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Stochastically stable diffeocmorphisms
and Takens conjecture
Akihiko Morimoto

Department of Mathematics, Nagoya University

§ Introduction.
Let g) : M—>M be a homeomorphism of a metric space (M, d) with

distarice function. d. A (double) sequence {Xi} €7 of points xié M

(1€ Z) is called, by definition, a 8 —pseudo—orbito)( @ iff

a P (x)), %) < 8

for every 1 € Z, where §>0 is a constant (cf. [2]). Given £>0,

a 8 -pseudo-orbit {Xi} is called to be § -traced by a point y € M iff
i
al 97y, x) S €

for every 1 € Z. We shall call 50 stochastically stable, iff for any
€ > 0 there exists & >0 such that every 8 —pseudo-orbit of q) can
be § -traced by some point y & M.

R. Bowen [2] proves that every Anosov diffeomorphism ¢ of a compact
manifold is stochastically stable. '

In this note we shall first prove that every topologically stable
homeomorphism @ (cf. Def. 1) of a compact manifoid (or euclidean space)
M 1is stochastically stable in case dim M 2 3 (Th. 1). Using this

result we give a positive answer to the conjecture of F. Takens in



tolerance stability [9] (Th. 2). By virtue of these resulté it seems
to be significant to give necessary and/ or sufficient conditions for
diffeomorphisms to be stochastically stable and to clarify tﬁe relations
with other stabilities of diffeomorphisms.

We shall in fact characterize linear automorphisms of Rn (resp.
group automorphisms of a torus ™) to be stochastically stable (Th. 3
and 4). MoreoVer, we shall see that every isometry of a coinpact connected
Riemarnmian manifold M (dim M 2 1) is not stochastically stable.

We shall bf‘urther shéw a result due to H Urakawa which says that

if there is a stochastically Astable group automorphism 99 of a compact

connected Lie group G, then G 1s necessarily a torus.

§l. Definitions and préparatory lemmas.
Let ¢ : M-—M. be a homeomorphism of a metric space (M, d). We

denote by H(M) the group of &1l homeomorphisms of M.

Déefinition 1. We call 9 topologically stable iff for any £> 0

there exists 8 > 0 with the property that for any \//éH(M)' with
a( 9(x), \[/,(x))< S for ewfer’y X € M there is a continuous map ‘h: M—3M
such that :

1) hey =Qen,

ii) d(h(x), x) <& for every xg M.
i s v . —0 < alh <
Definition 2. A sequence of points {Xi} 1 €(a,b) ( ® < a<b £+00)
is called a Sv—pseudo—orbit of 9 iff
A(P(xy)s Xy49) 2 &
for 1 € (atl, b-2). If a > -oo0 and b< oo , this sequence will be

called a finite § -pseudo-orbit of @ and if a=-60and b = +00 , the



10

sequence will be (sometimes) called an (ihf‘inite) S ~pseudo-orbit
of . -{Xi} is called to be ¢ -traced by xé& M 1iff
i
aC g~ (x), xi) < &
holds for i € (a, b).

® is called stochastically stable iff for any € >0 there exists
§ > 0 such that any (infinite) $§ —pseudo——orbit of @ canbe & -traced

by some point X € M. We shall call Suéh §7 also a Bowen homecomorphism.

Definition 3. We denote by Orjbs(g)) the set of all (finite or
e s : ‘ & =
infinite) § -pseudo-orbit of ¢ and Tr( {Xi} »$) =Tr ( {Xi} ) the

set of all y € M such that {Xi} is & ~traced by y.

Assumption. In the sequel we assume that every bounded subset of M

is relatively compact unless otherwise stated.

We shall now staté several lemmas, some of whose proofs will be
omitted, since the proofs will be more or less standard.

Lema 1. Let h € H(M) be a homeomorphism of M such that h and
h™ are both uniformly continuous. Take PEH(M) and set Y = hoPon ™,

Then 9? is a Bowen homeomorphism if and only if \/f is.

Lemma 2. Let Q¢ H(M) be stochastically stable. Then, for any

integer k > O, 9?k is also stochastically stable.
Lemma 3. Let @€ H(M) be uniformly continuous, and fix an integer
N > 0. Then for any &> 0, there is §> 0 such that if {Xi :‘20 €
Orbs(?) then x £ —traces {x} N
0 i) i=0"

Lemma 4. Let @ € H(M) be uniformly continuous. If ¢ 1is a Bowen

~ homeomorphism, then 9—1 is.
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Lemma 5. Let ¢ €& H(M) be uniformly continuous. If q)k

Bowen homeomorphism for some integer k > 0, then gJ is.

Lemma 6. Let @€ H(M), and \}’6 H(M'). The direct product M X M!'
is a metric space by the distance function a((x, y), (x', y")) =
Max -{d(x, x"), d(y, y')} for x, x'€ M and y, y'€ M'. Then \?x %‘

is a Bowen horrieomoxphism if and ohly if 9 and \// are both Bowen.

Lemma 7. Let @€ H(M) and assume that for any £ > 0 there exists
: . k t)
& > 0 such that for any integer k> 0 and any {Xi}i___o € Orb (P)

we have Trs( {xi}k P # ¢ Then ¢ 1is a Bowen homeomorphism.

Lemma 8. Let $ Dbe a Bowen diffeomorphism of a compact Riemannian

manifold M. Then 99 is Bowen with respect to any Riemannian metric on ‘M.

Lemma 9. Let M be a differentiable manifold of dim M 2> 3. Let
={pi, ql} (i=1,.. .,kj be a subset of M consisting of at most
two points o and a; with d(p > 44 )< S . Suppose’ X F(\X = g
for i # j. Then there is a dlf'feomorphlsm ’7 M - M such that

acy (x), x)<§ for x € M and that 7Z(p) qQy for 1=l,2,...,k.

Lemma 10. Let § : M— M be a homeomorphism of a manifold M
with dim M2> 1 and suppose M - Fix'(?) is dense in M. Take and fix

a constant S1>0 and an integer k > 0. Then for any {xi} € Orbsl(q:')
and £ >0, there is {Xi}é Orb?’gl(?) such that 1) d(xi, Xi)<£1for
i=0,1,..., k and ii) X, = {Q(Xi), x!lﬂ} (1=0,1,..., k-1) are
disjoint.

Proof. We can assume £,<8'. For this 51, there is 8’1 > 0 such

that €,> €] and that d(x, y)< € implies A@(x), P(¥)) < €.

First, we can find x! € M (1 = 0,1,..., k) such that x] # x}(1 #5)
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and that d(xi, X:!L) < EZ,L (i =0,1,..., k). Next, we shall show by induction

that X,,...,X, ) are disjoint by taking x} suitably. For that, suppose

X = {%?'(xp, X£+1} (i = 0,1,..., k=2) are disjoint. We shall show that,

by changing Xk 1 and - x!, if necessary, X

K 1 (1=0,1,..., k-1) are

disjoint.

1

. k-2
3 3 i ! 3 ?
Consider the po:mt’ %(xk_l) and suppose g(xk_l) € };{ Xi' Then

there is a unique i<k - 1 such that g‘f(x ) = x! i since x 74 x'

s & _ . . 3 _ e
(J £ k=2) implies Plxp_1) # @(XJ’.). If i< k-2, wecan find x

1 " Lt TR s G (1 = 1
near  x! o such that y(x )#xi. If " i=%k-1 1i.e. 9;(}(}{_1) X qs

then we can find x! near x/ since

k-1 k-1

M - Fix( g)) is dense and open m M. We denote x"

such that @{(x] ) # X1

by x! again.

k-1 k-1

Then’' we can assume that X' ¢ U X , since U X is a finite set.
i=0

Thus we have proved that XO,X .. XK 1 are disjoint.

For 1< 0 (resp. i> k) we define ‘<' 9) (x ) (resp X' =§)i;k(xl2)).
Then we see that { }E Or’b381(9)) For we have '

A0 P, x,p) £ APED, P (x)) + AP, x;,p) + Alxy,qs X4
< £+ 8 +€<38,
for 1= 0,1,..., k-1. This completes the proof of Lemma 10.

Lemma 11. Let @€ H(M), where M is’é differentiable manifold of
dimension 2 1. Assume 99 is topologically stable. Then for any integer
k>0, M- Fix( g:k) is dense in M, where Fix( (yk) ={x € M, g?k(x) = X}‘ .

Proof. Induction on k. First, we prove the lemma for k = 1.

To prove that M - Fix( SO) is dense in M, we assume that there is
an open set U # jD' such that U C Fix( 50). We can suppose that U 1is a

coordinate neighborhood of a point x. € U with coordinate system

0
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(Xyseees xn). Take € >0 such that Q£1 C U, where Q€1 = QE,(XO> means

the cubic neighborhood with center x,. and of breadth 2£1. Take £€>0

0
such that 4E< . For this £>0, we can find $>0 with the property
in Definition 1. Now, take a differentiable function & on M such that

K(x) =1 for x € Q X(x) =0 for x ¢ ng . Define a differentiable

3¢’
vector field Y on M by
. i 9
o Gy, x € Q.
Y(x)= ‘ .
0
. X¢ Q£1

where 8‘>O is a constant. Let { 7t} be: the one-parameter group of
diffeomorphisms ”]t of M generated by Y and put 77 = -771. It is clear
that if 81<S is sufficiently small, then we have d( "Z(x), x)<d for x€M,
Set ‘\}/="20? , then we have d(g’(x)_, \}’(x)){g for x€ M and hence there
is a continuous map h ::M-}M such that ho\f’ =503h and d(h(x), x)< &
for x€& M_-' Since & =1 on Q3£ , we see that the;;'e is a sufficiently
large integer k > 0 such that Y’,k(xo) =7k<xo) ¢ Qe and hence
n( \l/k(xo)) ¢ Q2£ . On the other hand, since d(h(xj; X)Eg'wéhave'
h(xo) <€ QEC U cC Fix(‘f), and so wé have h( \/fk(xo)) =Sdk(htxo)) - h(xo)
€ Qa , which 1s a contradiction. Thus we have proved the lemma erfw k=1.
Assume that k 2 2 and that the Lemma is true for any k'< k - 1.
Suppose that Mv— Fix( (Pk) is no’; dense. Then there will be a non-empty
open set U ¢ Fix( cyk). Since M- Fix( ?i) is dense in M for i< k-—lv
there exists X, € U such that ?i(XO) ¥ % for any 1<k - 1. Hence

we can assume that U dis a.coordinate neighborhood of x, with coordinate

0
. qs i k-1 . e e

system (xl,..., xn), n=dim M and that {Cf (U) 1=p 1s disjoint.

Take 51 such that U D Q£1(x0), and take £ > 0 with -4€< 51. Since

So is topologically stable there exists a 8)0 with the property in
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Definition 1. For this & >0 we can find a diffeomorphisrﬁ | 7:M—M

such that 7 (U) = U, d(P(x), x)<§ (x& M), 7(x) - x (x¢ U) and that
Ui IQME . is a parallel translation along the x,-axis as in the proof of

the Lemma for k = 1. Define g€ H(M) by

P (x) x4 9w

Vo (x). xe 9>k‘1(U).

Since U = ?k(U), g is in fact a homeoiﬁorphism of M and d(g,?)é S

g0 =

holds. Therefore, there is a continuous map h : M—»M such that
hog=3>oh and d(h(x), x)<& (XE€ M) ‘
holds. We see easily that gk(x) = ?(x) for x € U. Hence we can find

a sufficiently large integer m > 0 such that gkm(xo) ='7m(xo) ¢ Q3£ .

On the other hand, we get heo gm(xo) = ?km(h(xo)) = h(xo) = Qg. since
h(xo)'e U and d(h(xo), XO’)<E. Hence we have gkm(xo)‘é Q2£ , which

is a céntradiction. This completes the proof of Lemma 11.

Remark. The author does not khow whether the topological ,s‘tability

of @ implies that of g»k for k # 0.

§2. Topological and stochastic stabilities, and Takens conjecture.

Theorem 1. Let M be a differentiable (metric) manifold of
dim M 2 3 and assume that there exists £o> 0 such that Eo -neighborhood
UEO(X) of any point x€ M is relatively compact. -Let 9) : M—>M be
a topologically stable homecmorphism of M. Then (P is stochastically
stable. In particular, if M is compact or M = R? is the euclidean
spacé then the topological stability implies the stochastic stability.

Remark. The author has a proof of Theorem 1 in case M = Sl ( the
circle). However since the proof is quite different, he will treat it

in a future paper.
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Proof of Theorem 1. Since g’ is topologically stable, for any £ >0
there is 8 >0 with the property in Definition 1. We can assume
$< Min(€, &)). </

g ) T
First, we shall prove, for any { Xi}' € Orb 6 (
» 2 k

k >0, that % ({x,}5,9) ¢4 |
By Lemma 10, 11 we can find {Xi} € Orb 8/27r(30) such that d(x,, x:!L)<8.

g’) and any integer

(i=0,..., k) and that the sets {So(xi), x:!L_I_l} are disjoint for
i=o0,1,..., k= 1. By Lemma 9, there is a ’75 H(M) such that
d(72(x), x)<§ for x€ M and '?(So(xi)) =x},, for i=0,1,..., k-1
Put Y’ =’?°§’ , then d(?(x),\[’(x)) <& . Hence by the property for
8 > 0, we can find a continuous map h : M—>M such that ho)b =SDoh
and d(h(x), x)KE for x& M. Put y = h(x(')). Now we have for 1 = o,
1,..., k, ‘
i _ i _ i
A(@7(¥), x;) = AP (h(xy)), x;) = AP (x))), %)

< 1 p -

£ d(h(x), x}) +dx, x,)< £+3<2€ ,
which shows y € Tr2 E( { xi} ]S,(f). Thus we have proved that g’ satisfies
the condition in Lemma 7, which concludes that 50 is stochastically

stable.

Now we shall recall the notion of extended orbits of a homeomorphism
of a compact metric space (cf. [9]). )

Let SP : M—>M be a homeomorphism of a compact metric space (M, d).
The set of all non-empty closed subsets of M will be a compact.metr'ic

space by the distance function d defined by’

a(a, B) = Max{ Max d(A, b), Max d(a, B)}
e B aeh

for A, B € C(M), where d(A, b) = inf d(a, b) (cf. [5]). We denote by
aeh )

6;{)8 ( 37) the set of all A € C(M), for which there is -{ Xi)} c OrbS(SO)

8
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such that A = C:Lixi l ié¢ Z}, Cl denoting the closure.

Definition 5. We denote by ESP the set of all A & C(M) such that
for any £>0 there is AE € Orpt (?) with d(a, AE><E' An element
A of E, is called an extended orbit of § .

@
On the other hand, we define OS" = 01{090() ’ x & M}C C(M), where

O?(x) = Cl(Orb(y(x)) with Orb?(x) ={(5>i(x) } ieg Z}‘. We can easily see
that E‘f is closed in C(M) ahd Offc E?

Lemma 12. If (fé H(M) is stochastically stable, then @, = E_ holds.

g 7

holds for any Soe H(M).

Proof omitted.
Now, we shall give an affirmative answer to a conjecture by F. Takens[9].

Theorem 2 (Conjecture of Takens). Let 9) be a . Cl—diffeomorphis;n
of a compact conmected manifold M with dim M 2> 1. Assume that SO is
an AS-diffeomorphism, i.e., (P satisfies the Axiom A and the strong trans-
versality condition. Then 09= ESP holds. | |

Proof. Consider the direct product Px @*x . a diffeomorphism of
Mx MX M onto itself. Since 9 is an AS-diffeomorphism, we see that
?xff‘x 30 is also AS. By avr'esult of Niteckil[6], SOx‘j?XCf is topologically
stable. Hence by Theorem 1 f?x‘fxso is a Bowen homeomorphism. Now Lemma 6
says that (f is also a Bowen homeomorphism and so by Lemma 12, O‘j’ =E

?

holds.

Definition 4. Pe H(M) 1is called expansive, iff there exists £°>O
(called an expansiveness constant of (5> ) with the property that for any
X, YEM with x #y, there is n € Z such that

(9", P N2 E,.

The following Proposition is essentially proved in [2].
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Proposition 1. Let M be a metric space such that every bounded set
is relatively compact. Let ? : M—>M De a stochastically stable homeo-

morphism of M. If (f is expansive, then SO is topologically stable.

§ 3. Stochastic stability of linear and toral automorphisms.

In this section we shall characterize affine transformations of Rn

and toral automorphisms of ™ = Rn/ Zrl to be stochastically stable.

Proposition 2. Let @ : R'—>R* be a linear automorphism of R.
Then q’ is stochastically stable if and only if SO is hyperbolic, i.e.,
if A is an eigenvalue of @ then D\, £1.

‘Prbof. Assﬁme (P is stochastically stable. Consider the compiéxi— :
rication Q0 : P~—>c". Identirying O with R'x K, we can identify
Cyc with Cfx(f . By virtue of Lemma 6 and 8, (f is stochastically
stabie if and only if (fc is. 'Since a linear map is uniformly continuous,
it follows from Lemma 1 that (jJC is stochasticaily stable if and onty if

every factor of the Jordan canonical form of g)c .1s stochastically stable.

Al

AT

Now, it suffices to show that if Y/ = : o (resp. %= )\~16:l)

._)\ |
is stochastically stable, then l)sl # 1. Suppose |>\| =1. Set Zj =

3-%W.8 for je€ 7. Since
A Yy(zy)s 2549) = | ¥tz = 2540 |
we have {Zj§ € Orb® (%)' However, since _
aYE), z) =[N E-Nn§|=|E-n3].

there is no g such that d( \H)l( g ), Zn) is bounded for any small 8} 0.

It

[v SN - g NS -8,

In particular, for any S)O we have E[Tl( {zj}, ‘1/0) =/d. Hence % is

not stochastically stable.

10



18

then
Similarly, consider the vector Vj = (0,..., 0, Zj) for JE ’Z,fwe/
see that { vJ.}E Orbg (‘f') and that ’IEr'l({Vj},'\I)):ﬂ , which means
\}'/ is not stochastically stable. Thus we have proved that ‘/’ is hyperbolic.
Conversely, assume that (P is hyperbolic. Then it is well known that
there are subspaces E° and EY of R" and constants FC >0, 0< A <1
such that
1) R =@t
1) 9E) =% o=s,u
iii) | ¢l < cNiv| , vEE
19l < cNYilwll we E'
for n20. Set Y =9|s and m = ®|gu, then identifying R with
E°X E' we can identify @ with W¥x7% . By virtue of Lemma 6, it suffices
to show that \f and 72 are stochastically stable.
First consider 7) : EY—>EY and take £>0. PutS = (1 -)\)S/c _
We assert that. .Sxi’[ € Orb8(7) implies r & ( ‘(i.xi},’Z) #.Q{. For ke Z
we set o{k = X4~ y(xk) € EY. Then we have ”o(kugg for k€ Z. By
induction we see-that for k> 0 ‘
X = D)+ T + ) Xy
nolds. Put § =771, Thenwe tave [|§[| € ¢ N for k>0 (er. 111) ).
We have also : ‘
x = Py + §00) + 70 + N = g v,

where we put = E(O(O) + 52(0(1) + ... +§k(dk_1) for k> 0.

Yk
We shall show that %Vk}l‘:l is a Cauchy sequence. ‘In fact, for any
p > k> 0, we have

”V - Vk“ - “i;i—?ﬂ Ei(di—l) “ < i llg)_i(oci—l) ”

P i=ktl

L c %j, )i ”o(i_ljl—g C-S-)\kﬂ/(l—)\)—éo (k—>00).

i=k+1

11
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Hence there is @€ EY such that limv, =@. Put y = x.  +f. Then
| ¢ ko0 & ¢ o ¢
we have v
M) - x = P + 8- % -
K, < 1 = ik
1 J- ;
=7 (25 (04, 10) = > T ),
1=k i=htl ,

and hence we have , ]
a ), 1) = 15w - 1 [ 25§ F NS <8 /-0 =€
By Lemma 12, we see that '72 is stochastically stable. Similarly we con-

clude that \}/"l is stochastically stable. By Lemma 4, ‘// is also stochas-

tically stable. Thus we have proved that (P is stochastically stable.

Theorem 3. Let (5’ : R'"—> K" be a linear automorphism. Then the
following conditions are equivalent : |

1) @ is hyperbolic

2) SJ is expansive

3) @ is structurally stable
4) @ is stochastically stable

¢

5) is topologically stable. v

Proof. Equivalence 1)¢—3) was proved by Hartman (see. Theorem 2.3[7]
for details). |

1)¢—>2) is standard.

1)é- 4) is by Proposition 2.

5)—>4) for n>2 is by Theorem 1. For n =1, ? : Rl——) RY s
given by @ (x) =\'x for some >\¥ 0. If 93 is topoiogically stable,
then \ #41. For if )\ =£1, then @° = 1.1 and Fix($°) = R, which
contradicts Lemma 11. Thus {Al f 1, which means 50 is hyperbolic and
so stochastically stable. Finally 4)~—5), since 4)—>2) and so we

can apply Theorem 2. This completes the proof of Theorem -3.

12



Proposition 3. Let f: R“—»R" be a linear automorphism and ¥€éR"

a fixed vector. Define the affine transformation @ : R §B? by
P(x) =f(x) + E
for x & R?. Then Cf is stochastically stable if and only if f is.
§
Proof. Let § x,} € Orb® (§). Put ,
R 1-2
X3 =X (f (E) +f (E) + ... +8)
for 1€ Z. We see that -{Xi} & Orbg (f). It is easy to verify that
SLXi.\Y —)}xi} is a one-one correspondence between Or'bs( 60) and Orbs(f)
' ¢ € 1} i

and that Tr (éxi},q:') = Tr (§X£ , £) for every £>0. Thus gl is

stochastically stable if and only if f is.

Proposition 4. Let M and M be metric spaces and T[ : ‘l?/ll—-)M be
a locally isometric covering map of: F/I/ onto M. Assume that M 1Is compact
and that every g -neighborhood Ug(x) of Xx€& M 1is connected for small
£>0. Let fe H() and @€ H(M) such that Tof = @oTC . Then,
f is stochastically stable if and only if @ is.

Proof omi’[_;ted .

Lerma 13. Let f be a linear automorphism and & : ™51 bea
group automorphism of T such that TMTef = ?o'ﬂ.’ , Where TC : Rn—éTn =
Rn/ AZn is the projection. Then f 1s expansive if 9’ is.

Proof cmitted.

Theorem 4. Let C}’ : Tn—) ™ bea group automorphism of the torus
™ = Rn/ 7", Then the following conditions are equivalent :

1) @ 1is an Anosov diffeomorphism,

2)

is expansive,

1)

3) ¢ is structurally stable,
¢ is stochastically stable,

13
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5) ? is topologically stable,
6) @ satisfies Axiom A and the strong transversality condition.
Proof. 1)=-—5) 1is proved by Walters [10].
5)—>14) dis proved by Theorem 1 for case n2> 2. Incase n =1,
if <5> : Tl——) ’I‘l is a group automorphism 9 . 1T( and so So is not
topologically stable by Lemma 11.
To prove 4)~—1), we denote by f : Rn-——) R" the linear automor-
phism covering Cf 5 1.€., Mo f = (Po’lt . Since 9 is stochastically stable,
f 1is also so by Proposition 4. Hence by Theorem 3, -f is hyperbolic.
Then ? is clearly an Anosov diffeomorphism.
1) —>3) 1is proved by Anosov [1].
3) — 1), since TOSO (t‘he differential of ¢ at the neutral element
0 of Tn) is‘"hyperbolic by a result of Franks (3], and hence’ 9) is an
Anosov diffecrorphism. )‘ o
1)~>2) dis proved also by Anosov [1].
2) —>1), since f is expansive by Lemma 13, and hence f is hyper-
bolic by Theorem 3 and so SD is Anosov.
1) —»6) 1is verified by the very definition and a result of Anosov [1].
6) —>3) ‘is proved by Robbin [8].

This completes the proof of Theorem 4.

§I,L Isometries of compact Riemannian manifolds.

In this section we shall prove that any isometry of a compact connected

Riemarnian manifold M with dim M > 1 is not stochastically stable.

Lemma 14. Let M be a compact connected Riemannian manifold. Suppose
¢ &€ H(M) is an isometry of M. Then, M & Eff'

Proof omitted.

1k
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Theorem 5. Let @ : M—M be an isometry of a compact cormected
Riemannian manifold M with dim M2 1. Then (5) is not stochastically
stable.

Proof. Suppose 33 is stochastically stable. Since M is compact,
the non-wandering set ,Q_(Cj)) of (f ‘vis not empty. Take and fix a point
o € Q( ?). For & = diameter(M)/?, there exists 8}0 such that
£>8 and that {x,y¢€ Orbg((f) implies Trs(fxi},go) #@. Put
U= US/z(pO)' Then, since p, € _Q(SD), there 1s an integer k > 0 such
that Cyk(U) NU #ﬂ( We can assume that gOi(U)f\ U =IQ{ for i = 1,...,
k - 1. Take a point Xy & U such that SUK(XO)E U. Now, »set Xed T
91()(0) for n€ Z and 0< 1< k. We see easily that ‘{ Xi}'iézé Or'b&(go).
Hence we can find a point y¢& M such that d( Qi,(y), Xi)_<_' £ for i€ 7.
In particular, we have d(?nk(y), xnk)_<_ € and hence d((fnk(y), XO)_<_' &
for n€z. Put Y= @* ana v, =¥"@). Ve nave yne Ug(x,)  for ne 7.

Now, since \}/ is an isometry, we have M ¢ E‘P by Lemma 14. Since
Y/ is stochastically stable by Lemma 2, we have E.\//= O.}b by Lemma 12.
'I‘hereforé, M€ O\f’ and so there is z € M such that
(4 1) E(O}b(z), M<E .

Since y € M, there is m¢€ Z such that y¢€ UE( '\Pm(z)). Since )b is
an isometry we have Q/m(z) € Ua(y), and hence Y/D(Y/m(z)) € U&( Y’n(y))
C U2£(X0) and finally we get

(#. 2) Orb‘y(z)C UZE(XO)'

Now (41;.1) and (4.2) imply MCUE;(O\//(Z))CUgg

diam(M) < 6§, which is a contradiction.

(XO) and we have
Proposition 5. Let G be a compact connected L_ie group. Suppose

that there is a group automorphism CP : G —»G, which is stochastically

stable with respect to some Riemannian metric on G. Thenv, G 1s a torus.
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Proof. Let A (resp.S) be the maximal abelian ,(re;p. semi-simple)
normal subgroup of G, and set Z = Aq S. . Then we know (cf. [4]) that
G=AS and Z is a finite group. It is well known that @A) =A and |
@(s)=s. Put =9, and 7]=§X’IS,::‘:Sinc>:ek TC: AX S—>G defined by
T (a, x) =a.x for a€A, x€ 8 is a (finite) covering map and since
T e ( gx'? ) = Qo , we see, by Proposition 3, that Ex’? and hence '7 is
stochastically stable. ’ Sjpce_-? 1s an automorphism of S, '7 leaves
invariant the Killing form @ of the Lie group S, Which is negative ‘
definite and so 7] is an isometry of the invariant Riemannian m’etric’ on

S induced by —?. By Theorem 5, dim M = 0, and hence G = A 1is a torus.

§5 . Final remarks

Remark 1. The author has examples of diffeomorphisms, which are

stochastically stable but not structurally stable.

Remark 2. In case M = Sl (the circle), we can prove that a 02—diffeo—
morphism ? : Sl-) S:L is stochastically stable if and only if there
exists an integer k > 0  such that Sok is topologically stable. The

authof does not know whether we can take "k = 1 1in the above statement.

Remark 3. The author has a characterization for projective transfor-

mations to be stochastically stable.
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