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An extention of AKTH-theory to locally compact grouvs

by Nobuhiko TATSUUMA

1. Let ia,G,O(} be a C*-system. That is, Ol is a C*-algebra,
G is a locally comvact group, and G Sgl—p(xg édu'[( A) is a con-
tinuous homomorphism. Consider an (A -invariant state @& on L,
and the unitary representation f[ ,Ug,}e ,Q} of G deduced by
GNS-construction.

For anv A,B€0l , put fAB(g) = w (B D(g(A)) - w(A) wW(B) =
U () &2, (3K - (MW &2, Q) <T(B) &2, 2>  éna
(g) = W(NG(A)B) - w(A)w(B) . Then evidently,
(1)

EAB
(g) = ¢

©

(g) = £ (g71)

EaB A*B* NG

Now we assume the existence ofa morm dense K -invariant
*-subalgebra a() of (I, for which the followings are valid.

Put

E?c;

(function algebra on G algebraically generated by ifAB’g
aBe€d, ),
’; = (the uniform closure of ?O) ,
and c%truct qo and qas same way from TQ:AB ; A,B émzo} .
[Assumption l] 3’!1‘5 closed with respect to complex conjugation.

[Assumptjon 2} For anvy n21l and Ai,BjéUZO ( i=1,2, ...),

n !
(2) J afl (g) - ; (2)) 4 ¢ = O.
. !T AB, g .71- gA:B. 2)) dg
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[Assumption 'jJ There exist 1 __£_ p,q<+oo and a non-zero
n
element fO = Zk: T_}- fAj‘kBj,k (Aj,k , Ej,keOLO) in 3“10
such that (1) £, € L@,

n
(i1) g, = > g, p € 1ie).
k] J ki k
(We use a right Haar measure d g on G).
The purpose of this paper is to show the KMS-property for
C*-svstems which satisfy the above assumptions.
From (1) and [Assumption g the feollowing lemma is direct,
Lemma 1 % = g ,andﬁ is closea undar the operation

f(g) 4+ £(g™) .

2. We shall give the formulation of our KM‘S—property on
C*-systens based on Arakj-Kastler—Takesakj—Haég's theory.

When G is the additive group R of real numbers, the ordinary
KMS-property is stated as follews.

[KMSJ The function '\,LAB(t) = W (B O(t(A)) cén be extended
analytically on some strip domain ft H Oij;\(t)ép} and

’\}’AB(t-l-L'p) = wl O(t(A)B) for any t in R and any A,B in L .

In the other hand for any one-parameter subgroup g(t) of G,
using the Stone's theorem, we can determine its infinitesimal
generator $H , as H is a self-adjoint operator on }C and

1Ht
N



Now in cur case, denote by K the kernel in G of the homomor=-
phism g _—>CXE , then our main result is given as follows.

MAIN THECREM. TUnder the assumptions 1 ~3 , there exists

an one-parameter suberoup g(t) of G/K , such that
<, ST (). R, 2 TRy - <T(BS, v, THKRY,
for any 4,B in CEOO
If the Main Theorem is proved)the function
P = W () =< U W&, TEHL Y
has the analytical extension
PY(t+as) = < Ug(t) eSH/ZI(A)R, esa/2 T(B*)Q>
and  Ple+d) = KTBHGL, U ()T > =W (K (W)B).
This shows that the subsystem fOL, R, “g(t)} is just a KMS~-C*-

system as originally defined.

3, At first we discuss under slightly more general situation
and prove a useful Proposition 1.
Let 'FO be a set of bounded uniformly{contjnuous functions

on Gy and F Dbe the uniform closure of F.. For any f & F, put

0
- . - VA =N

6, = {z€c s flgg)) = fg), Vg eaf and GFO—feFOGf’ 8 *feF°r °

Lemma 2. GV:GF , and GF is a closed subgrcoup of G.

TG

Proof.Because f is continuous, Gf is closed. Hence GF’ GF

—_— o
are closed.

For any k., ,k.eG,, g¢G £ Otk g) = f(k etk g)) = f(k,g) =

‘ 172 £ 0 LA R~ 171 2 2
) -1

f(g). Thus ki "k, &Gy, therefore G, and Gps G?O are subgroups.

Cbviously GFCGFO s, If GF*;GFO there exists gleGFO and QGF‘,

That is, T g, AT €F and flge,) # £(g,) and for ster«'o, P (e ) =



$(g). Cn the other hand,Y¢70,3f, & F  such that [f - @"}?2,

put £ [2(ryy) - £e)| 4 then [f(eye) - ) & [fCeyey) - Ple e,
19 - Pl + 1Py - £ )] < /2 - &2 = [f(ga,) - fla]
That is contradiction.

Lemma 3., If there is a non-trivial function fU of zero at e€o©

in FQ, then the subgroup Gfo and GFO= GF are compact.
Proof. If Gfois not compact, there exists a secuence ikj}CGfo
such that kj—roo. Iherfore for some g €G , and for all j
G #£ fo(go; = fo(kjg_r,O). This contradicts to the assumption for fO.
Corollary 1. In such a case, LD(GF\G,.) is imbedded into L®(G)
as a space of functions which are constant on GF—left cosets.
Hereafter we write H = GF.
Lemma 4. If a uniformly continucus function f on G belongs
to LP(G) for some p<4e0 3 £ 1is zero at &,
Proof. If f dis not zero at o0 , there exists a seqguence

ikjj C G and a>( such that k].-’oo, {f(ki)l > a for any jJ.
Uniform continuity of f asserts the existence of a compact neigh-
borhood V of e ,such that ‘f(gl) - f(g2)|<a/2 for anngl,ge

-1 . s e sa s
such that 8185 € V. Since ki-—»oo, if it is necessary , taking

a subsequence, we can assume Vkindl =g (j#4). Thus,

Jﬁlﬂg)l Pa g2 %Vki]ug)l Pq aZ{:fVKjflf(kjﬂ -(a/2)]Pa g2
g (a/2)P Z }A(V) =00. That is contradiction.
J

Corollary 2. Any f & B(G) NLP(G) (pg+oo) is zero at 60 .
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Here @ (G) is the ring of functions generated by f-(U:v,u >3
( W runs unitary representations of G, and v,u run vectors of

spaces of representation &« ).

Proposition 1.  Assume that the above FO satisfies the follwings.

(i) FO is a function algebra, that is , closed under the

cperations 4 , X and scalar multiplication.

(i) F, is invariant under right translation§, that is , for
any f in F_ and any g., the function (R_ f)(g) = f(gg,) of g is
C 1 g 1

in FO.

N

closure F of F is closed with respect

(iii) The unifo o

3

to complex conjugation.

(iv) There exist an fO (# 0) in F,., and p<ewd,such that foe'ﬂP(G).

¢

Then there exists a natural number n and the set

N
17 n . —
Fl_i§qj-agj(fo) ; N=1,2,..., g‘jé G, SOje-FU@61}

in FO/\ Ll(H\G) , is dense in LY(H\G) for 1_<_Vq<+oo ,and is

1]

dense in L:”(H\G) f continuous function of zero atee on H\G}

with uniform norm.
n 1 0o
Proof., If we put n =[pl+ 1, (fo) € L7(G)N L (G),therefore
F,C FO{\ Ll(H\G)/\ L% (H\G). Thus replacing fon to fO ,we can
consider f € t(a\e) ana P C amen 1 mae) < L2(H\G) for

1<Vq<to0 . And by Lemma 4 , F, < L‘:(H\G). Moreover we consider

N
2
F, —f% R O S ALk af .

In general F, 4.F , but by the assumption (iii) F, C F, since

0]

2 —_—
R f d th f i = i
gi an erefore jo |f0| (Rgif0)<RgifO) are in F,
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Lemma 5. For V¢ ¢ FZ’V“‘) O,lﬁvp_ﬁ_ﬂn ythere exists fé&F, such
that K -f“ <& .
I\ ———
Proof. Let §-= PN (3" ‘R, f )R fyeF,. Here 7.R f, & F,

j
so there exist f 'g &F, such that’ “ch - f " <CEm |l £l o)

Thus ucy-zijg‘onpdng e 70 ™ Fille (lR ollys
Z“‘)’R f - fj“oo "f(')"p< c

By the reason of Lemma 5 , it is enough to show that F2 is

dense in LG(H\G) and Lc”(H\G)u
lemma 6. F, is (i) a subring of F , (ii) closed with
respect to complex con']ﬁgatﬁon, (iidi) jnvériant to right translations,
(iv) F,C L (G) {\ L% (G) ,so its elements are zero at 60,
(v) separates any two points % £ Eg"z in H\G.
2
thus (i) is evident. The fact that Rg]folz are realvalued, and the

Proof. F, is the ideal of F generated by /] = ?Rglfolz; g€ Gf ,

assumpticn (iii) in Proposition 1, give (dii). (iii) is direct
. . . . 2
result of right invariant properties of F, , F and A - Rg |f0|
are in Ll(G) and F is in L”(G), hence (iv) is true. At last,
if ~fO(gl) # fo(ga) then (v) is true for such £118p+ And if

0 # fo(glgo) = fo(ngO) for some g, in G, by the definition of
H = Gp, there exists a ¥ &F such that ?(gl) # ?(ge). thus

(a4

2 A
Y . Rg [fol separates these g1 1 85 e

Corollary 3. For Y¢e L7(1\G),Y€ >0, there exists f&F, such
that “‘f - fu-o< ¢ , that is, F, is dense in L:’(H\G).
Proof, Consider the one point compactification space X of

H\G. We apply the Stone-Weierstrass's theorem to F,@ ¢1 on c(x).

Thus we get fl = f ¢ alereﬁll and "Cf - fl“w < €/2. But ‘f is zero
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at 8 and f€F, is too. Hence [al<(£/2), and ||9 - f“o_,g-_
NP- £l + (E£/2)<E.
Since CO(H\G) = fcontinuous functions on H\G with compact supports}
is dense in LP(H\G) (p< o), the following Lemma 7 gives directly
a proof of Proposition 1. .
Lemma 7. For V(fe CU(H\G),VS.') 0, Vp<+too, there exists
f € F, such that ¢ - fﬂp<£..
Proof, Put C = [@] (support of (F ), a = H(C) (measure of
C) and M = "‘fnos Using the regularity of Haar measure, there
exists a relative compact open set U containing C such that
%(U) < 2a. Moreover we can take a ’)LéCO(H\G) such that
')L'(g) =1 for gé€C, and = O for g*U s Oé_'\l‘(g)_ﬁ_ 1 ¥g ea.
By Corollaryv 3, take flé:F2 such that
Y - £, ]| < f < wMin(1, £PHa ¢ 1)7V7),
Put m = jG—Ulfl(g)lp d g, and 0< 5<Min( 1, f/(M+y),j>m‘l/P).,
Again by Corollary 3, take f,&F, such that u"{' - f2uw<§ and
put f = f +f, . Then [Pe) - f(g)] = l?(g) - fl(g)fa(g)l is less
than  |9(e) - £()] + |1 - () |5, ()| < P+ T+ PI<2f for gec,
L@ 5, < Y)Y +5)< P(14§5)<2f for geU -,
5 )] [, @ <[t |8 < putPlr @] tor g ¢ v
Thus  ||§ - fupp "je |9(e) - £(g)|P a g ifc" T *ja-’{r <
- < 2PFP (o) 4+ 2P PP M(u-0) + fpm—l/G_U]fl(g),p dg<
<@PMa y1)PPg EP.

L, Now we return to our problem concerning to the C*-svstem

{OL, G,O(} « We apply Provosition 1 twice, at first to the case



= d ¥ > = .
FO }O and second to the case FO gO

Lemma 8. In both cases, Gg ( = K) are same one and compact
—_— o ,
normal subgroup of G. '

Proof. If FO=}$O, K:Gio=c;3, , and if Fo=go,

K = quo 2‘3% 9 But by Lemma 1, 4% = 9: . thus G\y_: Gtg °

< U0, 7 (8) 52, "(B*)G2 > = <v, 7T(8) 52, T(B*)SL”
Thus Ukv = v, forvve% s This shows Uk = I , therefore K
is the kernel of this representation, hence normal. [Assumr\*ion }J
and Lemma % , Corollary 2 assure the compactness of K.

Based on Lemma &, replacing the factor group XK\G to G,
hereafter we can assume K = fe} . Moreover we take Py = [max(p,qul

and replace fg" , g;?" to f0 o in Assumption 3. Thus we can
+

e 1) N L ().

assume that fo, go
. — -1
Lemma 9. o= §5, 5 fef} = (e ek J .
Proof. Since CZO is *-invariant, by (1) we obtain the result,

Proposition 1 leads us to the following lemma.

Lemma 10. The following spaces are dense in LY(G) (lg.__Vp<0o)

and in L:"(G)

F
N

‘N

. - / -
TZ fj(Rg,ifO) P N=1,2,..., geq, fjeﬁoem,},

t

J J

N
. . _ ! ~
tZJ_ g.(RgSgo) s N=1,2,..., g'!eG, gjegowﬂ} .

Now define a map NSﬂfrom %1 onto ql be
S:s%laz._”fA. B, ! 'ZT.I_“{A. Bikéoatr
K Jak73sk k j J T
Lemma 11. (i) The map 8 is welldefined. That is, for

€ . =
Vfl ?1, Sf1 does not depend on the form fl Zn-fAj‘ kB-; k.
[ ] o9

-8 -



(ii) As a map defined on dense space in 1P (a) (resvp.
Lg" (g¢), S is closable.
Proof. Summing up the relations (2) in [Assumptjon EJ , we

obtain for any fl, f2 in ‘_%1,

(3) /G fl(.%')fa(g) d g = /G (Sfl)(g)(SfZ)(g) d g”»

If f2 runs over % ’ Sf2 runs over %. Thus if fl £ 0,

- 12 - . .
[G (sfl)(g)k(g) dg =0 for kégl. Because gl is dens§ in

Ll(G), Sf1 Z 0. This shows, 8 is welldefined.

Next if £ —+0 and Sf) —=f, in 1P(a) (resp. L:(G)),

) 1
since ﬁl < 1) ((1/p)+(1/9)=1) (resp. Ll(G)), the left hand

side of (3) tends to zero, and the right hand side tends to
}; fB(g)SfZ(g> d g for any f, in 551. Again by the denseness of

g’l = fsf2 3 fzéﬁlf in L%(G) (resp. in Ll(G)), f_ must be zero.

>
Corollary 4. For any f,, f, & jil’
(%) <sfy, ST,y = <1, > .

Proof. A direct result of (3).
Let T? (resp. Teo) be the closure of S as an orerator on

LB(G) (resp. L:O(G)), and D, = D(T?) (re‘es“p. Dpo= D(Tpe)) be the

2
domainsof T, (resp. Too )»

Lemma 12.  For V(fe,-DZ,V'\fe Doo, ¥*f €D, and

TZ( YeP)=T(¥) - Ta(f)-

Proof. Let ﬁl_afj —9, Sfj —*TZ(?) in Lz(G), and
319 kj —Y, Skj——bTw(')L) in Lg‘(G), then }la(kjfj)_—h%?‘
(Skj)(sfj)-—"'l‘oo("/’)'fz(?) in LP'(G). Bv the definition of S,
(Skj)(Sfj) = S(kjfj) for ij,fje j?l. Thus we get the result.

Lemma 13. S commutes with right and left translations Rp,LgD



g7

-1
{ we use the notatins, Rgf(gl) = f(glg) and Lgf(gl) = f(g gl).)
Proof. It is enough to show that S commutes with Rg’Lg
on generators ifAB} of }l' And

5 = O( - -~
(LgleafAB)(g) w(B - 1%2(4\» W (AW (B)
=w<0(gl<s) ug( \><g2<A)>)-w( wgam))w( uglm))
= f (g),
ugg(A), Ngl(B)

in just same way

(L R

g1 gngB)(g)= g N?ip(A)o(gl(B)<g). Therefore

As(L R (g)
g, g

1

f )(g)=s(f ’g)=g
o AB g, (&) ‘Xgl<B)( X e (1) g, (B)

=(L R_g,)(g)=(L_ r_8f )g).
7y fp AR £y By AP

Lemma 1k, For Vsoé Dy V'Yo & Ll(G)/\L?(G), the function

< RP:?' f\l«) is in Dge and
(5) T (KRG, ¥>) = <RI, P V7 -

Proof. For Vre \?l’

——

' N N
<Rgf‘ N> = [G f(glg)"f(gl) d g, = lim Zj.f(gjg)')(’(gj) [Aj|
= 1im ﬁ(Lg-l f)(g)/*(g_i) !A.i“’
j .;j o o

Because of uniform contfmuity of £, '\[’ and integrability in our case,

this integral converges uniformly in g & G. Moreover

s( Z(ngl f)(g)'{’(gj) IAjl) =Z(‘ngl(sf))(g)"f’(gj)léjl .

Thus Zf(gig‘) "/‘(gi) lA_]I and S( Zaf(g].g)’\/’(g'i) IAjI) converge to
<jof’ 'Y/7 and <RgSf, "P? in L‘:(G) respectivgly. [his shows the
results for such a f.
Next for Vg:eD let %, 3 f —> ¢, sf,—1T in L°(a)
' 2 177 v Sty 2 4 s
then <Rp;fj’ Y and <RgSf1, 4> converge to <Rg9’,"f’> and

«

- 10 -
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<R?:T257,’Y’> in LZO(G) respectively. That is,the proof is obtained.
1 o0
Corollary 5. For foeﬁl, V'y é LN L, (@),
<Rg-1')b,§f>énpo , and T,o(<Rg-l}" .?7)=<R553",'\f’7
(Here 5;, 4 show the complex conjugations of j?, y'respectively.)

Proof.  Indeed, (Rg—l'Yi, %> = <Rg’5"v,t\r7 = <Rg§0, Y>>,

From @ssumotions, 976‘% 1 and ’)Dé Ll(g) (\L: (@) , so lemma 14

leads us to the results.

5. Now we have to discuss the Katz-Takesaki operator on G,
and the relaticn to the above operator T?. We define a unitary
operator on LE(G)8>L2(G) ( called the Katz-Takesaki operator ) by

W = .

(&) W(f, ®f,)(g,85) = £1(g,85)15(8,)

This operator is closely related with duality theorem as follows.

Proposition 2. The operators U = RF of the right regular
representation of G, satisfy
(5) W(U®Uu) = (I®U)W .

And conVersely, for any non-zero bounded operator U satisfying

(5), there exists unique element g in G such that Rg = U.

For the vroof of Proposition 2 , we refer [ ].
However for our discussion, we don't need this proposition
directly, but the following which is deduced from it.

ol
Proposition 3. For any closed operator T on L°(G) such that

(&) - wW(T®T) = (I&T)w ,
there existam element g in G and an one parameter subgrouo g(t)

of G with '.4\3&-,,,;1'45‘-,,..4{ 3@\11‘&(51‘ 1H , such that

- 11 -
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(7) T-g, e

(Here we denote the closure of algebraic tensor product of two
closed operators A and B onfL2(G) by A®B. )
Proof. Put T*T =-A, then A is a self-adjoint positive definite
operator satisfying
(8) WA®A) = (I®A)W .
Consider the projection P onto the space }(:(A_l(O)) = Range(A),
then by (8) P £ 0, and
(9) W(P®P) = (I®P)W .
Proposition 2 assures that P is unitary , therefore P = I. That
is H =lf(g),and we can define The self-adjoint operator
H = (1/2)log A satisfying
(10) WHE®I + I®E) = (I®H)W .
Direct calculations show that for ¥ teR , u(t) = e‘:Ht is a bounded
operator in Proposition 2. Hence we obtain an one-parameter subgroup
g(t) in G and
(11) u(t) = Rg(t) for VteR .
Un the other hand, the bbumded operator Te-H = U satisfies
(5) too. Again Proposition 2 gives an element e in G such that
Rgb= U. This comvletes the proof.
We shail call that these operators given in Propositicn 3
“admissible. In after provositiocns, we show that the our operator
T2 is admissible.
At first we must remark the following.

Lemma 15. Using any fixed complete orthonormal system iﬂ@j

in Lz(G), the Katz-Takesaki operator is expanded as follows.

17 -
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(12) W @8,) (e ) = 2 S (e < By 1. > £p(ep)
Proof. By only calculation of the eXpan51on.
Lemma 1o, W(ﬁl@ﬁl) is in the domain of I&® T, and
(13) (I®1,)%(f,®@ ;) = W(sf &sf,) for V£ ,f, éﬁl-
Proof. By Schmidt's orthogonalization, we can take all ﬁ('s
in (12) from Ll(G)/\ Lc‘% (G). Then by Lemmata 12 and 14, <the function
ﬁ(o' )<R i‘l, Yx 7 f5(g;) are in D(I)® D(T,) C D(IST,) (The
dormain of I@ ), and
(a4) (IeT,)(f«x (g)<R ?fl, > £,(5,)) =
Y (2))T00 (< R, LR ) (T,£,) (g,)
%z <R, T2 1 B> (1,5 (g,
Moreover, Z—%(Q,"l)<R Zfl, %<> f (g’a) and
(I1®T )Z&( % ( ,1><R 0 %> e Z%(gfl)<Rg2T2f1,%(>x

(’1‘21‘2)(g2 converge to \n(fl® fz)(gl,ggz) and W(Sfl® Sf2) in

1]

LZ(G)® L2(G) respectively. This gives the results.

Lemma 17. ““"—1(?1@}'1) is in the domain of T2® T2 and

(15) (T2®T2)W—l(f1@ fa) = w‘1(1® s)(fl® fz) for Vfl,f2 67’%1.

Preoof. wl is given by 'w_l(fl®‘f2)(g£,;:2) = fl(glgz_l)fz(gz).
Thus for ¥ £ ,f €%, (s&I)w'l‘(lefa)(gl,ge) = (S@I)(Rg;lfl(gly
f (gz)) = (SWngf )(srl f.(e;) = (R, lgf 1) (g5 (e5) =

= (8£)(gqp5 )f?(;u) = Z%(glKR l(Sf o 5 > 15(e5).

This shows that W (ﬁl&ﬁl is in D(S@I) = D('I‘?ﬂ 1.

Next we shall show that (S@I)W-l(ﬁl@ 541) is in D(I@TP).
Indeed by Corcllary 4 and the fact Sflé gl < Ll(G)f\LCm(G),
if we gelect the C.0.N.5 J%fas %y € &y, <R,-1(81)), B> € Dy

and hence ﬂ(g1)<ﬂ¢;l(sfl), %> f.(g,) € DIBT,).
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Using (&), (I®T,)( %{(gl)<Rggl(Sfl), $a>t,(g5)) =

fue) <, sgg;,:c:? > (5£,)(g,)= %(glws(m ), 58, >(8,)(g5)=
=ﬁ(gl)<R f‘ > (810 (g5)= Kle IR, -111, %}(Sf ) (g5)e
Obviously Z?(gl)«q l(Sf) %> 1, (g2 and

Zg’,(gl)az lfl, Cf;(> (sf,)(g,) (=(I®T, )(Z,¢(gl)<R -1(51‘1), ¥ >x
*T5(g5)) ) converge to (S®I)W™ (f ®f,) and W (zla sf;) in
12(6)® 1°(G) respectively. That is, (S@®I)W (f118>f?)£- (18 T,)
and (1@T,)(S® W (£,@1,) = W (f@Sf,). Combining these, we

get the wanted results.,

Summalizing Lemmata 16 and 17, we conclude,

Proposition 4, The closed operator Te‘is admissible.

Now we are in the step to apply Proposition 35 together with

Lemma 13 to our operator T and get,

29

Lemma 18. There exist an element go with order 1 or 2 and

an one-paramcter subgroup g(t) in the centre 2(G) of G such that
T2 =R e Here 1H is the infinitesimal generator of R

%o . = g(t) °
Proof, The existence of 8o and g(t) are an direct results
of the above arguments, so we must show that £o and g(t) are in

7(G) and the order of g . is atmost two.

20
But because (7) sives the polar decomposition of TQ, and by
Lermma 13, T, hence R and ell must commute with R (VggéG).

(7(/
The relation (3) and the definitions ofﬁl, ?l and S give

< £, Sf2>=<5fl, f27 for f,,f € 7"?1. This concludes T. is

2
symmetric. But since R is unitary and eﬂ is positive definite
¢
without kernel, RF must be the form P-(I-P) for some projection P.

%G
- 14 =



- . 2 . e
Hence (R ) =1, and gy = e-
e

' 2
The assertion of Lemma 1& talks about only operators on L7(G).
iicwever using [Assumution EJ, we can extend this to the whole space
2g follows. That is, consider the operators on '}e,

1 = in which

]
[
<3

11
- . - 1D - 0
M, = (/) (3/a)U oo Vze and T .
L ,e{t) are elenents cf G given in Lemma 1&.

Lemna 19.  ST(B)&,U, T(4")E2> =<V, VTR v T (enR)
——— H=%e]

for Ya, B &l
: O.
-t2
Procf. Let ‘f(t) = e and for c¢ €(0,%) and Aéa},

oo
Ag . = (ac/ff)l‘oo(g(t)(m F(ct) at .
Then it is easv to see T(a ¢ ‘)‘QCD(TI) and A _E._:_:g A
g € Cf,c

in OL , hence 7E<A<f C)Si—»?n(msz and E(A*?" L= T(a")EL
in ‘}eo Dencte dl

calculaticns lead us to

11}

{A‘f,c 3 c€ (G,09), AGULO/% . Then direct

R Z ;11—. (li %—t— ) ( Ro_(t)"f)! )(g):<UFT1 L&, T(BY)LLD -

“0 n . ' © t=0
=<T(&B, S2 KT (B SL 52 .

Since the convergences of H ‘I(A)Qz(l/.l;,)lim t—l(U T(ANED - T(A) SR

G e g(t)
and VI(a)&Z = Z(l/n! )an T(4)SL are in norm sence, the converpgemce
n
of the left hand side is uniform in g. Generally % is not contain-
ed in a(,’ but all elemente of al are norm limits of elements of
3 & Ta e .
ac_ and vice versa. Hence fA, ‘ gA,B (LyR & ULOU dl) are uniform

AR PalB. (A_.!,Bjédc) And by (2)
3 i1

I/ -1 ’ ‘ v
(16) /(fms(g)fl(.smf;(z) PR f<%u<?>5fl<g)>s:~2(g) d g
tor Va, se A U@, Vi, e f.

e}

li=its of f



/ =(g =
Now leSfAiBifl” £ 451 T2(fA1.B_.,fl) (qujBJ)(Sf =g, BJ(Sfl)

2
_.__..gAB(sfl) in L°(G), thereforre fAjf € D, and TZ(fAB 1) 8,55%,

for ¥ A,RB €0, uﬂoo And Lemma 18 assures Tz(f f.)= R (Zu:(l/n})

AB"1
(—i?(d/dt)n(ag(t)fAB))(Sfl) for Yae 0z1, thus gAB=Rg‘O( % (1/n!1)
(-'i)rl(d/dt)n(Rg(t)fAB)) (converges in L2°(G)). Therefcre

< UFTII(A)Q, (a8 > = < TR, U 74527 for Yaed,
YreO . Especially for A,Bé&ZU, A‘f,cB ?.c 601/1, hence
. 1/2 ., /2 * - .
LUy VTG DG VIR, I QU T O

0 1

is a Cauchy sequence in '}C + 8O

Put g = gg . When o tends to 00, Ay A in gp, A*, _—» A*,
we obtain 13m<v’1/27C(A >,;,3 2 Mg 0> -
X<V1/27C(A . 82 Vl/?I(A? NPT
That is; ?vl/zt(a ).R}C__w
51_22;<Uggc\fl/27c(é\ R, sy, O8>

o ?,c
T(a g C).ﬂ-—* T(8)&], and 7C(A* )ﬁ —T(A*) G2 - Taking the lirit,
c;_ Il
= <7C(B)R bw-l'lE(A ){27 Hence
) /2 /2 S OIZ o142 1yt
éﬁp"vl My OG-7 Ta, 8 13?,%?( LR
AN (-1)”*3<7E<A>5{, vl > = o.
i,i=1,2 £o
T S7 €t/ AVE T(8) 82 = Lim Vl/?ﬂ.—(A &2, end
<u v A SOV TR AT )SE7~
e
g,c
< L2,v TaHSL> =¢, (o)

. is nrnorm dens iy erefo i s dense in
Olb is no nse in 0[, therefore OZIL is norm dense in @,
and ?K(A)Q ; Aéal} is dense in %too. Thus,

Corsllary 6. There exists a norm dense subalgebra Oll in

Ol , and a closed onerator Tl on % such that ?I(A)Q; AéalSC. D(vfl)
7




)
ey
[y

and <UL, T(3HKLD - <I(B).§2,Ug7t(A*)R>
for Ygea, Va € 0L, Vee A .
Lenma 20.  In Lemma 18 , the element g, is equal to  e.
E{ggﬁ; Consider two positive definite functions
Y (m) = <U T(B)E2, T(BEL>
Ao (2) = <u T PIEnR, VTGS,
In Lemma 19, putténg A = B*, we obtain
(17) ¥ () =¥, (eg,) for Ygea.
mt, ¥ (elh)- “4’2(“:"“{’2”00 =1t e = V(o) . tneresore
<UgOTE(E)SZ., WBGY = TR |2 ana UgOI(B),gE=TC(B)‘§2

for VB GOLO That is Ug‘ = I , hence

. go is in K = {Ae} .
O
Thus the results of Lemmata 1& - 20 give a proof of ocur
Main theoremnm.
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