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Two-point boundary-value problems

with a discontinuous semilinear term

Masahisa TABATA

Department of Mathematics, Kyoto University

1. Introduction

In this paper we consider the equation

Po/dx® + gv) = 0 onI=1(0,2%,)
(1.1) 0
dv/dx(0) = db/dk(lO) =0,

where g is a function with & discontinuity point of the first kind. Our
purpose is to present all the solutions of (1.1) under some appropriate
conditions on g and v. At the same time we show that the cardinality of the
set of all the solutions is RO (countably infinite).

The equation (1.1) appears in the following situation. Consider the

degenerate parabolic system of u(x,t) and v(x,t),

r

du/dt = flu,v) in Ix (0, +)

/0t = a2v/ax2 + glu,v) in Ix (0, +»)
(1.2) <

w/3x(0, t) =av/8x(lo,t) =0 t>0

initial conditions.

S

In a biological point of view, it may be considered that u (resp. v)
represents the density of a plant (resp. a herbiore) for example. Consider
steady-state solutions of (1.2).. Then the first equation of (1.2)
reduces an algebraic equation.. Henée, u can be expressed as a multi-valued
function of v. If we fix vy and assign each 61" two different parts of the
multi-valued function on each side of Vys U becomes a function of v with

discontinuity at vy. Substituting the function u of v into the second
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equation of (1.2) and rewriting the composed function with the same symbol g,
we obtain the equation (1.1). The existence of such a steady-state solution
is recognized by some numerical experiments. ( See Mimura [1]. = Mimura
also proved that stable steady-state solutions of (1.2) have a unique Vg

determined by f and g under an appropriate assumption.)

2. Presentation of resuits
The semilinear term g we deal with in this paper is restricted to the one
satisfying the following condition.
Condition 1.
(i) g is a function defined on (vl s v2) with a discontinuity point of the

first kind v, and satisfies

—o < g(ve-0) <0 < gvd40) < +=,
(ii) g<0 in (vl ,v*), >0 in (vy ,v2), and g is Lipschitz continuous in
(vl » Ve—0] and [vy+0, v2). (i.e., & is Lipschitz continuous in [vl+ £,
vy] for any e>\0, where g=g(v) for ve (vl » Vy) and =g(ve-0) atA V=V,
Similarly [vg+O ,v2) is considered.)
(iii) g is monotone decreasing in (Vl » Vy) and (vy ,vg).
We rewrite (1.1) by the weak form:
Find ve Hl(I) such that
(2.1) 1
( dv/dx , do/dx ) = ( g(v) , ¢ ) for all ¢ e H (I),
where ( , ) is the inner product in LQ(I). Our aim is to find all the solutions
of (2.1) satisfying
(2.2) v

< v(x) <v (O;x;SLo).

1 2

Remark 1. (2.2) makes sense since veHl(I) implies v e C(I) by Sobolev's

lemma. Furthermore, for the solution v of (2.1), we have ve Cl(I), since

Condition 1 gives g(v) e LE(I) which yields V€H2(I).

Theorem 1. In the case g(v,) #0, all the solutions of (2.1) and (2.2)
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are v;fl,, 1=1,2 and n2n,, where v:’t( x) are functions defined in the subsequent

section (see (3.9)) and n, is a positive integer depending on g and %

0

In the case g(v,) =0, v, is added to the solutions.
Remark 2. If g(vl"'o.) =g(v2—0) =0, and if g is Lipschitz continuous in

[v1+0,v*—0] and [vg+0,v,-0], then n =1 for any 24> 0.

2 0

Remark 2 as well as Theorem 1 is proved at the next section.

3. Proof of Theorem 1.

Let v(x ; ¢) be a solution of the initial value problein:

Po/ds’ = - v) (z>0)
(3.1) dv/dx(0) = 0 ‘
v(0) = e,
where ¢ > vl and
. gv) (vy<v<v,)
glv) =
g(v - 0) (ve s v ).

Such v(xj;c) exists uniquely since g is Lipschitz continuous in [c-¢ , +» )
for some e > O where any solution of (3.1) lies since g < 0.

Lemma 1. Let v(x;e) be as above. Then, we have

(3.2) v(ix; cl)<v(x;02) (x>0)
for vy <eg<ey.
Proof. Let X, >0 be the first intersecting point of v(x;cl) and v(x;c2).

Obviously it holds that
dv/dr(xo;cl) > dv/dac(xo;a2).
On the other hand, by (iii) of Condition 1, we have
Po/dn’ (w0,) = Go(zie;))) < -Glolzsey)) = dv/d’(zse,) ( 0<z<sy).

Integrating both sides from O to Xqs We have
dv/dx(aco;cl) < dv/dx(xo;cz).

Hence we obtain
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(d/de) "o (@ p0,) = (d/dm) v (z jic,) (i=0,1).
By the upiqueness of the initial value problem, we have
v(x;cz) = v(x,-c2) (z>0).
This is .a contradiction. Hence we obtain (3.2). Q.E.D.

Define a mapping ¢ from (v1 » Vg) into (0, +=) by
vidlelse) = v,.
Since d2v/dX2(x;c) > -g(c) > 0, ¢(c) is well-defined. By Lemma 1, ¢(c) is
monotone decreasing. Set |

2 = 1lim ¢(e).
cyv

1

Lemma 2. ¢ is homeomorphic from (vl . Vy) onto (0,1%) and strictly
decreasing.

Prqof. ¢ is strictly decreasing and therefore injective by Lemma 1. We
show ¢ is continuous. Let {cj} be any segquence in (vl , Vy) converging to
c € (vl,v*), It is sufficient for us to show that there exists a subsequence
{cjk} such that ¢(cjk) éonverges to ¢(c). Let ¢ (résp. c ) be the supremum
(resp.. infimum ) of {cj}. Since ¢(cj) e[¢(c) , ¢(c)], there exists a subsequence
{cj } which converges to some de [¢(c) , ¢(c)]. Then it holds that

k
lv(dse) - vyl

< |vldse) -v(dle. Jse)| +|vlole, )se) -vldle, );e. )]
= I Ik I Ik
< |vtd;e) -v(d(le, )ze)| + max = |vlzze) -v(xse. )|
- I Ozx<dle) J

+ 0 as jk > 4o

since v(xjc) is continuous and g is Lipschitz continuous in [c, vg-0l.
We show ¢ is surjective. ‘Tt is sufficient for us to show that
¢(c) >~ 0 as ¢ + Vg,

Suppose that 1im ¢{c) = 4 >0. Fix.xoz:(O ,d). Then it holds that
cetvy ,

o(xo,-c) > v(xo,-v*) > vy as ¢ > v, ,
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since v(x;c) converges to v(x;v,) uniformly in [0, d]. On the other hand, by

V(XO;C) < v(dse) < vy , we have

1lim sup v(zx
ctvy,

0;0) SV,
This is a contradiction. Hence, d = 0.

That ¢_l is continuous is easily proved. Q.E.D.

For any ¢ (0, %), v(x;¢_l(£)) is a unique solution of

Po/de® = -g(v) C(0<m<n )
(3.3) dv/dx(0) = 0

V(L) = v,
satisfyi;lg
(3.4) v, <v(x) <vy (0<z<t).

Uniqueness is proved easily by making use of Lemma 1. Define a mapping o from
(0, %) into (0, +») by
a(2) = dv/de(2;67202)).
Lemma 3. o is strictly increasing and homeomorphic from (0, %) onto
(0, a) and satisfies
(3.5) 0 < aft) £ -g(v,-0)2 (0<2<2.),
where o = lim sup a(%).
242
Proof. We first show that o is strictly increasing. TFix zi, i=1,2, such
that
0 < 21 < 22 <2 and 22 < 2%
Set for s e[0, 22]
.y -1
“1(3)7”(“1‘3"1’ (21)) and w2(s)fv(22—s,¢ (22)),
where v(x;¢_l(kl)) is assumed to be extended in x<0 to the even function.
Then LI i=1,2, satisfies
2 2 _
d wi/ds = -g(wi(s)) (0<sgcx Ly )

(3.6) w,(0) = v,
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| aw/dsc0) = -atr) .

For the purpose of an indireet proof, assume that a(ll) 2 a(le). If
a(ll)==u(£2), (3.6) implies that wl(s) = wz(s) (O;s:élg), which contradicts

that
wo(a,) > 07200 > 07a,) = w,(0y)

1'72 1 2 272" ° _
be the first intersecting point of vy and Wy

Assume u(21)>-q(22). Let s

Obviously it holds that

do /ds(sy) 2 duy/ds(sy) .

\%

On the other hand, we have
Py ds (a) =-glug(s)) 2-g(w,(3)) = &, /ds®(s) (028 585),

sO] and g is monotone decreasing. Hence we obtain

>w, on [0,

gsince w
2 1

I

%0 2 2
dwy/ds(s ) —a(gz) + f0 d"w,/ds ds

S
—atny) + [ 0 dw/ds® ds
, ,

v

\%

dwz/ds(so) s
< u(ze), which also shows «a

(2,)

which is a contradiction. Therefore we get a 1
is injective.
(3.5) is proved easily by making use of
Yoo 2. -1
a(e) = [ d%/dx" (x50 () dx
0
. -1
= -] g(v(x;¢" (%)) dx .
0
that o is continuous. We have

We next show

-1 -1
|dv/de(2,597" (2)) = dv/dx(8,y56 (21))1

A

{a(ll) - a(22)|
-1 : -1
+ldv/de (1507 (1)) - do/du(%558 (2,))]

L1 S
|dv/de(n,3677 (8,)) - dv/d(hy567 ()]
|do/dss(w;672(8,)) - do/dm(es 67T (2,))]

A

+ max
Oéx__<_21+e

for 0<£1<22<21+e<§ .
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Letting &, > % , we obtain a(22) - u(ll) since ¢ (£2) > ¢ (Zl).
That o is surjective and that a—l is continuous are easily proved.

Q.E.D.

Define s, = oL Then, s

strictly increasing and satisfies

, is homeomorphic from (0, a) onto (0,%) and

~a/g(v4-0) 2 s,(a) (0<a<al.
v(x;¢;l(sl(u))) is a unique solution of
[ dPv/da® = -gv) (0<z<sla))
dv/dx(0) = 0

(3.7) { wvls;(a) = v,

dv/dk(sz(a)) = o

v, < vlx) < v, : | (0

A

x

A

7 sz(a) ).

S

Similarly we can define s, such that s, is homeomorphic from (0,4a) onto

(o ,i) and strictly increasing and satisfies

0/g(v4+0) < s,(a) (0<a<al
For any a € (0 ,3) there exists a unique solution of
[ Po/a? = (o) (0<z<sya))
dv/dx(0) = 0

(3.8) < v(syla)) = v,

dv/dx(sZ(a)) = -a

vy <vlx) < v (0

. 2

ITA

x < sg(a) )».

Set & = min(a,a) and = lig (sl+sg)(a). For o ¢ (0, a) we denote the unique

solution of (3.7) (resp. (3?8?) by vixja,1) (resp. v(x;0,2)). Then,~sl+s2 is

homeomorphic from (0 ,&) onto {0 ,ﬁ) and strictly increasing and satisfies
{-1/g(v4=0) + 1/g(v,+0)}a < (81+32)(a).

Lét nO be the smallest positive integer greater than QO/Q. Define un and v;,'

i=1,2‘and n > ng, by



(sl+s2)(an) = zo/n R

and
v(x; un,i) (0 fx < si(ocn))
(5.9) vi(x) ) J v((sz+32)(an)—x',- ozn,i+1) (Si(an) <x ;(sz+32) (an))
" v (2(s +8,) (o) - ) (s #8,) (0 ) <z 22(s ts,)(a )
\periodic with period 2(31+32) (oan) (2(31+32) (un) <z < 20),

where v(x; un,3) is equal to v(x; an,l). It is easy to observe that v;, i=1,2

and n>n., satisfy (2.1) and (2.2). To complete the proof of Theorem 1 we must

O’
show that there exist no other solutions of (2.1) and (2.2). Let vZ#vy be a

solution of (2.1) and (2.2). By Remark 1 and (2.1), we have
_ 2
(3200 wvec'l0,8,) wa [ glo@) dx=o.
: 0

We first show that there exists Xy € (0,2,0) such that
(3.11) v(z,) =v, and dv/du(x,)) #0 .
be the nearest point to z

Take z. such that v(zo) # Vy. Let x satisfying

0 0 0]

v(xo) = vg. Such x is well-defined since {x;xe (O,SLO), v(x) =vg} is not
empty by (3.10). Without loss of generality, we may assume that

x, <z and v(z)) <vlxy)) (=v,) .

From (2.1), we observe v satisfies the first equation of (1.1) in (xo , zo).
Integrating the equation from xo to Yqo where yo € (xo R ZO) is a point satisfying

dv/dx(y.) < 0, we have
0 ,

]

Y
dv/dn(z,) = dv/du(y,) + | ° g(v(s)) de
X

A

do/dely,)
< 0.
" Hence XO satisfies (3.11). Set a= —dv/dx(xo) > 0. While v is lying in

(V1 » Vg), v satisfies the first equation of (1.1). Therefore, v can be

extended until v reaches vy, or x = ILO. In the former case there exists
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x, = xO-FQSl(a) ¢TI and satisfies
v(xl) = v, and dv/dxﬁrl) =a.
Since ve Cl(I) and a >0, v(x) transverses v = v,. While v is lying in
(Vg ,v2), v satisfies the first equation of (1.1). Hence.v can be extended
until v reaches vy, or x = %O. In the former case there exists x2==x1+252(a)€ I
and satisfies
vix,) = v, and dv/dr(xz) = -a .
Repeating this process on both sides of Xg» and noting the boundary condition,
we observe that o must be equal to some @ and thét v*=vi or vi. This
completes the proof of Theorem 1.
Proof of Remark 2. Under the conditions of Remark 2, the equation (3.1)

with ¢ = v . ©Since & is Lipschitz

, and g(vl) =0 has a unique solution v=v

o

continuous in [vl > Vgl, We have L = +o. Similarly 7 = +» is obtained.

Therefore, we get no = 1. Q.E.D.
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