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WONWANDERING SET AND MINIMAL SETS

Tosiya SAITO

Faculty of Engineering, Keio University

1. INTRODUCTION.

Iet there be given a dynamical system '(X;. R, 7 ) defined by usual axioms
where‘ the phase space‘ X is supposed to be compact and metric. Iet W be the
set of all the wandering points of this dynamical system. Then N‘= X -W,

the set of all the nonwandering points, is called the nonwandering set. As

is dbovious from the definition, W is open and N is closed and they are both
invariant sets.

Siﬁce a wandering point can never be a limit point of any orbit, every'
orbit in W has its (both positive and negative) limit sets in N. So, if we
enclose N by a neighbourhood U arbitrarily small, then, as t » o , every
orbit in W eventually. comes into U and stays in U thereafter. The same
situation takes place as t— - . So, in a sense, the study of the behaviocur
of orbits in W can be regarded as a local problem around N.

.Suppose that this probie., has been solved. Then we have to investigate
the inner structure of N. For that purpose, we consider the restriction of
our dynamical system onto N which we denote by (N, R, T ). Then we split

N into the wandering part W, and the nonwandering part Nl as before. Evi-

1

dently the same reasoning works in ¥ and the study of the orbits in Wl is
reduced to the local problem arournd Nl.
Repeating this procedure, we finally come to the set N sﬁch that

(Ngs, R, ®) no longer has any wandering points. Ilere « is a certain ordinal
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which is, in general, transfinite and Ny is called the set of central motions.

Our splitting process terminates here and we cannot separate the local-theore-
tic part any more. At this step, there comes up the essentially global part
of the study.

This scheme of studying the dynamical systems was established by G. D.
Birkhoff. To carry out our'study along this scheme, we have to solve the
following three problems.

The first problem should of course be
1) the splitting of the phase space into W and N.

Next we have to investigate the behaviour of orbits around N. This
amounts to be
2) the investigation of the behaviour of orbits in the vicinity of a closed
invariant set.

The final step is the study of the orbits in the set éf central motions,
namely
3) the global study of dynamical systems with no wandering points.

The second prob;ern has been discussed by many- mathematicians and we
have a rich stock of results. The third problem is a more difficult one and
we are still far fram its solution. However we already have several good
resuits ~ for example, many remarkable theQrems concerning the minimal flow,
the almost periodic minimal flow or the measure preserving flow. Compared
with those, the results concerning the first problem are rather poor. This
problem seems to be the most neglected one among these three. It is this
first problem that we are now going to discuss in this note and we shall
show that there exists a certain very intimate connection between N and the

minimal sets, especially saddle minimal sets.
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2. NOTATION AND PRELIMINARTES,

For any x X, we denote by:

C(x), the orbit through x;

C+(x) ;, the positive semiorbit from x;

' C (%), the negative semiorbit fram x;

L+(x) , the positive limit set of x;

L (%), the ﬁegative lomit set of x;

J+(x) , the positive prolongational limit set of x;

J (x), the negative prolongational limit set of x.

The concept of a saddle set, which was first introduced by Ura‘[l] , plays
an important role in the following arguments. Since the concept might not
be very familiar, we shall give the definition.
bourhood U such that every neighbourhood of M contains a pbint x with

cfdtu . ‘
In other words, there exists a sequence { an tending to a point of‘-M such
that | )
cx)¢ v, =) U

Otherwise it is called a nonsaddle set.

A nonsaddle compact invariant set has a following very remarkable pro-
perty.
THEOREM A. Let M be a nonsaddle compact invariant set. Then x ¢ M and
L' (xNM# @ imply M D3 (0 (> L7(%)), and x ¢ Mand L () N\ N # 8 imply

MDJI (X (DL (x).]2]

3. CHARACTERIZATION OF NONWANDERING SET VIA PROLONGATIONAL LIMIT SET.

Iet Sl’ 82, ... be the saddle minimal sets and Fl’ F2, ... be the non-
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saddle minimal sets of (X, R, T ). We first prove the following
PROPOSITION 1. N < (\/F)\J (\J(J+(Sk)/\ T (S))).
PROOF. Suppose that x € N — UFk. Since x is a nonwandering point, x €
J+(x)/'\ J (x). Since J+(x),f\ J (x) is a closed, hence in our cése compact
invariant set, L'(x) is nonempty and campact. ILet M be a minimal set in L+(x) 5
Then J+(x) > Mand J (x)D M imply x € J (M) and x € J+(M) respectively. = So
we have only to prove that M is a saddle set.

Suppose that M is a nonsaddle set. Then x ¢ M by assumption. Then
L+(x)ﬂ M# @ implies M D J+(x) 3 x by Theorem A, which is a contradiction.

In general the set

| (UF)U (U )N T (5))
is larger than N. This can be shown by an example illustrated below.

Here the phase space is a ring--shaped

closed domain, Fl' F2 are the nonsaddle mini-

mal sets and S, is the saddle minimal set.

1
All the points outside minimal sets, namely

- all the noncritical points are wandering.

But J+(Sl) a J_(Sl) is the inner boundary
of the phase space.

To obtain more precise relation between N and the minimal sets, we in-
troduce the following concept.
DEFINITION. For any x € X, the set E(x) is defined as follows:
Y€ E(x) if and only if there exist a sequence 2 xn,} in X and two sequences
of real numbers {t % and {s % such that

n n

l), X 7 X
2) t >0, 5 »-00,

n n

3 WM )y, TR s~ Y-
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Tt is obvious that E(x) C J+(x){“\ J (x), and, in general, E(x) is actual-
1y smaller than J+(x) N J (x). In the example given above, E(Sl) = Sl and it
is smaller than J' ()M 37(s)) -

Then we have
PROPOSITION 2. y € X is nonwandering if and only if y € E(x) for some x € X.
PROOF. 1) Suppose that y € E(x) for some x € X. Then, by definition, there
exist 'lxn§ C X, {tni , {sn} C R such that

xn—-,> X, tn—? 0., snw—r - oo,
Ty t) >y, wx, s)—>y.
Put Y = TC (xn, sn). Then T (xn, tn) = T (yn, t - Sn) - y. Since
Yo=Y and t -5 ¥ oo, this4shows that y € J+(y) . Hence.y is a nonwander-
ing point.
2) If y is a nonwandering point, then y € J+(y) . Hence there exist {yn% P
and {tnl' C R such that
Y7 ¥r t = s and wly,s B Y-
Put X, = (yn, tn/2) . Then, without loss of generality, we may assume
that X = X € X. Since
X, £ /2) = Yy b)Y, /2=,
'Tc(xn, - tn/2) =Y, Y —tn/2 - oo,

we have y € E(x).

4. FUNDAMENTAIL PROPERTIES OF E(x) .
PROPOSITION 3. E(x) is a closed invariant set.

Invariance is almost cbvious from the definition. Closedness can be
proved by a routine argument based on the diagonal process. So we shall omit
the proof.

PROPOSITION 4. E(x) = E(TC (x, t)).

The proof of this proposition is also omitted since it is an easy consequence
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of the definition.
PROPOSITION 5. 1) If M is a minimal set, then E(M) D M.
2) If M is a nonsaddle minimal set, then E(M) = M.
PROOF. 1) ILet x and y be two points of M. Since M is minimal, y € L' (%) =
L (x) = M. Therefore there exist two sequences { tnl( and 4 snﬁ in R such
that
>, s -, T&t)sy T s)-y.

If we notice that { X } can be regarded as a sequence tending to x, the above
relation shows that vy € E(x). This being valid for any x and y in M, we have
MC EM). |
2) To prove the second part, assume that E(M) # M to derive the contradiction.
Iet y be a point in E(M) - M. Since y € E(M), y ¢ E(x) for some x in M.
Therefore there exist )xn'( C X and. ’)sn} , ftn% < R such that

xn-;» X, tn——> =0 , sn-—r - =0,

T (xn, tn)““’ Y, ’K(Xn, sn) - V.
Since ygf‘; M, there exists a neighbourhood U of M which does not contain y.
Then, for sufficiently large n, we have

T (x, v )E U T(x, s) & U
Hence C+(xn) gt U and C-(xn) ¢ U. As x = x €M, this means that M is a saddle
set contrary to the assumption.
PROPOSITION 6. If z € L'(x) or z€ L (x), then E(x) C E(z).
PROCF. If z € L' (x), there exists { cn{ C R such that

C7 = T (x, cn)—9 z. |

Let y be a point of E(x). Then, by definition, there exist {xn} C X and
R tn} , {Sn_i ¢ R such that
' X -+ % t —oo, 55 -,

M, )2y, T s) >y



Without loss of generality, we may assume that
tl<t2< <tn< ty < ... and tn»cn~?°4
For each fixed n, rr‘c(xk, cn) - Tr(x, cn) as k-0 . So there exists a
number k(n) such that
dlm (1, ), 7 (x, c)) < 1/n for k > k(n)

where d( , ) denotes a metric in X. We may also assume that

k(n) 2 n, k() k2K ... < k(n) < kin+l) <
Then ' ‘

AT (2 y s e s 2) S AT (x 0 o)y Tx, €)) +d( @ (x, c))r 2)
£ 1/m+al(x, c): 2.

Thus if we put

vt(xk(n) ' cn) =2

we have z, > 2 and

"i[(Zn: H{(n) -~ Cn) = T (Xk(n)l tj((n))"y'
Since k(n) 2 n and tl< t2< e 4

1_k(n) - cn Z tn T Spe

Then since tn -c, =4 as was assumed above, we have

tk(n) - cn—><>O °

On the other hand,
TZnr Sgny = %) = T Oy s Syq)) 7Y
and sk(n) - cn-? —<=° . Hence y € E(z) and we have
E(x) C E(2).

From this proposition, we immediately have
PROPOSITION 7. If M is a minimal set, then E(M) = E(x) for every x in M .
PROOF. Since E(x) C E(M) is obvious, we have only to show that E(x) D EM.

Let y be an arbitrary point of M. As M is minimal, x & L+ (v). Hence

E(x) D E(y) by Proposition 6. y being arbitrary, we have E(x) DEM).

*
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4. MATN THEOREM.

Iet y € N, i.e. y be a nonwandering point. Then, by Proposition 2, y
belongs to E(x) for some x € X. Let M be a minimal set in L+(x). Then
E(x) C E(M) by Proposition 6. Hence y € E(M) for some minimal set M.

Conversely; if v € E(M) for some minimal set M, then y is a nonwandering
point by Proposition 2. Consequently

N = (\VEF)I\J (\VE[S)).

However E(Fk) = Fk by Proposition 5. So we finally get the following theorem.

. THEOREM. N = (\/Fk) U ( \/E(Sk)) .
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