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PERIOD REPRODUCING DIFFERENTIALS
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Introduction.

It is of interest to investigate how some characteristic
quantities attached to Riemann surfaces vary under quasiconformal
deformations of the surfaces. Such sort of studies have been
made by L. Ahlfors [4], L. Bers [5], and so on. |

In the present paper we consider first the Teichmaller space
Tg of marked closed Riemann surfaces of genus g, and show in § 1
some theorems about the continuity on Tg for the holomorphic
differentials with fixed A-periods and the period reproducing
differentials. These results can be extended over the Teichmaller
spaces of certain classes of open Riemann surfaces.

In § 3 and 4 we examine specifically the case of squeezing
deformations with respect to a non-dividing simple closed curve c.
For this purpoée we consider the augmented Teichmﬁller space %g
and its subset c%g determined by c. We introduce a topology ‘into

A

ch’ which we call the fine topology ( cf. § 4 for the precise
definition ). Then it is proved that the fine topology is finer
than the conformal topology introduced by W. Abikoff [2]. The

period reproducing differentials with a suitable normalization
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vary continuously on CTg with respect to the fine topology.
The proofs are almost sketchy or omitted, and the details will

appear elsewhere.

§ 1. The continuity on Tg for holomorphic differentials

1. Let R* be a closed Riemann surface of genus g=22 and I =

{ Ai’ Bi }i§1 be the standard set of generators of the fundamental

1 ,-1

g -
group of R*¥ with the single relation ,HlAi-Bi-Ai -B.7 = 1. We
i=

i
1 -
denote by Tg the Teichmuller space with the base point R* = (R¥*,I),

. . \A
which is equipped with the usual Teichmuller topology. On each
point of Tg a canonical homology basis is induced by T and is

denoted again by { Ai, B }igl' The 1l-cycles and (free) homotopy

i
classes etc. given on R* induce also on every point of Tg the

corresponding ones, which will be denoted by the same notations.

Now let R éiTg be fixed and take a holomorphic abelian dif-

0
ferential 0O
Ro
the unique holomorphic differential on R, say GR , which has the

on RO' Then on every point R of Tg there exists

same A-periods as OR , and we have the following

0

(A4 - -

Theorem 1. Let fz be the Teichmuller mapping of R, to R,
: 1 + kR ’ 5
and KR = ———2 be the maximal dilatation of fR' Then we have
1 - kR :
I ZkR
(1) 0zefs - 03 llp < —— llog |l
RPR - ReTRp =1 -k R0 Ro

Hence, OROfR converges to eR in the Dirichlet norm if R con-
0

verges to RO in T
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Proof. Noting that @R°fﬁ is a closed differential on RO

- with the finite Dirichlet norm and w = OROfR - GRO has vanishing
A-periods, we have  ( w, w*¥ ) = 0 by the bilinear relation, from
which we can derive the desired inequality (1). ( Cf. [4] and

[1z21.) | q.e.d.

Let ¢ denote a non-dividing simple closed curve on ( surfaces
of ) Tg , and CHS be the holomorphic reproducing differential
s

for ¢ on RéﬁTg. Namely,. it is characterized by the relation

- (2) : Im J; O R = ©x Y

for every l-cycle y on R, equivalently by j w = ( w, Re OC R )
C ?

for every harmonic differential w with the finite Dirichlet norm

on R. Then similarly as Theorem 1 we have

Theorem 1'. Under the same assumption as in Theorem 1, we

have

A
(o]

(3 |l e, z°fz - 6. g llg 22—
c,R "R C,RO R0 1 - k- c,Ry 0

Hence, @c,R°fR

converges to RO in Tg.

converges to ©_ z in the Dirichlet norm if R

0

Remark. As is seen from the proof, the mapping fR of R, to

0
R need not be the Teichmuller mapping, but it suffices to be an
appropriately smooth quasiconformal mapping ( .with a suitable

change of kR ).



2. As the universal covéring surface of any RGETg,vwe take
the unit disk B = {]z|<1}. Then f5 can be lifted to a quasi-
conformal self-mapping of B. It is extended continuously onto
{|]z | =1 } and is uniquely determined by the normalization fixing
three ﬁoints 1, i, and -1.

We write this 1ift as fR again. The differentials Oﬁ and
ec,i can also be lifted to holomorphic differentials,vsay aR(z)dz

and a. R(z)dz, over B respectively.
, ,

Theorem 2. If R converges to RO in Tg’ then aR(z) and

ac R(Z) converges uniformly on every compact set in B to aR(z)
? 0
and a_ 5(z) respectively.
c,R

Proof. The assertion follows from Theorem 1 and 1' as in [12].

Also see [4]. ‘ qg.e.d.

Now since R is compact, the quadratic differential Oi R has
b

closed trajectories ( [3], [11] ). Let L( OC R ) be the admis-

H

sible ( i.e. homotopically independent ) curve system determined

2
by GC,R , and set

SC = {IQGTE : L( ec,ﬁ ) contains c. }

Then we have the following result.

Theorem 3. If ReT is sufficiently near RO’ then L( 6 7 )
>0

g ,
is contained in L( e R»)' Hence SC is an open set in Tg

>
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proof. For a holomorphic differential © on R, a trajectory
arc of @2 is the curve along which Im 6 = 0. By means of this

fact, (2), and Theoreh 2, we can prove this theorem. qg.e.d.

5222£§. Roughly speaking, the decomposition of R by criti-
cal trajectories of @i R into doubly connected domains also varies
b .

continuously on Tg' ( For the details see [12].)

3. We are able to extend the above results to the Teichmal—
ler space T(R) for an open Riemann surface R of finite or infinite
genus. Here, since the existence of the Teichmgllér mappings 1is
not known, we need to take another standard ( suitably smooth )
quasiconformal mappings for convergent sequences in T(R).

Now to extend Theorem 1 aﬁd 1' we need further the existence
theorem of the holomorphic differentials with the finite Dirichlet
norm which satisfies the given period condition, and also the
( generalized ) bilinear relation on R. Under these considera-
tion we can extend Theorem 1 for any R belonging to the class O"
(, cf. [7] ), and Theorem 1' for any R'belonging fo the class Oyp-

A similar cbntinuity for the holomorphic reproducing differ-
entials also holds for a wider‘class of‘open Riemann surfaces if
the behavior of those differentials are‘appropriately réstricted;

All the details will appear in [8].



§ 2. The open set SC ip Tg'
In the sequel we shall consider again the Teichmaller space

Tg with genus g ( 22 ). Fix a non-dividing simple closed curve

c. Here without loss of generality we may assume that c is freely

homotopic to Al.

A homeomorphism of S . Let Tg 1.2 be the Teichmuller space
A - 3 &

of marked Riemann surfaces of type ( g-1,2 ). We shall construct
a mapping Fl from SC into Tg—l,Z as follows: Let RGESC and WR

be the characteristic ring domain of @i R for ¢ (, that is, the
2

union of all closed trajectories of 62 R which are freely homo-
H

topic to ¢ ). This Wﬁ can be mapped conformally onto a ring

domain { 1<|z|<r2 }. Let Cg be the closed trajectory in Wy of

@i,R corresponding to the circle { |z| = r }. Then R - C; becomes
a bordered Riemann surface with two contours. Adding two regions
D, and D, correspbnding to { O<|z|<r } and { r<|z|<+~ } along
each contours of R - Cﬁ respectively, we get a Riemanh surface
R; of type ( g-1,2 ).

Now we may assume that { A;, B, }i§1 of R lie in R - Cx
consists of a single‘point. As the gen-

except

for B and that B

1’ 10 Cr
erators of the fundamental group Wl(R', p) of R', we choose loops

{ A!, B!, Ci, C, 187 L 5o that
1 1 1 2 1=

(i) A! = A, and B! = B
1 1

i+1° ( i=1"”, g_l ),

(ii) C1 and C2 are closed curves belonging to nl(R', P)

i+l

which run along B1 in R - CR ( considered as a subregion of R')



from the base point p, arround the punctures in D1 and D2’ respec-

tively, and back to p along B, in R - Cg-

(iii ) They satisfy the single relation
g-1 1 ,,-1

I [A!-B!-A! ~.B! "].C
i=1 17171 1

-C, = 1.

1 72

with the marking induced by these generators we‘get a point R' of
Tg-l,Z’ and defining F1 by Fl(R) = R' for every RGESC,.we have a
mapping from SC into Tg-l,Z’

Next we define a mapping Fz from SC into the upper half plane

U=1{Imz >0} so that for every §_esc

2 .
Re F,(R) = ———— - Re J 0. 3 and
2 _ 2 c,R?
loc g |l By

mR,

Im FZ(R)

where mgy denotes the modulus of Wg-
Thus we have a mapping F = ( Fi» F, ) from SC into the product

space Tg—l,Z x U.

Theorem 4.  The mapping F is a homeomorphism of SC onto

T x U. 1In particular S_ is simply connected.
g-1,2 c

Proof is omitted .( cf. [12] ).

Remark. Generally SC does not coincide with the whole space

Tg' However we can see that SC = T1 1 for every non-dividing
b

simple closed curve c on T1 1°

>
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§ 3. The augmented Teichmuller spaces.

As for the boundaries of the Teichmaller spaces many new
investigations have been made since a series of studies by Bers
[5], Maskit [10], and Abikoff [1]. 1In view of studying the limits
in deformations of Riemann surfaces, here we shall consider as
the boundary of Tg the set of marked closed Riemann surfaces with
nodes of ( arithmetic genus g ) defined by Bers [6], which cor-
respond to regular b-groups ( cf. [1] ). We denote by %g the
set obtained from Tg by adding such points, and call it the aug-
mented Teichmaller space for genus g.

Now let R be a Riemann surface with nodes, and N(R) be the
set of nodes of R. Put R' = R - N(R). For two marked Riemann
surfaces Rl and RZ ( possibly with nodes ), a deformation < Rl’
RZ’ f > is, by definition, a continuous surjection f from R1 to
R2 which preserves the marking, and satisfies the following con-
ditions ;

1

(i) f—llRé ( the restriction of £ = on Ré ) is a homeomor-

phism into Rl’ and

(ii ) for any node p in N(R,), f—l(p) is either a node of R,

or a simple closed curve on Rl'
In terms of deformations we can .say that the augmented Tei-
1" ~
chmuller space Tg is the set of marked closed Riemann surfaces

R ( possibly with nodes ) for which there exists a deformation

< R*, R, f > from the base point R* of T _.
o




Definition. Following Abikoff [2] we introduce on Tg the

conformal topology as follows: First for every ﬁ.eTg we set

D(R) = { SE'Tg : For two deformations < R*, R, f >

and < R*, §, £, >, there is a de-

formation < §, R, f, > such that

2
f = f2°f1. }.

Next given a neighbourhood K of N(R) in R and a positive ¢, we

define a ( K,e )-conformal neighbourhood Np _ of R in Tg by the

>
set
{ S&€D(R) : There is a deformation < §, R, f >
-1 . .
such that f I(R—K) is a (1l+g)-quasi-

conformal mapping into S. }

Taking the system of N for arbitrary K and € as above as a

K,e
fundamental neighbourhood system of R, we have a topology on Tg’
which we call the conformal topology on Tg'

The conformal topology restricted on Tg is equivalent with

12}
the usual Teichmuller topology, and it satisfies the first count-

ability axiom.

§ 4. The fine topology.
1. Let ¢ be a non?dividing simple closed curve on Tg’ which

is fixed once for all. And set
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3. T = { ﬁw&%c : N(R) consists of one point p
and for the deformation < R¥*, R,
f >,»f~1(p) is freely homotopic
to c. },
and
C%g = Tg\)ach
Obviously D(R) = c%g for every Ré:aCTg. Also note that this
boundary space aCTg for ¢ is naturally identified with Tg-l,Z'
We denote this identifying mapping from BCTg onto Tg-l,Z by J.

11
Then J induces a topology on ach from the Teichmuller topology

on To_1 29 which we call also the Teichmuller topology.

Remark. The conformal topology restricted on ach is equi-
1A}
valent with the Teichmuller topology.
Now by using the homeomorphism F defined in § 2, we can

~

introduce a new topology on ch'

Definition. Let U = UV {=}. The fundamental neighbourhood
system of « is defined by { Un b= o where

~

u, = { zeU : z =, or Im z > n. }.

For every R.éBCTg define
F(R) = ( J(R),» ),

~

and we can extend F so that it gives a bijection from SC to

-10-
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Tg-l,Z x U, where SC = SC\JBCTg. Then we can introduce a topology
on c%g so that this extended mapping F gives a homeomorphism from
§c onto Tg_1 , x U and it is equivalent with the Teichmuller to-

b : B
pology on Tg ( cf. Theorem 4 ). We call this topology the fine

topology on ch' |
In other words, we may define this topology by taking, as a

fundamental neighbourhood system of each RéiaCTg, the system

V. ={ Ses_: d( Fl(S), Fl(R) ) <
Sé.ach (, that is, F

or Im FZ(S) > log n.

" .
Here d( , ) denotes the Teichmuller distance on Tg—l 2"
b

Theorem 5. The fine topology is finer than the conformal
topology restricted on ch'
Proof. From the definition and the above remark, it suffices

to prove that a sequence { Rn }n=l in Tg converging to Roé aCTg
in the sense of the fine topology converges to Ro‘also in the
sense of the conformal topology. But for such a sequence { Rn }
we can easily find sequences { c } and { fn } satisfying the con-

dition (C) below, hence the assertion follows from the next lemma.

qg.e.d.

Lemma. A sequence { Rn } in Tg converges to Roé ach in the

sense of the conformal topology if and only if for every n there

-11-
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exists an M-quasiconformal mapping fn from Rn— <, into RO (, where
<h is a simple closed curve on Rn freely homotopic to c, ) which

preserves the marking and satisfies the following condition (C)

(C) For any neighbourhood K of N(RO) and positive ¢, there
is an N such that for every n =N we have |

(1) fn(Rn - Cn) ) RO - K, and

(ii) fﬁll(RO— K) is (1l+e)-quasiconformal.

Here M is a positive constant independent of n.

Proof. Using the extension theorem on quasiconformal mappings

( [9] Theorem II -8-1 ) we can show the assertion. q.e.d.

Remark. We can see that the conformal topology and the fine
topology are equivalent to each other also when they are restric-

ted on the foliage

- = D a . D = D!
UR' { Re¢ SC : Fl(R) R' .}

for each R'«ETg_l ,- Also note that these topologies restricted
b .
on such a foliage corresponds to the Schiffer's variations by

attaching a handle.

2. Llet p; and p, be the punctures of R' = J(R)E’Tg_l’z cor-
responding to C1 and C2 respectively for each Ré.SCTg, and ¢R'
be the elementary differential of the third kind of R' with sin-

gularities p; and p, ( cf. [12] ). We define

-12-
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0 = S T for every R€T _, and
o
1o zli2 ©
- C’R
05 = 7%‘¢R' ( R" = JR) ) for every Reaach

Then we have the following

~

Theorem 6. Suppose that a sequence { Rn }n=1 in CTg converges
to Roé;ch in the sense of the fine topology. Then there exists
a sequence { < Rn’ R, £ > }:=1 of deformations satisfying the
following condition : For every neighbourhood K of N(RO) and pos-

ijtive ¢, we can find an N such that

. -1 . .
(i) £ ‘(RO‘ Ky is (1+e)-quasiconformal, and

.. -1
(ii) llOR of

- 05 || ) < g
) Ry! (Ry- K)

for every n 2 N. Here if N(RO) = ¢, then we assume that K = ¢.

Proof. We can show this theorem by (3) in § 1 and the homeo-
morphism F in § 2. The details will appear elsewhere. qg.e.d.
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