<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Two-Point Boundary-Value Problems with a Discontinuous Semilinear Term (生物の数学)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>TABATA, MASAHISA</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 317: 93-101</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/103964</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository
京都大学
KYOTO UNIVERSITY
Two-point boundary-value problems
with a discontinuous semilinear term

Masahisa TABATA

Department of Mathematics, Kyoto University

1. Introduction

In this paper we consider the equation

\begin{equation}
\begin{cases}
\frac{d^2 v}{dx^2} + g(v) = 0 & \text{on } I = (0, L)
\\
\frac{dv}{dx}(0) = \frac{dv}{dx}(L) = 0,
\end{cases}
\end{equation}

(1.1)

where \(g \) is a function with a discontinuity point of the first kind. Our purpose is to present all the solutions of (1.1) under some appropriate conditions on \(g \) and \(v \). At the same time we show that the cardinality of the set of all the solutions is \(\aleph_0 \) (countably infinite).

The equation (1.1) appears in the following situation. Consider the degenerate parabolic system of \(u(x,t) \) and \(v(x,t) \),

\begin{equation}
\begin{cases}
\frac{\partial u}{\partial t} = f(u,v) & \text{in } I \times (0, +\infty)
\\
\frac{\partial v}{\partial t} = \frac{d^2 v}{dx^2} + g(u,v) & \text{in } I \times (0, +\infty)
\\
\frac{\partial v}{\partial x}(0,t) = \frac{\partial v}{\partial x}(L,t) = 0 & t > 0
\\
\text{initial conditions.}
\end{cases}
\end{equation}

(1.2)

In a biological point of view, it may be considered that \(u \) (resp. \(v \)) represents the density of a plant (resp. a herbivore) for example. Consider steady-state solutions of (1.2). Then the first equation of (1.2) reduces an algebraic equation. Hence, \(u \) can be expressed as a multi-valued function of \(v \). If we fix \(v_s \) and assign each of two different parts of the multi-valued function on each side of \(v_s \), \(u \) becomes a function of \(v \) with discontinuity at \(v_s \). Substituting the function \(u \) of \(v \) into the second
equation of (1.2) and rewriting the composed function with the same symbol \(g \), we obtain the equation (1.1). The existence of such a steady-state solution is recognized by some numerical experiments. (See Mimura [1]. Mimura also proved that stable steady-state solutions of (1.2) have a unique \(v_* \) determined by \(f \) and \(g \) under an appropriate assumption.)

2. Presentation of results

The semilinear term \(g \) we deal with in this paper is restricted to the one satisfying the following condition.

Condition 1.

(i) \(g \) is a function defined on \((v_1, v_2)\) with a discontinuity point of the first kind \(v_* \) and satisfies
\[-\infty < g(v_* - 0) < 0 < g(v_* + 0) < +\infty.\]

(ii) \(g < 0 \) in \((v_1, v_*), v_2 \) in \((v_*, v_2)\), and \(g \) is Lipschitz continuous in \((v_1, v_* - 0)\) and \((v_* + 0, v_2)\). (i.e., \(g \) is Lipschitz continuous in \([v_1 + \varepsilon, v_*]\) for any \(\varepsilon > 0 \), where \(g = g(v) \) for \(v \in (v_1, v_*) \) and \(g(v_* - 0) \) at \(v = v_* \). Similarly \((v_* + 0, v_2)\) is considered.)

(iii) \(g \) is monotone decreasing in \((v_1, v_*)\) and \((v_*, v_2)\).

We rewrite (1.1) by the weak form:

\[
\begin{align*}
(2.1) \quad \begin{cases}
\text{Find } v \in H^1(I) \text{ such that} \\
(dv/\partial x, d\phi/\partial x) = (g(v), \phi) \\
\text{for all } \phi \in H^1(I),
\end{cases}
\end{align*}
\]

where \((,\,\)\) is the inner product in \(L^2(I) \). Our aim is to find all the solutions of (2.1) satisfying

\[
(2.2) \quad v_1 < v(x) < v_2 \quad (0 < x < l_0).
\]

Remark 1. (2.2) makes sense since \(v \in H^1(I) \) implies \(v \in C(I) \) by Sobolev's lemma. Furthermore, for the solution \(v \) of (2.1), we have \(v \in C(I) \), since Condition 1 gives \(g(v) \in L^2(I) \) which yields \(v \in H^2(I) \).

Theorem 1. In the case \(g(v_*) \neq 0 \), all the solutions of (2.1) and (2.2)
are v_n^i, $i=1, 2$ and $n \geq n_0$, where $v_n^i(x)$ are functions defined in the subsequent section (see (3.9)) and n_0 is a positive integer depending on g and x_0.

In the case $g(v_*) = 0$, v_* is added to the solutions.

Remark 2. If $g(v_1^* + 0) = g(v_2^* - 0) = 0$, and if g is Lipschitz continuous in $[v_1^* + 0, v_2^* - 0]$ and $[v_2^* + 0, v_2^* - 0]$, then $n_0 = 1$ for any $x_0 > 0$.

Remark 2 as well as Theorem 1 is proved at the next section.

3. Proof of Theorem 1.

Let $v(x; c)$ be a solution of the initial value problem:

$$\begin{cases}
 d^2v/dx^2 = -\tilde{g}(v) & (x > 0) \\
 dv/dx(0) = 0 \\
 v(0) = c,
\end{cases}$$

where $c > v_1$ and

$$\tilde{g}(v) = \begin{cases}
 g(v) & (v_1 < v < v_*) \\
 g(v_* - 0) & (v_* \leq v).
\end{cases}$$

Such $v(x; c)$ exists uniquely since \tilde{g} is Lipschitz continuous in $[c - \varepsilon, +\infty)$ for some $\varepsilon > 0$ where any solution of (3.1) lies since $\tilde{g} < 0$.

Lemma 1. Let $v(x; c)$ be as above. Then, we have

(3.2) $v(x; c_1) > v(x; c_2)$

for $v_1 < c_1 < c_2$.

Proof. Let $x_0 > 0$ be the first intersecting point of $v(x; c_1)$ and $v(x; c_2)$.

Obviously it holds that

$$dv/dx(x_0; c_1) \geq dv/dx(x_0; c_2).$$

On the other hand, by (iii) of Condition 1, we have

$$d^2v/dx^2(x; c_1) = \tilde{g}(v(x; c_1)) \leq \tilde{g}(v(x; c_2)) = d^2v/dx^2(x; c_2) \quad (0 < x < x_0).$$

Integrating both sides from 0 to x_0, we have

$$dv/dx(x_0; c_1) \leq dv/dx(x_0; c_2).$$

Hence we obtain
\[(d/dx)^i v(x_0; \sigma_1) = (d/dx)^i v(x_0; \sigma_2) \quad (i = 0, 1).\]

By the uniqueness of the initial value problem, we have
\[v(x; \sigma_1) = v(x; \sigma_2) \quad (x \geq 0).\]

This is a contradiction. Hence we obtain (3.2). Q.E.D.

Define a mapping \(\phi\) from \((v_1, v_\ast)\) into \((0, +\infty)\) by
\[v(\phi(\sigma); \sigma) = v_\ast.\]

Since \(d^2v/dx^2(x; \sigma) \geq -g(c) > 0\), \(\phi(c)\) is well-defined. By Lemma 1, \(\phi(c)\) is monotone decreasing. Set
\[\bar{c} = \lim_{\sigma \to v_1} \phi(\sigma).\]

Lemma 2. \(\phi\) is homeomorphic from \((v_1, v_\ast)\) onto \((0, \bar{c})\) and strictly decreasing.

Proof. \(\phi\) is strictly decreasing and therefore injective by Lemma 1. We show \(\phi\) is continuous. Let \(\{c_j\}\) be any sequence in \((v_1, v_\ast)\) converging to \(c \in (v_1, v_\ast)\). It is sufficient for us to show that there exists a subsequence \(\{c_{j_k}\}\) such that \(\phi(c_{j_k})\) converges to \(\phi(c)\). Let \(\tilde{c}\) (resp. \(\underline{c}\)) be the supremum (resp. infimum) of \(\{c_j\}\). Since \(\phi(c_j) \in [\phi(\tilde{c}), \phi(\underline{c})]\), there exists a subsequence \(\{c_{j_k}\}\) which converges to some \(\tilde{c} \in [\phi(\tilde{c}), \phi(\underline{c})]\). Then it holds that
\[|v(d_j; \sigma) - v_\ast| \leq |v(d_j; \sigma) - v(\phi(c_{j_k}); \sigma)| + |v(\phi(c_{j_k}); \sigma) - v(\phi(c_{j_k}); \sigma)| + \max_{0 \leq x \leq \phi(\underline{c})} |v(x; \sigma) - v(x; \sigma)| \to 0 \quad \text{as } j_k \to +\infty,
\]

since \(v(x; \sigma)\) is continuous and \(\tilde{g}\) is Lipschitz continuous in \([\underline{c}, v_\ast - 0]\).

We show \(\phi\) is surjective. It is sufficient for us to show that
\[\phi(\sigma) \to 0 \quad \text{as } \sigma \to v_\ast.\]

Suppose that \(\lim_{\sigma \to v_\ast} \phi(\sigma) = d > 0\). Fix \(x_0 \in (0, d)\). Then it holds that
\[v(x_0; \sigma) \to v(x_0; v_\ast) > v_\ast \quad \text{as } \sigma \to v_\ast,\]
since \(v(x; c) \) converges to \(v(x; v_\ast) \) uniformly in \([0, d]\). On the other hand, by

\[v(x_0; c) < v(d; c) < v_\ast, \]

we have

\[\limsup_{\sigma \to v_\ast} v(x_0; \sigma) \leq v_\ast. \]

This is a contradiction. Hence, \(d = 0 \).

That \(\phi^{-1} \) is continuous is easily proved. Q.E.D.

For any \(\ell \in (0, 1) \), \(v(x; \phi^{-1}(\ell)) \) is a unique solution of

\[
\begin{cases}
 \frac{d^2 v}{dx^2} = -g(v) & (0 < x < \ell) \\
 \frac{dv}{dx}(0) = 0 \\
 v(\ell) = v_\ast
\end{cases}
\]

(3.3)

satisfying

\[
v_\ell < v(x) < v_\ast & (0 \leq x \leq \ell).
\]

(3.4)

Uniqueness is proved easily by making use of Lemma 1. Define a mapping \(a \) from

\((0, 1) \) into \((0, +\infty) \) by

\[
a(\ell) = \frac{dv}{dx}(\ell; \phi^{-1}(\ell)).
\]

Lemma 3. \(a \) is strictly increasing and homeomorphic from \((0, 1) \) onto

\((0, \bar{a}) \) and satisfies

\[
0 < a(\ell) \leq -g(v_\ast - 0) \ell & (0 < \ell \leq 1),
\]

(3.5)

where \(\bar{a} = \limsup_{\ell \to 1} a(\ell) \).

Proof. We first show that \(a \) is strictly increasing. Fix \(\ell_1, \ell_2, \) such that

\[
0 < \ell_1 < \ell_2 < 1 \quad \text{and} \quad \ell_2 < 2\ell_1.
\]

Set for \(s \in [0, \ell_2] \)

\[
w_i(s) = v(\ell_i - s; \phi^{-1}(\ell_i)) \quad \text{and} \quad w_i(s) = v(\ell_2 - s; \phi^{-1}(\ell_2)),
\]

where \(v(x; \phi^{-1}(\ell)) \) is assumed to be extended in \(x < 0 \) to the even function.

Then \(w_i, i = 1, 2, \) satisfies

\[
\begin{cases}
 \frac{d^2 w_i}{ds^2} = -g(w_i(s)) & (0 < s < \ell_i) \\
 w_i(0) = v_\ast
\end{cases}
\]

(3.6)
\[
\frac{d\omega_2}{ds}(0) = -a(t_2').
\]
For the purpose of an indirect proof, assume that \(a(t_1) \geq a(t_2)\). If \(a(t_1) = a(t_2)\), (3.6) implies that \(v_1(s) = v_2(s)\) \((0 \leq s \leq t_2)\), which contradicts that
\[
v_1(t_2') > \phi^{-1}(t_1) > \phi^{-1}(t_2') = v_2(t_2').
\]
Assume \(a(t_1) > a(t_2)\). Let \(s_0\) be the first intersecting point of \(v_1\) and \(v_2\). Obviously it holds that
\[
\frac{d\omega_1}{ds}(s_0') \geq \frac{d\omega_2}{ds}(s_0).
\]
On the other hand, we have
\[
d^2\omega_2/ds^2(s) = -g(\omega_2(s)) = -g(\omega_1(s)) = d^2\omega_1/ds^2(s) \quad (0 \leq s \leq s_0),
\]
so \(v_2 \geq v_1\) on \([0, s_0]\) and \(g\) is monotone decreasing. Hence we obtain
\[
\frac{d\omega_2}{ds}(s_0) = -a(t_2) + \int_0^{s_0} d^2\omega_2/ds^2 \, ds
\]
\[
\geq -a(t_2) + \int_0^{s_0} d^2\omega_1/ds^2 \, ds
\]
\[
> \frac{d\omega_1}{ds}(s_0),
\]
which is a contradiction. Therefore we get \(a(t_1) < a(t_2)\), which also shows \(a\) is injective.

(3.5) is proved easily by making use of
\[
a(t) = \int_0^t d^2v/\xi^2(x; t; \phi^{-1}(t)) \, dx
\]
\[
= -\int_0^t g(v(x; \phi^{-1}(t)) \, dx.
\]
We next show that \(a\) is continuous. We have
\[
|a(t_1) - a(t_2)| \leq |d\omega/\xi_2(t_1; \phi^{-1}(t_1)) - d\omega/\xi_2(t_2; \phi^{-1}(t_2))|
\]
\[
+ |d\omega/\xi_2(t_2; \phi^{-1}(t_2)) - d\omega/\xi_2(t_2; \phi^{-1}(t_2'))|
\]
\[
\leq |d\omega/\xi_2(t_1; \phi^{-1}(t_1)) - d\omega/\xi_2(t_2; \phi^{-1}(t_2))|
\]
\[
+ \max_{0 \leq t \leq t_1+\varepsilon} |d\omega/\xi_2(t; \phi^{-1}(t)) - d\omega/\xi_2(t; \phi^{-1}(t_2))|,
\]
for \(0 < t_1 < t_2 < t_1+\varepsilon < \bar{t}\).
Letting $l_2 + l_1$, we obtain $a(l_2) + a(l_1)$ since $\phi^{-1}(l_2) + \phi^{-1}(l_1)$.

That a is surjective and that a^{-1} is continuous are easily proved. Q.E.D.

Define $s_1 = a^{-1}$. Then, s_1 is homeomorphic from $(0, \bar{a})$ onto $(0, \tilde{l})$ and strictly increasing and satisfies

$$-a/g(v_+0) \leq s_1(a) \quad (0 < a < \bar{a})$$

$v(x; \phi^{-1}(s_1(a)))$ is a unique solution of

$$\begin{cases}
\frac{d^2 v}{dx^2} = -g(v) & (0 < x < s_1(a)) \\
\frac{dv}{dx}(0) = 0 \\
v(s_1(a)) = v_+ \\
v_1 < v(x) < v_+ & (0 \leq x \leq s_1(a)).
\end{cases}$$

(3.7)

Similarly we can define s_2 such that s_2 is homeomorphic from $(0, \bar{a})$ onto $(0, \tilde{l})$ and strictly increasing and satisfies

$$a/g(v_+0) \leq s_2(a) \quad (0 < a < \bar{a}).$$

For any $a \in (0, \bar{a})$ there exists a unique solution of

$$\begin{cases}
\frac{d^2 v}{dx^2} = -g(v) & (0 < x < s_2(a)) \\
\frac{dv}{dx}(0) = 0 \\
v(s_2(a)) = v_+ \\
v_2 < v(x) < v_+ & (0 \leq x \leq s_2(a)).
\end{cases}$$

(3.8)

Set $\hat{a} = \min(\bar{a}, \bar{b})$ and $\hat{l} = \lim_{a \to \hat{a}} (s_1 + s_2)(a)$. For $a \in (0, \hat{a})$ we denote the unique solution of (3.7) (resp. (3.8)) by $v(x; a, 1)$ (resp. $v(x; a, 2)$). Then, $s_1 + s_2$ is homeomorphic from $(0, \hat{a})$ onto $(0, \hat{l})$ and strictly increasing and satisfies

$$(-1/g(v_+0) + 1/g(v_+0))a \leq (s_1 + s_2)(a).$$

Let n_0 be the smallest positive integer greater than l_0/\hat{l}. Define a_n and v_i^n, $i=1, 2$ and $n \geq n_0$, by
where \(v(x; a_n, 3) \) is equal to \(v(x; a_n, 1) \). It is easy to observe that \(v_{n}^{i}, i=1,2 \) and \(n \geq n_0 \), satisfy (2.1) and (2.2). To complete the proof of Theorem 1 we must show that there exist no other solutions of (2.1) and (2.2). Let \(v \neq v_{*} \) be a solution of (2.1) and (2.2). By Remark 1 and (2.1), we have

\[
(3.10) \quad v \in C^1(0, l_0) \quad \text{and} \quad \int_{0}^{l_0} g(v(x)) \, dx = 0.
\]

We first show that there exists \(x_0 \in (0, l_0) \) such that

\[
(3.11) \quad v(x_0) = v_{*} \quad \text{and} \quad \frac{dv}{dx}(x_0) \neq 0.
\]

Take \(z_0 \) such that \(v(z_0) \neq v_{*} \). Let \(x_0 \) be the nearest point to \(z_0 \) satisfying \(v(x_0) = v_{*} \). Such \(x_0 \) is well-defined since \((x; x \in (0, l_0), v(x) = v_{*}) \) is not empty by (3.10). Without loss of generality, we may assume that

\[
x_0 < z_0 \quad \text{and} \quad v(z_0) < v(x_0) = v_{*}.
\]

From (2.1), we observe \(v \) satisfies the first equation of (1.1) in \((x_0, z_0)\). Integrating the equation from \(x_0 \) to \(y_0 \), where \(y_0 \in (x_0, z_0) \) is a point satisfying \(dv/dx(y_0) < 0 \), we have

\[
\frac{dv}{dx}(x_0) = \frac{dv}{dx}(y_0) + \int_{x_0}^{y_0} g(v(s)) \, ds < 0.
\]

Hence \(x_0 \) satisfies (3.11). Set \(\alpha = -\frac{dv}{dx}(x_0) > 0 \). While \(v \) is lying in \((v_1, v_{*})\), \(v \) satisfies the first equation of (1.1). Therefore, \(v \) can be extended until \(v \) reaches \(v_{*} \) or \(x = l_0 \). In the former case there exists
\(x_1 = x_0 + 2s_1(a) \varepsilon I \) and satisfies
\[v(x_1) = v_* \quad \text{and} \quad \frac{dv}{dx}(x_1) = a. \]
Since \(v \in C^1(I) \) and \(a > 0 \), \(v(x) \) transverses \(v = v_* \). While \(v \) is lying in \((v_*, v_2) \), \(v \) satisfies the first equation of (1.1). Hence \(v \) can be extended until \(v \) reaches \(v_* \) or \(x = l_0 \). In the former case there exists \(x_2 = x_1 + 2s_2(a) \varepsilon I \) and satisfies
\[v(x_2) = v_* \quad \text{and} \quad \frac{dv}{dx}(x_2) = -a. \]
Repeating this process on both sides of \(x_0 \), and noting the boundary condition, we observe that \(a \) must be equal to some \(a_n \) and that \(v = v_1 \) or \(v_2 \). This completes the proof of Theorem 1.

Proof of Remark 2. Under the conditions of Remark 2, the equation (3.1) with \(c = v_1 \) and \(g(v_1) = 0 \) has a unique solution \(v = v_1 \). Since \(g \) is Lipschitz continuous in \([v_1, v_*] \), we have \(\overline{t} = +\infty \). Similarly \(\overline{t} = +\infty \) is obtained.

Therefore, we get \(n_0 = 1 \). Q.E.D.

Reference