ooooboooao
3110 19770 98-108

ON PERFECT MATROID DESIGNS

M. Deza (C.N.R.S., Paris)

ABSTRACT. We give a short survey of known results and some new

extremal properties of PMD.

Let us consider'a matroid M of rank r on a finite set V (the

definitions of matroid and related concepts be found, for example, in the
recent book [13]). Denote Fr any flat (closed set) of rank i, i.e., any
i-flat. For any i (0<i<r) denote M~ the set of all Fl. Thus the

r .
hyperplane family of M will be Mr_l. The set U M~ is a lattice and
. =0

it contains the intersection of any two flats.

A perfect matroid design (PMD for short) is a matroid such that for

any integer i, O0<i<r, the cardinality [Fll depends only on i. Let us

denote lFll =0, PMD's were introduced and deeply studied by Murty,

Young and Edmonds in [9], [10]. They were called also "MYED's" (by initials

of authors), "matroid designs', "geometric designs" by different authors.

But we will reserve (following [131) the term matroid design for a
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matroid whose hyperplane family M?pl forms the set of blocks of a BIBD
(balanced incomplete block design). PMD is a special case of matroid
design. Information and bibliography on matroid designs is given in Ch.12:.3

of [13]. (There are also considered base designs, i.e., matroids whose

bases (maximal independent sets) are the blocks of BIBD).
PMD's form a proper subset of the set of all equicardinal matroids, i.e.

matroids with the same cardinalities of hyperplanes. Equicardinal matroids

were first studied in [5] and later in [11].

A PMD of rank 3 is a BIBD with X = 1; a PMD of higher rank is a very

special BIBD. 1In the basic paper [9] was proved the following

Proposition 1.

a) The set Mr_1 of all hyperplanes of a PMD is the set of blocks of a
BIBD on the set of 1-flats (points) of this PMD;
b) The set of independent sets of given cardinal is the set of blocks

of a BIBD;

c) The set of circuits of given cardinal is the (possibly vacﬁous) set of
blocks of a BIBD.

~ Moreover in‘[9], [10] it was shown that the corresponding sets are
sets of blocks of some t-design, t 2 2. Perhaps one day (when we will know

more about the existence of PMD's) this will be a good tool for constructing

new t-designs.
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Proposition 1 and the following list of all known PMD's show that we

have to consider PMD's more-as part of design theory than of matroid theory.

Below we consider only simple matroid designs, i.e., ao =0 (FO =@,
o = 1 (without loss of generality for our purposes).

Let Fl, FZ some flats of - PMD, 0<i<@<r.‘ In: [9] it was proved: that

+1, .1

Fz\Fl» is partitioned by sets-of the form Fr \F (where ’Fl'l is an (i+1)-

1 2

flat such that F15F1+ cF). Let 'us denote t(i,j;%) the number of j-flats

F?  such that FlgFJng.

Proposition 2 ([9]). The number t(i,j,z) is independent of the choice of

Pl ana F.
i-1 v-a, o, -y
Actually, t(0,1,i) = a,; t(0,i,r) = I ——3 t(i,i+l,0) = ——>
i L. oa,-0, a,, =0,
3=1 7% #+17%4
and, in genefal, t(i,j,L) = t(1,£,2) t(f,1,2) for O<isf<j<g<r.

t(i,f,3)
It is interesting that the number t(O;i,r) ‘considered as a polynbmial t(x)
of argument x=r and having dégtée‘ rél satisfies the condition t(ai) =1,
t(uo) = t(a,) = oo = t(ai_l) =0 (it is Lagrange's formula of interpolation

1

of functions by polYnomials). From Proposition 2 it follows that a matroid

associated with the interval [F,G] of a lattice of all flats of a given PMD
is also a PMD (here F,G are any flats of a given PMD with FcG). In

particular, any truncation of PMD is a PMD.Submatroid of PMD on some of its

flats F1 (or, reduction of PMD to Fl) is also a PMD.

All known PMD's are those given below and their truncationms.
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1) A Steiner system S(t,k,v) (i.e. t-design Sl(t,k,v)) is a PMD of rank

~

t+l. Actually M is the set of all i-subsets of V for O0<i<t-1l and the

1 is the set of all blocks of S(t,k,v).

hyperplane family Mt=Mr—
2) We will consider separately trivial Steiner systems S(k,k,v), because
in this case any M (0<i<r-1=k) is the set of all i-subsets of V. We will

call S(k,k,v) trivioid; sometimes people call it "uniform matroid"” or

"truncation of boolean algebra'.

3)  An affine geometry AG(r,q) is a PMD of rank r. Actually the i-flats
F- are subspaces of dimension 1i.
4) A projective geometry PG(r,q) is a PMD of rank r. Also the i-flats

are subspaces of dimension 1.

5) We will call Hall-Young matroids the PMD's of rank 4 with a, = 3,

=9, lVI =a, = 32 (for any integer a > 4). An example for a =4 was

3
given in [4] and generalized in [12]. It was constructed as erection of
special affine triple systems.

We denote L = {ui:OSiSr—Z}, k=01 v(=|V]) = o . In these notations we

can see that

1) L=1{0,1,...,r-2}, k = r-1 for the trivioid S(k,k,v) of rank r;

2) L =~{0,l,q,q2,.--,qr_2}, k = qr—l, v =q° for AG(r,q);
2 r-1 T r+1 \
- q -1 q -1 - 9-1 -9 =1 : .
3) L-=1{0,1, 1’ g1 1, k 1’ v =] for PG(r,q);
4) L =

{0,1,...,t-1} for a Steiner system S(t,k,v);

&
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a

5 L=4{0,1,3}, k=9, v=23 (a 2 4) for Hall-Young matroids.

It was shown in [10] that any PMD with parameters L,k,v as given in
1) - 4) is necessarily a trivioid, affine space, projective space or Steiner

system corresp. It was shown in [12] that there is a unique Hall-Young

matroid with v = 34 = 81. In terms of the parameters L,k,v, i.e.,

uo,a .50 necessary conditions of existence of PMD, given in [10], take

1°° 2

the following form

‘Proposition 3. For any PMD we have

h| @ =0
1) I P is integer for O0<i<j<i<r;
f=i+1 7§ "f-1

2) (ui—ai_l)|(ui+l—ai) for 2<is<r-1;

2 , .
3) (ai—ai_l) < (ai+l—ui)(ai—ai_l) for r<isr-1.

These conditions are not sufficient for the existence of PMD with given

30 50.0050,. An example is provided (R. Wilson) by the sequence

sequence 0,0, 9

0,1,3,7,43. (Actually he showed that any PMD with ag = 0, o = 1, o, > 3,

(a3—a2) = (otz—l)2 has the property ar(a ~2) = (az—l)h—l for some integer h).

2
For the first special case of PMD rank 4 we know only the following
necessary condition: if there exists an infinity of numbers v such that
there éxists a PMD with L = (0,1,R%), iFr—ll = k, 'Frl = v then there exists
S(2,2,k). Fﬁr 2=2 such infinity exists; it will be an infinity of S(3,k,v)

given by the theorem of R. Wilson. For first next case =3 we have the

existence of Steiner triple system as necessary condition. Such infinity

\Y
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exists for L = {0,1,3}, k=7 or 9 (PG or AG). First open problem is the

~

existence of such infinity of v's for k = 13. Here are examples of other
interesting properties of PMD given in [9].

Proposition 4.

a) M is a PMD, k > v/2 M is trivioid 8§(k-1,k,v).
But k =v/2 in cases M = 5(3,4,8), M = 8(5,6,12).
b) Let M' be PMD, M* dual PMD and let c(M) dénote the minimum circuit
cardinality in M. Then cM*) 2 max(r,c(M)).

But c(M*) = r = c(M) = v/2 for affine geometry EG(3,2) and for Witt
design S(5,6,12).

Matroid M 1is self-dual if the hyperplanes of M#* are identical with

the hyperplanes of M (so, in particular, r = v/2).

Proposition 5 ([10]). PMD (which is not a trivial) is self-dual if and only

if it is S(k-1,k,2k) for some k+l1 (k>2) odd prime.

Only known examples of self-dual PMD (which is not a trivioid) are
s(1,2,4), s(3,7,8) and S(5,6,12).

From now on we will consider some extremal properties of sets of flats
of PMD. Let us denote by A(L,k,v) any system B = {Aj} of k-subsets of
given v-set V such that ]Aang] € L for any different Af’Ag € B. We will

call system B = A(L,k,v) maximum if |B| > |B'| for any other B'=A(L,k,v).

We will call éystem B = A(L,k,v) maximal if Bu{A}= A(L,k,v) 3 AcB for any
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k-subset A of V. Of course, any maximum A(L,k,v) is a maximal A(L,k,v).

1

It is evident that hyperplane family M'™" of PMD is an A(L,k,v) with

r-1
I

|A(L,k,v)| = |M =t(0,r-1,r).

Let us consider B = A(L,k,v). TFor the following propositions 6 - 9 we

suppose V = vo(k).

, r-2 v-o,
Proposition 6 ([12]). |B| < I % L,
i=0 7%
-2 V-0,
Proposition 7 ([13]). |B| = T X ' 3 B is the hyperplane family of a PMD.
' i=0 <%
|L|-1

Proposition 8 ([2],[3]). |B] 2c v for some constant c = co(k)

implies (ai—ai_l)l(ai+l—ai) for 2<ic<r-1.-
It is an extension (for the case v 2 vo(k)) of the divisibility
property (2) from Proposition 3 to the class of "large" A(L,k,v)'s.

Proposition 9. Any Mt (0<i<r) is complete, i.e. for any j, 0<j<i, there

. . i _i i i i
exist i-flats Fl,F2 e M such that F1 n F2

is a'j-flat.

From now on we remove the restriction v > vo(k). Thus the number of
incomplete PMD's with given L,k is finite. For PMD S(t,k,v) all of them
are known (Noda, Gross) and number of incomplete S(t,k,v) is finite with
respect of t. M is complete in PG - iff 2i < r and in AG iff 2i+1 < r.

Also from Proposition 6 it follows that there exists only a finite number

of PMD's with given L,k for which the hyperplane family is not a maximum

A(L,k,v). I conjecture that in all these cases the hyperplane family is a

maximal A(L,k,v). For all known PMD this is true. In fact trivioid and
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Steiner system are maximum; for ‘AG,PG and their any truncations it followé
from [7] (as trmarked by B. Rothschild),’for Hall-Young matroids it was
remarked in [1] and also it is maximum (for a # 4) from results of [2], [3].
Now we consider another extremal property of PMD. Given é system C of
flats (i.e., some subset of the lattice of all flats), we will call C a

Sperner system if Al,AzeC, Al#A2 = A1§A2, AziAl. Sperner system C is

maximum Sperner system if |[C|>|C'| for any other Sperner system. 1In Ch.
16.5 of [13] is given a result of Baker and following corollary of it.

Proposition 10. One of M (0<i<r) is maximum Sperner system of PMD.

In other words the lattice of all flats of PMD has the Sperner property.

As immediate corollary we have

Proposition 10'. er_l[ is the cardinality of maximum Sperner system of PMD

with r > Vo(k),

Cardinalities IMlI-afe denoted Wi (0<i<r) and called Whitney numbers

(of second kind). The sequence wo,wl,...,wz ‘is called unimodal if

= in(W < < .
Wb min ( a,wc) for a<b c

Proposition 11 ([9]). The sequence of Whitney numbers of PMD is unimodal.

Moreover, Whitney numbers Qf‘PMD are log concave, i.e. Wb > Vﬁb 1Wb+1
for 2 <b < r-1.
Some inequalities and characterisation theorems .obtained for affine and

projective geometries were recently generalized to PMD's. 1In [8] is given a
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characterisation of any set of i-flats of PMD (with given numbers of i-flats)
as set of all i-flats contained in given flat for some special PMD (the

A 2 . . e
necessary condition ai Suiu, is to be compared with 3) of Proposition 3),

1 i-2

In [6] it was proved, in particular «o.0, 2 (az—l)l_J( Y for

1% 4-17%-1

2<j<igr, r24. The cases of equality and r=4 were studied in detail.

PMD-scheme will be any PMD such that Mr-1 is subscheme of Johnson

i_l,Fr_leMr—l are i-associated if

association scheme (two hyperplanes F 2

Fl lan—l is a (r-i)-flat. The examples of PMD-scheme are: any PMD of rank 3

(BIBD correspond to strongly regular graph); any tight S(t,k,v) (moreover,
any S(t,k,v) with £ t/2+1 sizes of block intersection); S(3,k,v)—scheﬁe
studied by P. Cameron (he proved v52+k(k—l)(#—2)/2; the known examples are
Mobius planes S(3,k,k2—2k+2), s$(3,4,8), S(3,6,22) and S(3,12,112) if it

exists); AG(r,q), any truncation of PG(r,q) being a g-analog of t-design.

On the other hand suppose given a B=A(L,k,v)={Ai} and let §={ai//i} where

a.=(a,, y...,a, ) is (0,1)-sequence representing A,. So B is a subset of
i il iv ; i
unit sphere in R’ and {(a,b):a%beﬁ}%{ai/k:aieL}. In terms of [14] B is an

A-set with A={a§/k2:aieL} and Propositions 6,7 mean that for VZVO(k):

a) [B|=|ﬁls(%)eF(%) (here F(x)=x = II %EE and e=1 if OecA, €=0 otherwise);
aeA T
b) the equality holds iff B is Mr-l ‘of some PMD of rank r=|L|+l. Note

1/

that v/k=(a,a) for a=k 2(l,l,...,l). In Th. 5.2,7.5 of [14] given (roughly

0e for the cardinality of any A-set with equality

speéking) an upper bound f
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only if it is association scheme (foE is the coefficient of QO8 in the expan-

(x)

[e's) ~

sion F(x) = Z fng.E(x) in the basic of the Jacobi polynomials QiS(X); Q

i=0 1 00

=1, QOl = v). From [15] follows that M in AG(r,q) is scheme iff i=1, r-1.

From a result of N. Ito follows that S(4,5,v)-scheme is S(4,5,11).

Some open problems on PMD:

1) to find new exapmles of PND;
2) to prove the conjecture ([3]) that Mr--1 of any PMD is maximal A(L,k,v);
3) there exists an infinity of v's such that there exists a PMD with

r—l’=

=0, a 13, a,=|V|=v?

uo =1, a2=3, a3=|F

1

4) to find the minimal i such that for i-truncated AG (or PG) Mr—l is
maximum A(L,k,v). It has to be close to r/2.

5) for Hall-Young matroids: a) to‘find the minimal a such that for v=32

its M3 is makimum; b) to describe the cases (to find the maximal a)

such that for wv=3% it is incomplete;

6) to describe PMD-schemes.
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