On a characterization of finite groups of p-rank 1.

by Goro Nishida

(Department of Mathematics, Kyoto University)

Let G be a finite group. Let p be a prime number. Define the p-rank $r_p(G)$ of G by the maximal integer k such that G contains the elementary abelian p-group $(\mathbb{Z}_p)^k$ of rank k.

It is obvious that G is of p-rank 0 if and only if the p-Sylow subgroup $G_{(p)} = e$. According to Cartan - Eilenberg [2], we see that G is of p-rank 1 if and only if $G_{(p)}$ is either a cyclic group \mathbb{Z}_{p^r} or a generalized quaternionic group if $p = 2$.

It is also shown [2] that a finite group G with p-rank 0 or 1 for any p is characterized by having the periodic cohomology.

Such a group is called an Artin - Tate group.

Now the purpose of the present note is to give a characterization
of finite groups of \(p \)-rank 1 in terms of stable homotopy groups.

Let \(|G|\) be the order of \(G \) and let \(\Sigma_n \) denote the symmetric group on \(n \) letters. We denote by \(\rho = \rho_G : G \to \Sigma_{|G|} \) the regular permutation representation, and \(B\rho : BG \to B\Sigma_{|G|} \) denotes the induced map on classifying spaces. Let

\[
\omega : \prod_{n} B\Sigma_n \to \Omega B(\prod_{n} B\Sigma_n) \simeq Q(S^0)
\]

be the Barratt–Priddy–Quillen map [1], where \(Q(S^0) = \text{lim}_k \Omega^k S^k \).

Then as the adjoint of the composition

\[
BG_+ \xrightarrow{\mathbf{B}\rho} B\Sigma_{|G|} \xrightarrow{\omega} B\Sigma_n \to Q(S^0)
\]

we obtain a stable map of spectra

\[
f : S(BG_+) \to S
\]

where \(BG_+ = BG \cup \text{disjoint base point} \). Then we obtain a homomorphism
\[\phi = \phi_G : \pi_n^{S(BG)} \rightarrow \pi_n^{S(S^0)} \]

of stable homotopy groups. Note that \(\pi_n^{S(BG)} \cong \pi_n^{S(BG)} \oplus \pi_n^{S(S^0)} \),
direct sum. The restriction \(\phi|_{\pi_n^{S(BG)}} \) is also denoted by \(\phi \).

Now let \(J : \pi_n(O) \rightarrow \pi_n^{S(S^0)} \) denote the J-homomorphism, where
\[
O = \lim \pi_n(O(n)).
\]
Restricting \(J : \pi_n(O) \rightarrow \pi_n^{S(S^0)} \) on \(\pi_n(U) \) or \(\pi_n(S_p) \),
we obtain the complex J-homomorphism \(J_C \) or the quaternionic J-
homomorphism \(J_H \).

For a finite abelian group \(A \), we denote by \(A(p) \) the p-component
of \(A \). Then we can state our theorems.

Theorem 1.1. Let \(G \) be a finite group of p-rank 1. If \(p \)
is odd, then
\[
\text{Im}[\phi : \pi_n^{S(BG)} \rightarrow \pi_n^{S(S^0)}] \supset (\text{Im } J)_p = \text{Im } J_C(p).
\]

If \(p = 2 \), then
\[
\text{Im}[\phi : \pi_n^{S(BG)} \rightarrow \pi_n^{S(S^0)}] \supset (\text{Im } J_H)(2).
\]
Theorem 1.2. Let G be a finite group. Then the p-rank of G is equal to 1 if and only if $\phi : \pi_{2p-3}^S(BG)(p) \to \pi_{2p-3}^S(S^0)(p)$

$\phi : \pi_3^S(BG)(2) \to \pi_3^S(S^0)(2)$ if $p = 2$) is an epimorphism.

Concerning with the 2-component, it may be worth showing the following

Proposition 1.3. $\phi : \pi_1^S(BG) \to \pi_1^S(S^0)$ is an epimorphism if and only if the 2-Sylow subgroup $G_{(2)}$ is a non trivial cyclic group.

From this proposition it follows immediately that if $G_{(2)}$ is non trivial cyclic, then G is not perfect, hence not simple unless $G = Z_2$ (Burnside's theorem).

If one uses the Feit - Thompson theorem [3], one can show the following

Corollary 1.4. Let G be an Artin - Tate group. Suppose that

$H_i(G : Z) = 0, 1 \leq i \leq 3$, then G is trivial.
Proof. By the assumption, $\pi_3^{S}(BG) = 0$. Hence by Theorem 1.2, we see that $G_{(2)} = e$, i.e., G is of odd order. Then by the Feit-Thompson theorem, G is solvable. Then $H_1(G; Z) = 0$ implies $G = e$. q. e. d.

Now for a finite group G of p-rank 1, Theorem 1.1 shows the non-triviality of $\pi_{2p-3}^{S}(BG)(p) \pi_3^{S}(BG)(2)$ if $p = 2$). We remark that such a non-triviality of $\pi_i^{S}(BG)(p)$ for $i < 2p-3$ does not hold as the following examples show. If p is odd, then \sum_{p} is of p-rank 1. It is known [5] that $H_i(B_{\bar{p}} : Z_p) = 0$ for $i < 2p-3$. Then by Serre's class theory, $\pi_i^{S}(B_{\bar{p}})(p) = 0$ if $i < 2p-3$. For $p = 2$, consider the binary icosahedral group I^*. This is a subgroup of order 120 of $Sp(1) = S^3$. Hence I^* is an Artin-Tate group and $I^*_<(2)$ is the quaternionic group. It is well-known [η] that $H_1(BI^*) = H_2(BI^*) = 0$. Hence $\pi_1^{S}(BI^*) = 0$ for $i < 2$.

The non-triviality of $\pi_{2p-3}^{S}(BG)(p) \pi_3^{S}(BG)(2)$ clearly fails
for general finite groups as the following Quillen's example shows.

Let F_q be the finite field with $q = p^d$ elements. Then Quillen has shown \cite{4} that $H^i_{\text{BLG}}(n, F_q) : Z_p = 0$ for $0 < i < d(p-1)$.

Thus $\pi^S_{i}(\text{BLG}(n, F_q)) (p) = 0$ for $i < d(p-1)$.

For a cyclic group \mathbb{Z}_p of prime order, Theorem 1.1 is a direct consequence of the Kahn - Priddy theorem \cite{4}, that is

$\phi : \pi^S_*(B\mathbb{Z}_p) \to \pi^S_*(S^0) (p)$ is an epimorphism ($*>0$). We shall show that the Kahn - Priddy theorem fails for cyclic group of order

2^r, $r \geq 2$.

Theorem 1.5. Let r be an integer ≥ 2. Let $f : S B\mathbb{Z}_{2^r} \to S$ be an arbitrary stable map. Then $f_* : \pi^S_7(B\mathbb{Z}_{2^r}) \to \pi^S_7(S^0) (2)$ is not epimorphism.

For an odd prime, the problem seems to be more difficult. For example, a direct computation shows that the element

$\beta_1 \in \pi^S_{2p(p-1)-2}(S^0) (p)$ is in the image of $\phi : \pi^S_*(B\mathbb{Z}_{p^r}) \to \pi^S_*(S^0)$

for any r.

- 6 -
REFERENCES

