D—0s 2X is upper semi-continuous.




(6) for each fixed p e X, 7(-,p) : Ip———na ZX is continuous.

We note that p defines a metric on the class of all nonempty compact sub-
sets of X and our flow defined by an integral equation is a ( compact-connected

set )-valued mapping.
3. Integral Equations and Function Spaces

We consider the Volterra integral equation,

t

P(f,g) x(t) = £(t) + J g(t,s,x(s))ds ,
0 :

where t Dbelongs to the interval RY = [0,) and x , £ and g have values
in R . Let I cR  be an interval containing 0 . For each I and each
natural number N , we define a space C(I,N) by the set of all continuous
functions with domain I and range in'{ X e R0 |x| < N} with the compact
open topology. We denote QN:1 C(I,N) by c(I) and C[0,®) by C . Then
C[0,»®) 1is a Frechet space with the semi-norms of uniform convergence on com-

pact subintervals of [0,*) . Especially the topology on C is generated by

ametric  do(£,h) =] 27" (max (1, max { | £(t) - h(t)| : t e [0,n] }).
n=1

For the equation P(f,g) we assume the following hypotheses (A) , (B-1) - (B-3)

which are used in [1].

) f: R — r" is continuous.

(B-1) g : RY x R x Rn-—————7 R" is a function such that
(1) for each (t,x) e R" x R" , g(t,s,x) is L-measurable in s
(2) for each (t,s) e RY x R+ ,Vg(t,s,x)‘ is continuous in x 5 and
(3)' g(t,s,x) =0 for ail s>t .

(B-2) . For each feal number 7 > 0 and each natural number N , there exists
a L-measurable function m(t,s) in s e [0,t] for each t ¢ [0,7]

such that lg(t,s,x)| < m(t,s) (0<ss<ts<?, |x|<N)
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t
and J m(t,s)ds < « ,
0
(B-3) For each compact interval Jc R+, each natural number N and each
T in R+ s

lim sup {IJ [g(t,s,d(s)) - g(t1,s,9(s))1ds| : ¢e C(J,N)} =0 .
t->T J

Under the Hypotheses (A) , (B-1) - (B-3) , we have from Miller [6,7],
Kelly [2], Artstein [1] and Nakagiri and Murakami [10,11] the following funda-

mental properties of the equation P(f,g).

(i) Local existence, i.e., there exist a B > 0 and a continuous function
x(t) on [0,8] such that x(t) satisfies P(f,g) for 0< t< B .

(ii) Continuability, i.e., every solution xtt) of P(f,g) can be exten-
ded to right maximal interval [0,0(f,g,x)), where o(f,g,x) is either

o or a finite number such that 1lim sup !x(t)|= ®,
tto(f,g,x)

(iii) Kneser's property, i.e., the solution space S(f,g)
= { x(*) € C[0,0(f,g)) : x(t) is a solution of P(f,g) on [0,a(f,g)) }
is compact and connected in the Fréchet space C[0,a(f,g)) , where

a(f,g) =-inf { a(f,g,x) : x is a solution of P(f,g) }.

To obtain the semi-group property (2.1-(2)) of a local generalized semi-
flow, we must consider the translated equations of P(f,g) . Let x(t) be a
solution of P(f,g) on [0,0(f,g,x)) . Then for any T ¢ [0,a(f,g,x)) ,
y(t) = x(t + T) satisfies the T—tfanslated equation

T t

y(t) = { £f(t + 1) + I g(t + t,s,x(s))ds } + [ g(t + 1,s + T7,y(s))ds
0 0

on [0,a(f,g,x) - 7). Then we define the translated function fT and g by

fT(t) = f(t + T) for all t & R" and gT(t,s,x) g(t + 1,8 + 1,x) for all

]

(t,s,x) e RY x RY x R" , and define the operator G by

T

G(T,9,g)(t) = [ g(t + 1,5,6(s))ds for all te R
0
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Now define G0 by the set of all functions g which satisfy (B-1) and

the followings (B-2*) - and (B-3*) which are weaker than those used in /[6].
(B-2*) Besides the conditions in (B-2), we add the following condition:
T
sup {J m(t + r,s)ds : r € J } < ® for any compact interval J c

[0,Z] and t suchas t+re [0,]] for all re J.

(B-3*) Under the same condition in (B-3), the stronger relation

A
lim sup{]J [g(t,s,p(s)) - g(T,s,¢(s))]dsl :7eJ and ¢ e C(J,N) }
t»T 0

= 0 holds.
ot
We remark that if sup {J m(t,s)ds : t ¢ [0,7] } <o in (B-2), then the
0 .
condition (B-2*) is satisfied. our stronger Hypotheses (B-2*) and (B-3*) are
needed to establish the continuity of G . 1In this section, we shall character-

ize a subspace G c GO such that the equation P(f,g) where (f,g) e C xG

defines a local generalized semi-flow.

Definition 3.1. A metric space (G,d) is said to be a base space if the
following conditions hold

(1) Gec g,
(2) 1f { gn,g } G and d(gn,g) + 0 as n >« , then for any two compact

and J, and each natural number N ,

intervals J1 2

(Ll
sup { IJ [gn(t,s,r(s)) - g(t,s,r(s))]ds| :7 € Ji» ted, and T € C(JI,N)}
0

—> 0 as n-» oo ,
(3) G is translation invariant : the mapping (t,g) -~ g, is a continuous

mapping of R" x ¢ into G .
Then we have the following fundamental lemma which shows the continuity of G.

Lemma 3.1. The operator G : R X CX G —m> C defined by G(1,¢,g)(t)
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T
= I glt + t,s,¢(s))ds <is continuous.
0

" Proof. For any (1,¢,g) € R" x CxG , by (B;l) and (B-2) the integral
G(t,¢,g)(t) is possible and by (B-3) G(T,¢,g)(t) is continuous on [0,»),
that is, G(t,9,g) ¢ C ; To show the continuity, assume that (Tn,¢n,gn] —
(t,9,g) as n > «, We have

l6Cr 50,80 (1) - 6(1,0,8) (0) |
< J6(r .0 g ) (8) - 6(t .9 ,e) (O] + |6t ¢ ,e)(t) - G(T,0_,8) (8]

+ 16(1,9,,8) (1) - G(T,0,8)0)| =1 + I, + I, .

Siﬁce T,— T and ¢nf——+ ¢ as n > o, for any compact interval J there
exist two compact intervals J. and J, such that ‘Tn e J

1 2 1 2

for all n and t ¢ J , and |¢n(t)[ £ N for some N and for all n and t e Jl'

and t + T €J
n

A
Then I1 < sup { |J [g (t,s,d(s)) - g(t,s,¢(s))]ds| A eJl, t er and ¢€C(J1,N)}
o " . ‘

and since g,—> & We have by (3.1-(2)) that Il———;rO as n ~- « uniformly

in t e J.

[/

I, < sup { IJ

[g(t + 7,,5,0()) - g(t +7 ,5,0(s))1ds| :Z ¢ J and ¢ C(I;,N)}
0 ,

T
+ J m(t. + 1,s)ds = 12 1 ¥ 12 2 , where m(t + T,°) 1is the measurable
T > b )

n

function defined in ‘(B—2) corresponding to t + T ¢ J2 and N . By (B-3%*)

and (3.1-(1)), Iz,l-——+ 0 and by (B-2), 12,2-—+ 0, and hence IZ———é 0 as
n > o . That ,IS-——> 0 is a consequence of Lebesgue theorem. To show that this
convergence is uniform in t e J , it is sufficient to assure the compactness of

{ G(Tn,¢ﬁ,g)(’) } in C(J) . The equi-continuity follows from (B-3*) and the
boundedness of the set { G(Tn,¢n,g)(t) } for each t € J follows from (B-2%).
Then by Ascoli-Arzela's Theorem , { G(Tn,¢n,g)(-)} is compact in C(J) . There-

fore the convergence G(Tn,¢n,gn)—————» G(t,¢,g) in C as n-=> o is proved.

As examples of the base space, we can give :



Example 3.1. A metric space (Go,dG ) is a base space. Here the metric
0

g (&) - L a2 @ min (1, a4 ey ), where
dij(g,h) = sup {fotlg(t,s,x) - h(t,s,x)lds : lx} < i and te [0,j] }

This metric topology is introduced by Miller [6].

Example 3.2. Let G be the set of all functions g such that g(t,s,x)
is continuous in (t,s,Xx) € R" x RY x R® and g(t,s,x) =0 for s=t . We.
define the metric dG by
dG(g,h) = znzl 2™ nin (1, max {Ig(t,s,x) - h(t,s,x)l : Itl, [si, Ix[é n }i),

Then the space (G,dG) is a base space.

In the following we assume that the space G 1is a base space. We see that
(3.2) for each compact interval Jc rR* , each natural number N and each
. :
Te R,

lim sup { IJ lg, (t,5,0(s)) - gk(T;s,MS))]dSl : ¢ € C(J,N) and k=1,2,*+ }
T J

=0 if g— & in G..
This is a consequence from (B-2*) and (3.1-(2)) by a standard argument of

uniformity on compact sets. Moreover the metric topology generated by d is a

jointly continuous topology in thé sense of Artstein [1]. That is, for any
fixed. t > 0 the mapping (g,$) € G x C[0,t] ———> J g(t,s,¢(s))ds € R™
0 . o

is continuous in the product topology of G and C[O,t]; This is aneasy con-
sequence from Lemma 1 ( put t = 0 ). Then we have by [1] the following conti-

nuous dependence result on C X G

Lemma. 3.2. Let G be-a basekspace. Suppose that the sequence (fk,gk)'
converges to (f,g) 'in the product topology on C X G . Then the followings
hold . Let xk(t) be a maximally defined solution of P(fk,gk) . Then there

exist a maximally defined solution x(t) of P(f,g) with domain [0,0.(f,g,x)),



and a subsequence { x (t) } < { x, (t) } such that x_(t) converges to x(t)
uniformly on each compact subinterval of [0,a(f,g,x)) . In'particular, if
[0, a(fm,gm,xm)) 1s the domain of xm(t) s and if 0 < d < a(f;g,x) then

for m large emough we have d < a(f ,g ,x ).

Here we note that it is sufficient to obtain Lemma 3.2 that the weaker con-
dition (3.2) than that of Artstein's (G-3) is satisfied. We gave in [12] by

Lemma 3.2 , the following Lemma.

Lemma 3.3. For any (f,g) ¢ C X G, we can find a solution x of P(f,g)
such that o(f,g) = a(f,g,x) . Moreover the function o : C X G-—-———e-R+u{m}
is a lower semi-continuous function, and hence the set

D=1 (t,f.¢) : feC, geG and t e [0,a(f,g)) } <s open in Ef* Cx G
4. Flows defined by Integral Equations

To construct a local generalized semi-flow, we must define the operator
T(f,g) : [0,a(f,g)) X C[0,a(f,g)) ——C for each (f,g) ¢ CxG by

t
(T(f,g) (t,0))(6) = £(t + 6) + J g(t + 0,s,¢0(s))ds , where ¢ € C[0,a(f,g)).

0
Let S(f,g) be the solution family of P(f,g) in C[0,a(f,g)), and for simpli-

city we denote the image T(f,g)(t,S(f,g)) by T(t,f,g)

Our purpose in this section is to show that the set-valued mapping m(t,f,g)
= (T(t,f,g),gt) € 2C X G which is defined for all (t,f,g) ¢ D is a Local gene-
ralized flow. Let X =C x G and a metric dX is a sum of the metrics of each

C

spaces C and G. Clearly w(D) ¢ 27 X G c X

Lemma 4.1. For any‘compact interval J < [0,a(f,g)) and (f,g)e C x G , the
set T(J,f,g) =v { T(t,f,g) : t € J } <s compact and connected in C . Especia-

lly T(t,f,g) s also compact and connected in C for every (t,f,g) € D .



proof. By Lemma 3.1, the operator T(f,g) is continuous. Since the product
set J X S(f,g) 1is compact and connected in [0,a(f,g)) x C[0,a(f,g)) ( See Section

3, (iii) ) then the continuous image T(J,f,g) is also compact and connected in C.

By considering the sets T(t,f,g) as a function of t and a function of
(t,f,g), we can define two operators

T(-,f,g) : [0,a(f,g)) —> 2© and T :D—s 2.

Lemma 4.2. The operator T(+,f,g) : [0,a(f,g)) —> 2c is continuous for

each (f,8) e CxXG.

Proof. Let te[0,0(f,g)) be fixed. First we shall show that for every € > 0
there exists a &§ > 0 such that t + &< a(f,g) and T(t + s,f,g) < V(T(t,f,g),¢)
for every |sl < 6 , where V 1is the neighboring set defined in Section 2 corres-
ponding to the metric dC . Assume to the contrary that there exists a sequence
{ xn(-)} in ¢ and a sequence { t } tending to t as n - « such that xn(-)
€ T(tn,f,g) and xn(~) ¢ V(T(t,f,g),so) for some €y > 0 , where xn(-) is given
t

by  x () = £t + ) + J "g(T + +,5,9,(s))ds  for some ¢ (*) e S(£,g)

0
Since [t - §,t + 8] 1is a compact interval , Lemma 4.1 implies that T([t-§,t+6],

f,g) is compact in C , and hence { xn(')} has a subsequence { xnk(')} con-
verging to some .x(+) ¢ V(T(t,f,g),eo) . Since the solution space S(f,g) is
compact in c[0,a(f,g)) , then the solution subsequence { ¢nkj(')} ( for brevity
we write { ¢nj(-) } ) such that ¢nj(-) converges to some solution ¢(¢) of

P(f,g) in [0,a(f,g)) . Hence by the continuity of T(f,g) , we can verify that
t
x(e) = £(t + ) + J gt + +,s,0(s))ds for ¢(-) ¢ s(f,g) , i.e.,
0

x(+) ¢ T(t,f,g) , a contradiction.
In order to verify the continuity of T(t,f,g) at t ¢ [0,a(f,g)) , by the
definition of p(T(t,f,g),T(t + s,f,g)) we must show that for every ¢ > 0 there

exists a § > 0 such that t + § < a(f,g) and T(t,f,g) < V(T(t + s,f,g),€)
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for every |s| < & . Also in this case, assume the contrary. Then we can supp-
ose that there exist a sequence { x_ (+) } in C and a sequence { t }
tending to t as- n-> o such that xn(°) € T(tn,f,g) and xn(') ¢ V(T(tn,f,g),

€ for some €, > 0 . Here we can assume without loss of generality that xn(-)

0) 0
is converging to a limit x(*) ¢ T(t,f,g) in C . For any element y(-)k=
y(e;t,f,8) e T(t,f,g), we define y (+) by y () =y(s5t ,f,8) ¢ T(t .f,8) ,

then by Lemma 3.1 we have 1lim dc(y('),yn(')) = 0 . Therefore

-0
L)X 2 n [0y, () - G, ()%, ()
< Lin o0y, (20x,0)) = g -

This impliesbthat x() ¢ V(T(t,f,g),eo) , a contradiction. This completes the

Lemmma .
Lemma 4.3. The mapping T : D —> £ 18 upper semi-continuous.

Proof. 1In order to show T is continuous, let (t,f,g) € D and W((t,f,g),s)
= {(t',f,g") : |t - t']< 8, d (f,£') < & and d.(g,8") < ¢ } . since D is
open in R xCcx@ ( Lemma 3.3 ), there exists a 60 > 0 such that W((t,f,g),d)

c D for all § e (0, & We shall show that for any € >0 we can take 6 > 0

o
such that T(W(t,f,g),8)) <« V(T(t,f,g),e) . If this inclusion were false, then
there would exist an €9 > 0 , 'a sequence {(tn,fn,gn)}' c W((t,f,g),5 ) tending
to (t,f,g) as n -»» and a sequence { xn(') } in C such that xn(') € T(tn,fn,

,gn) and xn(-) & V(T(t,f,g),eo) for every n . Since the closure ofvthe set

{ (tn,fn,gn) } is compact, by Lemma 3.1 T( u{ (t_,f ,g) :n=1,2,« })

n’ n’®n
has a compact closure in C . Then we can assume without loss of generality that
xn(°)é———» x(*) € V(T(t,f,g),eo) in C as n-»> « for some x(¢) ¢ C . Here

xn(-) has the form

. |
x () = £ (t + ) +j0“gn(tn + +,5,0 (s))ds , where ¢ () € S(£,g) -

11
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We have from Lemma 3.2 that there exist a subsequence { nk } < {n} and a

solution ¢'(.) of P(f,g) such that l]i"];g tnk =te [O,U.(f,g)) and

. ) = d(* in C[0,t] . It is obvious that f (t_ + *)—> f(t + *
]l(—i‘l’g ¢nk( ) ¢() i [ ] n( n ) ( )
in C as (tn,fn) —> (t,f) . Hence by Lemma 3.1 , we have for some ¢(°)

t
¢ S(£,8) x(*) = £(t + ) + J gt +°,5,9(s))ds , i.e., x(*) ¢ T(t,f,g)
0

This contradiction proves this Lemma.

Main Theorem. Let G be a base space, X =C*X G and D =1{ (t,f,g)

feC,ge G and te I(f,g) } , where I(f g) = [0,a(f,g)) . Then the mapping

3>

1 defined by mw(t,f,g) = (T(t,f,g),gt) c 2% determines a local generalized

gemi-flow on X .

Proof. Since G is translation invariant, by Lemma 4.3 the mapping T
maps D into 2X . For each (t,f,g) e.D by Lemmma 4.1 w(t,f,g) = (T(t,f,g),
gt) is nonempty and compact-connected. Moreover w(0,f,g) ={ (f,g)} . This
and any s ¢

proves (1) of Definition 2.1. For any fixed t e I

n {

(f,g)

I(f, ") (f',g") e m(t,f,g) } , we have for any x(*) ¢ T(t + s,f,g) that

t+s
x(¢) = f(t + s + ) + J gt + s + +,2,0(E)d ,
0

S

t+s
£,() + J glt + s + *E,0(E)dE + J gt + s+, & ,0(E))dE
0 S )

S t
(£,() + Jog(s + o0 E)E ), + Jogs(t + 2,80, (€))dE,

for some ¢(*) ¢ S(f,g) . Here by the relation

S+T
¢S(T) =¢(s+1) =1f(s+ 1)+ J g(s + 1,71,0(t))dt
0 .
s T
= { £ (1) + J g(s +T,T,0(1))dt } + J g (1,€,0 (8))dE
0 0
for 1 e [0,a(f,g) - t ) , we have ¢S(°) € S(T(s,f,g),gs) . Then x(*) e

T(t,T(s,f,g),gs) s i.e., T(t + s,f,g) c T(t,T(s,f,g),gS) . The proof of the

inclusion T(t,T(s,f,g),gs) > T(t + s,f,g) is similar. This proves (2)
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To verify (3) suppose o(f,g) < « , then we can choose a solution ¢(+) ¢

S(f,g) by Lemma 3.3 such that a(f,g) = a(f,g,x) and hence 1lim sup |¢(t)|= o,
tta(f,g)

Then there exists a sequence { t } tending to t such that |¢(tn)- ¢(tm)|
> 1 if n#m. Let { xn(°) }e u{m(t,p) :te [0, ap) }  be the

sequence defined by

t
x (1) = £t + ) + f Tglt v, s, 9(s))ds , no=1,2,0000e
0
Since x_(0) = ¢(t ) , we have dn(x (*),x (*)) = Ekflz‘k( 1, max { |xn(t)-xm(t)|
:te [0,k] }) = ijl 2k o for all n, m = 1,2,*+++ (n # m ). This shows

(3). The condition (4) follows from Lemma 3.3. Since the projection of the
mapping T to G 1is the translation mapping and this mapping is continuous by
the definition of the base space G, it is sufficient to verify the conditions
(5) and (6) that T ( the projection of m to C ) satisfies (5) and (6). And

these are already proved in Lemma 4.2 and Lemma 4.3. This completes the Theorenm,

Finally we remark that our proof of this theorem is direct and simpler than

that of [6] with uniqueness condition.
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