Two-point boundary-value problems with a discontinuous semilinear term

Masahisa TABATA

Department of Mathematics, Kyoto University

1. Introduction

In this paper we consider the equation

(1.1)
$$\begin{cases} d^2v/dx^2 + g(v) = 0 & \text{on } I = (0, \ell_0) \\ dv/dx(0) = dv/dx(\ell_0) = 0 \end{cases}$$

where g is a function with a discontinuity point of the first kind. Our purpose is to present all the solutions of (1.1) under some appropriate conditions on g and v. At the same time we show that the cardinality of the set of all the solutions is \aleph_0 (countably infinite).

The equation (1.1) appears in the following situation. Consider the degenerate parabolic system of u(x,t) and v(x,t),

(1.2)
$$\begin{cases} \partial u/\partial t = f(u,v) & \text{in } I \times (0,+\infty) \\ \partial v/\partial t = \partial^2 v/\partial x^2 + g(u,v) & \text{in } I \times (0,+\infty) \\ \partial v/\partial x(0,t) = \partial v/\partial x(\lambda_0,t) = 0 & t > 0 \\ & \text{initial conditions.} \end{cases}$$

In a biological point of view, it may be considered that u (resp. v) represents the density of a plant(resp. a herbiore) for example. Consider steady-state solutions of (1.2). Then the first equation of (1.2) reduces an algebraic equation. Hence, u can be expressed as a multi-valued function of v. If we fix v_* and assign each of two different parts of the multi-valued function on each side of v_* , u becomes a function of v with discontinuity at v_* . Substituting the function u of v into the second

equation of (1.2) and rewriting the composed function with the same symbol g, we obtain the equation (1.1). The existence of such a steady-state solution is recognized by some numerical experiments. (See Mimura [1]. Mimura also proved that stable steady-state solutions of (1.2) have a unique v_* determined by f and g under an appropriate assumption.)

2. Presentation of results

The semilinear term g we deal with in this paper is restricted to the one satisfying the following condition.

Condition 1.

- (i) g is a function defined on $(v_1^{}, v_2^{})$ with a discontinuity point of the first kind v_* and satisfies
 - $-\infty < g(v_*-0) < 0 < g(v_*+0) < +\infty$.
- (ii) g < 0 in (v_1, v_*) , > 0 in (v_*, v_2) , and g is Lipschitz continuous in $(v_1, v_* 0]$ and $[v_* + 0, v_2)$. (i.e., \hat{g} is Lipschitz continuous in $[v_1 + \varepsilon, v_*]$ for any $\varepsilon > 0$, where $\hat{g} = g(v)$ for $v \varepsilon (v_1, v_*)$ and $= g(v_* 0)$ at $v = v_*$. Similarly $[v_* + 0, v_2)$ is considered.)
- (iii) g is monotone decreasing in (v_1, v_*) and (v_*, v_2) . We rewrite (1.1) by the weak form:
- (2.1) $\begin{cases} \text{Find } v \in H^{1}(I) \text{ such that} \\ (dv/dx, d\phi/dx) = (g(v), \phi) & \text{for all } \phi \in H^{1}(I), \end{cases}$

where (,) is the inner product in $L^2(I)$. Our aim is to find all the solutions of (2.1) satisfying

$$(2.2) v_1 < v(x) < v_2 (0 \le x \le l_0).$$

Remark 1. (2.2) makes sense since $v \in H^1(I)$ implies $v \in C(I)$ by Sobolev's lemma. Furthermore, for the solution v of (2.1), we have $v \in C^1(I)$, since Condition 1 gives $g(v) \in L^2(I)$ which yields $v \in H^2(I)$.

Theorem 1. In the case $g(v_*) \neq 0$, all the solutions of (2.1) and (2.2)

are v_n^i , i=1,2 and $n\geq n_0$, where $v_n^i(x)$ are functions defined in the subsequent section (see (3.9)) and n_0 is a positive integer depending on g and l_0 .

In the case $g(v_*) = 0$, v_* is added to the solutions.

Remark 2. If $g(v_1^{+0}) = g(v_2^{-0}) = 0$, and if g is Lipschitz continuous in $[v_1^{+0}, v_*^{-0}]$ and $[v_*^{+0}, v_2^{-0}]$, then $n_0^{-1} = 1$ for any $l_0^{-1} > 0$.

Remark 2 as well as Theorem 1 is proved at the next section.

3. Proof of Theorem 1.

Let v(x; c) be a solution of the initial value problem:

(3.1)
$$\begin{cases} d^2v/dx^2 = -\tilde{g}(v) & (x > 0) \\ dv/dx(0) = 0 \\ v(0) = c, \end{cases}$$

where c > v₁ and

$$\tilde{g}(v) = \begin{cases} g(v) & (v_1 < v < v_*) \\ g(v_* - 0) & (v_* \le v). \end{cases}$$

Such v(x;c) exists uniquely since \tilde{g} is Lipschitz continuous in $[c-\epsilon,+\infty)$ for some $\epsilon>0$ where any solution of (3.1) lies since $\tilde{g}<0$.

Lemma 1. Let v(x;c) be as above. Then, we have

(3.2)
$$v(x; c_1) < v(x; c_2)$$
 $(x \ge 0)$

for v₁ < c₁ < c₂.

Proof. Let $x_0 > 0$ be the first intersecting point of $v(x;c_1)$ and $v(x;c_2)$. Obviously it holds that

$$dv/dx(x_0;c_1) \geq dv/dx(x_0;c_2).$$

On the other hand, by (iii) of Condition 1, we have

$$d^2v/dx^2(x;e_1) = -\tilde{g}(v(x;e_1)) \leq -\tilde{g}(v(x;e_2)) = d^2v/dx^2(x;e_2) \quad (0 < x < x_0).$$

Integrating both sides from 0 to x_0 , we have

$$dv/dx(x_0;c_1) \leq dv/dx(x_0;c_2).$$

Hence we obtain

$$(d/dx)^{i}v(x_{0};c_{1}) = (d/dx)^{i}v(x_{0};c_{2})$$
 ($i = 0,1$).

By the uniqueness of the initial value problem, we have

$$v(x;c_1) = v(x;c_2)$$
 $(x \ge 0).$

This is a contradiction. Hence we obtain (3.2). Q.E.D.

Define a mapping ϕ from $(v_{\gamma}^{}\,\,,\,v_{*}^{})$ into (0 ,+\infty) by

$$v(\phi(c);c) = v_*.$$

Since $d^2v/dx^2(x;c) \ge -g(c) > 0$, $\phi(c)$ is well-defined. By Lemma 1, $\phi(c)$ is monotone decreasing. Set

$$\bar{\ell} = \lim_{c \downarrow v_{\gamma}} \phi(c).$$

Lemma 2. ϕ is homeomorphic from $(v_1^{},v_*)$ onto (0 , $\overline{\textbf{l}})$ and strictly decreasing.

Proof. ϕ is strictly decreasing and therefore injective by Lemma 1. We show ϕ is continuous. Let $\{c_j\}$ be any sequence in (v_1, v_*) converging to $c \in (v_1, v_*)$. It is sufficient for us to show that there exists a subsequence $\{c_j\}$ such that $\phi(c_j)$ converges to $\phi(c)$. Let \overline{c} (resp. \underline{c}) be the supremum (resp. infimum) of $\{c_j\}$. Since $\phi(c_j) \in [\phi(\overline{c}), \phi(\underline{c})]$, there exists a subsequence $\{c_j\}$ which converges to some $d \in [\phi(\overline{c}), \phi(\underline{c})]$. Then it holds that

$$\begin{split} & |v(d;e) - v_{*}| \\ & \leq |v(d;e) - v(\phi(e_{j_{k}});e)| + |v(\phi(e_{j_{k}});e) - v(\phi(e_{j_{k}});e_{j_{k}})| \\ & \leq |v(d;e) - v(\phi(e_{j});e)| + \max_{0 \leq x \leq \phi(e_{j})} |v(x;e) - v(x;e_{j_{k}})| \\ & + 0 \qquad \text{as} \quad j_{k} \to +\infty \;, \end{split}$$

since v(x;c) is continuous and \tilde{g} is Lipschitz continuous in $[c, v_*-0]$.

We show ϕ is surjective. It is sufficient for us to show that

$$\phi(c) \rightarrow 0$$
 as $c \rightarrow v_*$.

Suppose that $\lim_{c \uparrow v_*} \phi(c) = d > 0$. Fix $x_0 \varepsilon(0, d)$. Then it holds that $v(x_0; c) \to v(x_0; v_*) > v_*$ as $c \to v_*$,

since v(x;c) converges to $v(x;v_*)$ uniformly in [0,d]. On the other hand, by $v(x_0;c) < v(d;c) < v_* \text{ , we have}$

$$\lim_{c\uparrow v_*}\sup v(x_{o};c) \leq v_* .$$

This is a contradiction. Hence, d = 0.

That ϕ^{-1} is continuous is easily proved. Q.E.D.

For any $\ell \in (0, \overline{\ell})$, $v(x; \phi^{-1}(\ell))$ is a unique solution of

For any
$$l \in (0, l)$$
, $v(x; \phi^{-}(l))$ is a unique
$$\begin{cases}
d^{2}v/dx^{2} = -g(v) & (0 < x < l) \\
dv/dx(0) = 0 \\
v(l) = v_{*}
\end{cases}$$

satisfying

(3.4)
$$v_1 < v(x) < v_*$$
 $(0 \le x \le 1).$

Uniqueness is proved easily by making use of Lemma 1. Define a mapping α from $(0, \overline{\ell})$ into $(0, +\infty)$ by

$$\alpha(\ell) = dv/dx(\ell; \phi^{-1}(\ell)).$$

Lemma 3. α is strictly increasing and homeomorphic from (0, $\overline{\iota})$ onto (0, $\overline{\alpha})$ and satisfies

$$(3.5) 0 < \alpha(l) \leq -g(v_*-0)l (0 < l < \overline{l}),$$

where $\bar{\alpha} = \lim \sup_{\ell \to \bar{\ell}} \alpha(\ell)$.

Proof. We first show that α is strictly increasing. Fix ℓ_i , i=1,2, such that

$$0 < \ell_1 < \ell_2 < \overline{\ell}$$
 and $\ell_2 < 2\ell_1$.

Set for $s \in [0, l_2]$

$$w_1(s) = v(l_1 - s; \phi^{-1}(l_1))$$
 and $w_2(s) = v(l_2 - s; \phi^{-1}(l_2)),$

where $v(x;\phi^{-1}(\ell_1))$ is assumed to be extended in x<0 to the even function.

Then w_i , i=1,2, satisfies

$$\begin{cases} d^2w_i/ds^2 = -g(w_i(s)) & (0 < s < l_2) \\ w_i(0) = v_* \end{cases}$$

$$\int dw_i/ds(0) = -\alpha(l_i).$$

For the purpose of an indirect proof, assume that $\alpha(\ell_1) \geq \alpha(\ell_2)$. If $\alpha(\ell_1) = \alpha(\ell_2)$, (3.6) implies that $w_1(s) = w_2(s)$ ($0 \leq s \leq \ell_2$), which contradicts that

$$w_1(k_2) > \phi^{-1}(k_1) > \phi^{-1}(k_2) = w_2(k_2)$$
.

Assume $\alpha(\ell_1) > \alpha(\ell_2)$. Let s_0 be the first intersecting point of w_1 and w_2 . Obviously it holds that

$$dw_1/ds(s_0) \ge dw_2/ds(s_0) .$$

On the other hand, we have

$$d^{2}w_{2}/ds^{2}(s) = -g(w_{2}(s)) \ge -g(w_{1}(s)) = d^{2}w_{1}/ds^{2}(s) \quad (0 \le s \le s_{0}),$$

since $w_2 \ge w_1$ on $[0, s_0]$ and g is monotone decreasing. Hence we obtain

$$dw_{2}/ds(s_{0}) = -\alpha(l_{2}) + \int_{0}^{s_{0}} d^{2}w_{2}/ds^{2} ds$$

$$\geq -\alpha(l_{2}) + \int_{0}^{s_{0}} d^{2}w_{1}/ds^{2} ds$$

$$> dw_{1}/ds(s_{0}),$$

which is a contradiction. Therefore we get $\alpha(l_1) < \alpha(l_2)$, which also shows α is injective.

(3.5) is proved easily by making use of

$$\alpha(l) = \int_{0}^{l} d^{2}v/dx^{2}(x;\phi^{-1}(l)) dx$$
$$= -\int_{0}^{l} g(v(x;\phi^{-1}(l))) dx.$$

We next show that α is continuous. We have

Letting $\ell_2 \to \ell_1$, we obtain $\alpha(\ell_2) \to \alpha(\ell_1)$ since $\phi^{-1}(\ell_2) \to \phi^{-1}(\ell_1)$.

That α is surjective and that α^{-1} is continuous are easily proved.

Define $s_1 = \alpha^{-1}$. Then, s_1 is homeomorphic from $(0, \bar{\alpha})$ onto $(0, \bar{\lambda})$ and strictly increasing and satisfies

$$-\alpha/g(v_*-0) \leq s_1(\alpha) \qquad (0 < \alpha < \bar{\alpha}).$$

 $v(x;\phi^{-1}(s_{1}(\alpha)))$ is a unique solution of

strictly increasing and satisfies
$$-\alpha/g(v_*-0) \leq s_1(\alpha) \qquad (0 < \alpha < \overline{\alpha}).$$

$$v(x;\phi^{-1}(s_1(\alpha))) \text{ is a unique solution of}$$

$$\begin{cases} d^2v/dx^2 = -g(v) & (0 < x < s_1(\alpha)) \\ dv/dx(0) = 0 & \\ v(s_1(\alpha)) = v_* \\ dv/dx(s_1(\alpha)) = \alpha & \\ v_1 < v(x) < v_* & (0 \leq x \leq s_1(\alpha)). \end{cases}$$

Similarly we can define s_2 such that s_2 is homeomorphic from (0, $\bar{\bar{\alpha}}$) onto $(0, \overline{1})$ and strictly increasing and satisfies

$$\alpha/g(v_*+0) \le s_2(\alpha) \qquad (0 < \alpha < \overline{\alpha})$$

For any α ϵ (0, $\overline{\alpha}$) there exists a unique solution of

$$\begin{cases} d^{2}v/dx^{2} = -g(v) & (0 < x < s_{2}(\alpha)) \\ dv/dx(0) = 0 & \\ v(s_{2}(\alpha)) = v_{*} \\ dv/dx(s_{2}(\alpha)) = -\alpha & \\ v_{*} < v(x) < v_{2} & (0 \le x \le s_{2}(\alpha)) \end{cases}.$$

Set $\hat{\alpha} = \min(\bar{\alpha}, \bar{\alpha})$ and $\hat{\ell} = \lim_{\alpha \to 0} (s_1 + s_2)(\alpha)$. For $\alpha \in (0, \hat{\alpha})$ we denote the unique solution of (3.7) (resp. (3.8)) by $v(x;\alpha,1)$ (resp. $v(x;\alpha,2)$). Then, s_1+s_2 is homeomorphic from $(0,\hat{\alpha})$ onto $(0,\hat{\ell})$ and strictly increasing and satisfies

$$\{-1/g(v_*-0) + 1/g(v_*+0)\}\alpha \le (s_1+s_2)(\alpha).$$

Let n_0 be the smallest positive integer greater than $\ell_0/\hat{\ell}$. Define α_n and v_n^i , i=1,2 and $n \ge n_0$, by

$$(s_1 + s_2)(\alpha_n) = \ell_0/n \quad ,$$

and

$$(3.9) \qquad v_{n}^{i}(x) = \begin{cases} v(x; \alpha_{n}, i) & (0 \leq x \leq s_{i}(\alpha_{n})) \\ v((s_{1}+s_{2})(\alpha_{n})-x; \alpha_{n}, i+1) & (s_{i}(\alpha_{n}) < x \leq (s_{1}+s_{2})(\alpha_{n})) \\ v_{n}^{i}(2(s_{1}+s_{2})(\alpha_{n})-x) & ((s_{1}+s_{2})(\alpha_{n}) < x \leq 2(s_{1}+s_{2})(\alpha_{n})) \\ \text{periodic with period } 2(s_{1}+s_{2})(\alpha_{n}) & (2(s_{1}+s_{2})(\alpha_{n}) < x \leq l_{0}), \end{cases}$$

where $v(x; \alpha_n, 3)$ is equal to $v(x; \alpha_n, 1)$. It is easy to observe that v_n^i , i=1,2 and $n \ge n_0$, satisfy (2.1) and (2.2). To complete the proof of Theorem 1 we must show that there exist no other solutions of (2.1) and (2.2). Let $v \ne v_*$ be a solution of (2.1) and (2.2). By Remark 1 and (2.1), we have

(3.10)
$$v \in C^{1}[0, l_{0}]$$
 and $\int_{0}^{l_{0}} g(v(x)) dx = 0.$

We first show that there exists $x_0 \in (0, \ell_0)$ such that

(3.11)
$$v(x_0) = v_*$$
 and $dv/dx(x_0) \neq 0$.

Take z_0 such that $v(z_0) \neq v_*$. Let x_0 be the nearest point to z_0 satisfying $v(x_0) = v_*$. Such x_0 is well-defined since $\{x; x \in (0, \ell_0), v(x) = v_*\}$ is not empty by (3.10). Without loss of generality, we may assume that

$$x_0 < z_0 \qquad \text{and} \qquad v(z_0) < v(x_0) \ (= v_*) \ .$$

From (2.1), we observe v satisfies the first equation of (1.1) in (x_0, z_0) . Integrating the equation from x_0 to y_0 , where $y_0 \varepsilon (x_0, z_0)$ is a point satisfying $dv/dx(y_0) < 0$, we have

$$dv/dx(x_0) = dv/dx(y_0) + \int_{x_0}^{y_0} g(v(s)) ds$$

$$\leq dv/dx(y_0)$$

$$< 0.$$

Hence x_0 satisfies (3.11). Set $\alpha = -dv/dx(x_0) > 0$. While v is lying in (v_1, v_*) , v satisfies the first equation of (1.1). Therefore, v can be extended until v reaches v_* or $x = \ell_0$. In the former case there exists

 $x_1 = x_0 + 2s_1(\alpha) \in I$ and satisfies

$$v(x_1) = v_*$$
 and $dv/dx(x_1) = \alpha$.

Since $v \in C^1(I)$ and $\alpha > 0$, v(x) transverses $v = v_*$. While v is lying in (v_*, v_2) , v satisfies the first equation of (1.1). Hence v can be extended until v reaches v_* or $x = \ell_0$. In the former case there exists $x_2 = x_1 + 2s_2(\alpha) \in I$ and satisfies

$$v(x_2) = v_*$$
 and $dv/dx(x_2) = -\alpha$.

Repeating this process on both sides of x_0 , and noting the boundary condition, we observe that α must be equal to some α and that $v = v_n^1$ or v_n^2 . This completes the proof of Theorem 1.

Proof of Remark 2. Under the conditions of Remark 2, the equation (3.1) with $c = v_1$ and $\tilde{g}(v_1) = 0$ has a unique solution $v = v_1$. Since \tilde{g} is Lipschitz continuous in $[v_1, v_*]$, we have $\bar{\ell} = +\infty$. Similarly $\bar{\ell} = +\infty$ is obtained. Therefore, we get $n_0 = 1$. Q.E.D.

Reference

[1] Mimura, M., Striking patterns in a diffusion system related to the Gierer and Meinhardt model, in preparation.