<table>
<thead>
<tr>
<th>Title</th>
<th>On a Characterization of Finite Groups of p-Rank 1 (代数的位相幾何学)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>NISHIDA, GORO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1977, 305: 50-56</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/103841</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On a characterization of finite groups of p-rank 1.

by Goro Nishida

(Department of Mathematics, Kyoto University)

Let G be a finite group. Let p be a prime number. Define the p-rank $r_p(G)$ of G by the maximal integer k such that G contains the elementry abelian p-group $(\mathbb{Z}_p)^k$ of rank k.

It is obvious that G is of p-rank 0 if and only if the p-Sylow subgroup $G_p = e$. According to Cartan-Eilenberg [2], we see that G is of p-rank 1 if and only if G_p is either a cyclic group \mathbb{Z}_{p^r} or a generalized quaternionic group if $p = 2$.

It is also shown [2] that a finite group G with p-rank 0 or 1 for any p is characterized by having the periodic cohomology.

Such a group is called an Artin-Tate group.

Now the purpose of the present note is to give a characterization
of finite groups of p-rank 1 in terms of stable homotopy groups.

Let $|G|$ be the order of G and let Σ_n denote the symmetric group on n letters. We denote by $\rho = \rho_G : G \to \Sigma_{|G|}$ the regular permutation representation, and $B\rho : BG \to B\Sigma_{|G|}$ denotes the induced map on classifying spaces. Let

$$\omega : \bigwedge_n B\Sigma_n \to \Omega \bigwedge_n B\Sigma_n \simeq Q(S^0)$$

be the Barratt–Priddy–Quillen map [1], where $Q(S^0) = \lim_k \Omega^k S^k$.

Then as the adjoint of the composition

$$BG_+ \xrightarrow{B\rho} B\Sigma_{|G|} \simeq B\Sigma_n \xrightarrow{\omega} Q(S^0)$$

we obtain a stable map of spectra

$$f : S(BG_+) \xrightarrow{} S$$

where $BG_+ = BG \cup$ disjoint base point. Then we obtain a homomorphism
\[\phi = \phi_G : \pi_n^{S(BG)} \rightarrow \pi_n^S(S^0) \]

of stable homotopy groups. Note that \(\pi_n^{S(BG)} \cong \pi_n^S(BG) \oplus \pi_n^S(S^0) \),

direct sum. The restriction \(\phi|_{\pi_n^S(BG)} \) is also denoted by \(\phi \).

Now let \(J : \pi_n^S(O) \rightarrow \pi_n^S(S^0) \) denote the J-homomorphism, where

\[O = \lim \pi(n). \]

Restricting \(J : \pi_n^S(O) \rightarrow \pi_n^S(S^0) \) on \(\pi_n(U) \) or \(\pi_n(S_p) \),

we obtain the complex J-homomorphism \(J_C \) or the quaternionic J-

homomorphism \(J_H \).

For a finite abelian group \(A \), we denote by \(A(p) \) the p-component

of \(A \). Then we can state our theorems.

Theorem 1.1. Let \(G \) be a finite group of p-rank 1. If \(p \)

is odd, then

\[\text{Im}[\phi : \pi_*^{S(BG)} \rightarrow \pi_*^S(S^0)] \supset (\text{Im } J)_p = (\text{Im } J_C)_p. \]

If \(p = 2 \), then

\[\text{Im}[\phi : \pi_*^{S(BG)} \rightarrow \pi_*^S(S^0)] \supset (\text{Im } J_H)_2. \]
Theorem 1.2. Let G be a finite group. Then the p-rank of G is equal to 1 if and only if \(\phi : \pi_{2p-3}^S(BG)(p) \rightarrow \pi_{2p-3}^S(S^0)(p) \)

\(\phi : \pi_3^S(BG)(2) \rightarrow \pi_3^S(S^0)(2) \) if $p = 2$) is an epimorphism.

Concerning with the 2-component, it may be worth showing the following

Proposition 1.3. \(\phi : \pi_1^S(BG) \rightarrow \pi_1^S(S^0) \) is an epimorphism if and only if the 2-Sylow subgroup $G_{(2)}$ is a non trivial cyclic group.

From this proposition it follows immediately that if $G_{(2)}$ is non trivial cyclic, then G is not perfect, hence not simple unless $G = Z_2$ (Burnside's theorem).

If one uses the Feit - Thompson theorem [3], one can show the following.

Corollary 1.4. Let G be an Artin - Tate group. Suppose that

$H_i(G ; Z) = 0, 1 \leq i \leq 3$, then G is trivial.
Proof. By the assumption, \(\pi_3^{S}(BG) = 0 \). Hence by Theorem 1.2, we see that \(G(2) = e \), i.e., \(G \) is of odd order. Then by the Feit-Thompson theorem, \(G \) is solvable. Then \(H_1(G : Z) = 0 \) implies \(G = e \). q.e.d.

Now for a finite group \(G \) of p-rank 1, Theorem 1.1 shows the non-triviality of \(\pi_{2p-3}^{S}(BG) \) if \(p = 2 \). We remark that such a non-triviality of \(\pi_i^{S}(BG) \) for \(i < 2p-3 \) does not hold as the following examples show. If \(p \) is odd, then \(\sum_{p} \) is of p-rank 1. It is known [5] that \(H_i(B_p^+ : Z_p) = 0 \) for \(i < 2p-3 \). Then by Serre's class theory, \(\pi_i^{S}(B_p^+)(p) = 0 \) if \(i < 2p-3 \). For \(p = 2 \), consider the binary icosahedral group \(I^* \). This is a subgroup of order 120 of \(Sp(1) = S^3 \). Hence \(I^* \) is an Artin-Tate group and \(I^*_p(2) \) is the quaternionic group. It is well-known [7] that \(H_1(BI^*) = H_2(BI^*) = 0 \). Hence \(\pi_i^{S}(BI^*) = 0 \) for \(i < 2 \).

The non-triviality of \(\pi_{2p-3}^{S}(BG) \) clearly fails.
for general finite groups as the following Quillen's example shows.

Let F_q be the finite field with $q = p^d$ elements. Then Quillen has shown [4] that $H^i(BGL(n, F_q) : Z_p) = 0$ for $0 < i < d(p-1)$.

Thus $\pi^S_1(BGL(n, F_q))(p) = 0$ for $i < d(p-1)$.

For a cyclic group Z_p of prime order, Theorem 1.1 is a direct consequence of the Kahn – Priddy theorem [4], that is

$\phi : \pi^S_*(BZ_p) \to \pi^S_*(S^0)(p)$ is an epimorphism ($* > 0$). We shall show that the Kahn – Priddy theorem fails for cyclic group of order 2^r, $r \geq 2$.

Theorem 1.5. Let r be an integer ≥ 2. Let $f : SBZ_{2^r} \to S$ be an arbitrary stable map. Then $f_* : \pi^S_7(BZ_{2^r}) \to \pi^S_7(S^0)(2)$ is not epimorphism.

For an odd prime, the problem seems to be more difficult. For example, a direct computation shows that the element

$\beta_1 \in \pi^S_{2p(p-1)-2}(S^0)(p)$ is in the image of $\phi : \pi^S_*(BZ_{p^r}) \to \pi^S_*(S^0)$ for any r.

- 6 -
REFERENCES

