<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>テーマ</td>
<td>同型写像と非有界微分子</td>
</tr>
<tr>
<td>著者</td>
<td>ITO, K.R.</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1978年3月号, 320: 52-61</td>
</tr>
<tr>
<td>発行年</td>
<td>1978-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/104004</td>
</tr>
<tr>
<td>タイプ</td>
<td>部門専門雑誌</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
Canonical Linear Transformation
on Fock Space with an Indefinite Metric

K.R. Ito
Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606, Japan.

Abstract: We first construct a Fock space with an indefinite metric \(\langle , \rangle \) where \(\Theta \) is a unitary and hermitian operator. We define a \(\Theta \)-selfadjoint (Segal's) field \(\Phi_\rho(f) \) which obeys the canonical commutation relations (CCR) with an indefinite metric. We consider a transformation \(\Phi_\rho(f) \mapsto \Phi_\rho(Tf) \) (\(T \) = real linear) which leaves the CCR invariant. We investigate the implementability of \(T \) by an operator on the Fock space.

Let \(\mathcal{H}_1 \) \((1=+,-)\) be Hilbert spaces equipped with usual positive definite hermitian inner product \(\langle , \rangle \). Let \(\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_- \) be a Hilbert space equipped with the inner product \(\langle , \rangle = \mathcal{I}_1(,) \). Let \(P_\pm \) be selfadjoint projections onto \(\mathcal{H}_\pm \). Then the Hilbert space equipped with an hermitian inner product \(\langle , \rangle = (, \varphi) \) with \(\varphi = P_+ - P_- \) is called a "Hilbert space with an indefinite metric".

Let \(S_n \) be the usual (n-fold) symmetrization operator on the n-fold tensor product space \(\otimes_n \mathcal{H} \), and let

\[
\mathcal{F}(n) = S_n[\otimes_n \mathcal{H}]
\]

be the n-particle (Fock) space. The total Fock space

\[
\mathcal{F} = \oplus_{n=0}^{\infty} \mathcal{F}(n)
\]

is...
is also given by
\[\mathcal{F}(\mathcal{H}_+) \otimes \mathcal{F}(\mathcal{H}_-) , \]
where \(\mathcal{F}(\mathcal{H}_+) \) and \(\mathcal{F}(\mathcal{H}_-) \) are Fock spaces constructed from \(\mathcal{H}_+ \)
and \(\mathcal{H}_- \) respectively. For an operator \(A \) on \(\mathcal{H} \), define \(\Gamma(A) \)
by
\[\Gamma(A) \mathcal{F}(n) \subset \mathcal{F}(n) , \]
\[\Gamma(A) \mathcal{F}(n) = A \mathcal{F}(n) \quad (n\text{-times}). \]
Then \(\Theta = \Gamma(\varphi) \) is again an unitary and hermitian operator on \(\mathcal{F} \).
We define an indefinite sesquilinear form in \(\mathcal{F} \) by
\[\langle , \rangle = (, \Theta) . \]
The adjoint of \(A \) with respect to \(\langle , \rangle \) is denoted by \(A^\Theta \)
and equals \(\Theta A^\ast \Theta \).

Definition 1: (1) For \(f \in \mathcal{H} \), the creation operator \(a^\ast(f) \)
is defined by
\[a^\ast(f) : \mathcal{F}(n) \to \mathcal{F}(n+1) \]
\[\phi \mapsto \sqrt{n+1} S_{n+1}[f \phi] . \]
(2) For \(f \in \mathcal{H} \), define the \(\Theta \)-selfadjoint (Segal's) field by
\[\phi_\varphi(f) = \frac{1}{\sqrt{2}}[a^\ast(f)]^{(\Theta)} - [a^\ast(f)]^{(\Theta)} \]
where \(\cdot \) denotes the closure.

Since \([a^\ast(f)]^{(\Theta)} = [a^\ast(\varphi f)]^{(\Theta)} \)
with \(\varphi = P_+ - P_- \), \(\phi_\varphi \) is a normal
operator. \(\{ \phi_\varphi(f) \} \) obey the CCR with an indefinite metric:
\[[\phi_\varphi(f), \phi_\varphi(g)] = \text{Im} \langle f, g \rangle = -i \text{Re} \langle \bar{f}, \varphi g \rangle \]
where \(\bar{f} \) is the complex conjugation of \(f \) and \(J = \sqrt{-1} \) is a multi-
plation operator of \(i \).
Definition 2: (1) An invertible real linear transformation T is called φ-symplectic if it satisfies
\[T(\varphi)J = J \]
where $T(\varphi) = \varphi^T \varphi$ and T^* is the adjoint of T with respect to $\text{Re}(\cdot, \cdot)$ in \mathcal{H}. (If T is complex linear, then this adjoint is equivalent to the usual adjoint with respect to (\cdot, \cdot) in \mathcal{H}.)

(2) $T_+ = \frac{1}{2} [T + JTJ^{-1}]$. Especially anti-linear part T_- is called the off-diagonal part of T.

Our purpose is to investigate an operator which is expected to implement $U_T^* \varphi(f)U_T^{-1} = \varphi(Tf)$, and to investigate the new vacuum $\Omega_T = U_T^{-1} \Omega$. Here $\Omega(0) = C$ is the Fock vacuum. Since $\varphi(f) \to \varphi(Tf)$ leaves the CCR invariant, one may expect that U_T is a Θ-unitary (bijective Θ-isometric) operator.

Definition 3: (1) T is called Θ-unitarily implementable if there is a Θ-unitary (bijective Θ-isometric) operator U_T which implements $U_T^* \varphi(f)U_T^{-1} = \varphi(Tf)$.

(2) T is called weakly Θ-unitarily implementable if there exist a Θ-isometric (not necessarily bounded) operator U_T^{-1} and a cyclic vector $\Omega_T \in \mathcal{F}$ such that
\[U_T^{-1} P(\varphi(f)) \Omega = P(\varphi(Tf)) \Omega_T, \]
where $P(\varphi(f)) = P(\varphi(f_1), \ldots, \varphi(f_n))$ is any polynomial of $\{\varphi(f_i)\}$.

(3) T is called Θ-unitarily quasi-implementable if the Fredholm determinant $\det[1 + T_-^*(\varphi)T_-]$ uniformly converges to a non-vanishing finite value in $(0, \infty)$.

When $\varphi = 1$ (namely when $\Theta = 1$), three notions in this definition coincide each other $[1, 3, 4]$. For the implementability, the author proved $[1]$:

-3-
Theorem 1: T is Θ-unitarily implementable if and only if T_- is Hilbert-Schmidt and $[T, \varphi] = 0$. In this case $U_T^{-1} = \Omega_0 T \in \mathcal{F}$. Then

(1) $T_\in H.S.$ (H.S. denotes the Hilbert-Schmidt class),

(2) $[-\infty, 0]$ is in the resolvent set of $T_+^{(\varphi)} T_+ = 1 + T_-^{(\varphi)} T_-$.

In order to obtain a sufficient condition, we propose a φ-polar decomposition of T, namely a decomposition of T in terms of a φ-selfadjoint operator and a φ-unitary operator.

Theorem 2: Let $U_T^{-1} = \Omega_0 T \in \mathcal{F}$. Then

1. $T_\in H.S.$ (H.S. denotes the Hilbert-Schmidt class),
2. $[-\infty, 0]$ is in the resolvent set of $T_+^{(\varphi)} T_+ = 1 + T_-^{(\varphi)} T_-$.

In order to obtain a sufficient condition, we propose a φ-polar decomposition of T, namely a decomposition of T in terms of a φ-selfadjoint operator and a φ-unitary operator.

Theorem 3: Let a φ-symplectic operator T satisfy the conditions in Theorem 2. Then T has a decomposition

$$ T = U H, $$

where U is a φ-unitary operator (which commutes with J) and H is a φ-selfadjoint φ-symplectic operator with its spectrum in the right half plane.

Definition 4: φ-selfadjoint φ-symplectic operator S is called a generalized φ-scaling if S leaves K and JK invariant where $K = K \in JK$ and Θ refers to the orthogonality with respect to both $\text{Re}(\ ,\)$ and $\text{Re}<\ ,\ >$.

A generalized φ-scaling S takes the following form on $K \in JK$:

$$
\begin{pmatrix}
 h & 0 \\
 0 & h^{-1}
\end{pmatrix}
$$

Here $ChC = h$, where C is a complex conjugation operator:

$$ K = \{ x \in \mathcal{H} ; Cx = x \} . $$

Is H in Theorem 3 always similar to a generalized φ-scaling S
through suitable \mathcal{F}-unitary operator V? (This holds if $\mathcal{F}=1$ [1,3,4].)

$$H=VSV^{-1}.$$

If this is the case, we have a decomposition

$$T=V_{1}SV_{2}$$

under the conditions of Theorem 2, where V_{1} are \mathcal{F}-unitary. But V seems unbounded in general.

For a generalized \mathcal{F}-scaling S, we can obtain rather concrete theorems [1]. It sometimes suffices to consider generalized \mathcal{F}-scalings for physical applications [1,2].

Theorem 4: For a generalized \mathcal{F}-scaling S, if $S \in H.S.$, and if $\alpha = \text{selfadjoint part of } \mathcal{F}$-selfadjoint operator $h^{-2} \succ 0$, then

(i) both S and S^{-1} are weakly Θ-unitarily implementable.

(ii) The overlap between Ω and Ω_{S} is given by

$$|\langle \Omega, \Omega_{S} \rangle| = \text{det}^{-1/4}[1+S(\mathcal{F})S_{-}]$$

$$= \text{det}^{-1/4}[1 + \frac{1}{4}(h^{-1})^{2}]$$

This is non-vanishing finite.

Theorem 5: In Theorem 4, if $\inf \text{spec}(\alpha) < 0$, then the vector Ω_{S} which satisfies

$$\langle \Omega_{S}, P(\phi_{\mathcal{F}}(f))\Omega_{S} \rangle = \langle \Omega, P(\phi_{\mathcal{F}}(Sf))\Omega \rangle$$

cannot be in the Fock space: $\|\Omega_{S}\| = \infty$.

As is well known, when $\mathcal{F}=1$, the necessary and sufficient condition for T to be unitarily implementable is $T \in H.S.$ Then for $\mathcal{F}=1$, the overlap of the vacua does not vanish if and only
if T is unitarily implemented. In fact when $\varphi=1$, we have

$$T = U_1 S U_2$$

where U_1 are unitaries commuting with J. Further since

transformations $\phi_{\varphi=1}(f) + \phi_{\varphi=1}(U_1 f)$ are implemented by unitaries

$\Gamma(U_1)$ on the Fock space, we have $U_T = \Gamma(U_1) U_S \Gamma(U_2)$. Then

$$\Omega_T = \Gamma(U_2)^{-1} \Omega_S$$

and $(\Omega, \Omega_T) = (\Omega, \Omega_S)$.

For given S, let $T = V_1 S V_2$ where V_1 are $\varphi-$unitaries. Then

$$S \in \text{H.S.} \iff T \in \text{H.S.}$$

and

$$\det[1 + S(\varphi)S] = \det[1 + T(\varphi)T].$$

Since $\Gamma(V_1)$ are not bounded operators, T is not necessarily

weakly $\Theta-$unitarily implementable even if S is weakly $\Theta-$unitarily

implementable. But the above equation means that the formal

overlap $\det^{-1/4}[1 + T(\varphi)T]$ is an invariant quantity under

φ-unitaries. Furthermore if $\varphi \neq 1$, $\det^{-1/4}[1 + S(\varphi)S]$ can converge

to a non-vanishing (finite) quantity even if $S \notin \text{H.S.}$ Then

Definition 3 (3) implies that the formally defined overlap

is non-vanishing (finite), which is equivalent to the uni-

tarily implementability of S when $\varphi=1$.

(Sketch of the proof of Theorem 4)

Let $K = K_+ \oplus K_-$ ($K_i = P_i K$) and let $\{e_i\}$ be complete orthonormal

basis in K with respect to both $\text{Re}(\cdot, \cdot)$ and $\text{Re} <\cdot,\cdot>$. We use

the following unitary transformation W:

$$W \mathcal{K} = L^2(Q; \text{d} \mu_0),$$

$$Q = \mathbb{R}^\infty, \quad \text{d} \mu_0 = \prod_{i=1}^{\infty} \exp[-q_i^2] \frac{\text{d} q_i}{\sqrt{\pi}},$$

$$W \Omega = 1,$$

$$W[\phi_{\varphi}(e_i)] W^{-1} = \begin{cases} q_i & e_i \in K_+ \\ -q_i & e_i \in K_- \end{cases},$$

$$-\delta-$$
\[W[\phi_\theta(Je_1)]W^{-1} = \left\{ \begin{array}{ll} -i\alpha/q_1 + iq_1 & e_1 \in K_+ \\ -\alpha/q_1 + q_1 & e_1 \in K_- \end{array} \right. \]

Note that
\[[a^*(e_1)](\theta) = \frac{1}{\sqrt{2}}[\phi_\theta(e_1) + i\phi_\theta(Je_1)]. \]

Since the transformed vacuum should satisfy
\[[\phi_\theta(S^{-1}e_1) + i\phi_\theta(S^{-1}Je_1)]\Omega_S = 0, \]
\[<\Omega_S, \Omega_S> = 1, \]
we have [1]
\[\Omega_S = [\det(a)]^{1/4} \exp[-\frac{1}{2}(q,(a-1)q)] \]
where
\[(q,aq) = \Sigma_{ij} q_i \alpha_{ij} q_j \]
and
\[\alpha_{ij} = (e_1, \psi h^{-2} \psi), \psi = P_+ + iP_. \]

Remark that \(a \) is a \(\theta \)-selfadjoint symmetric matrix.

Under the conditions of Theorem 4, we can prove that
\[\Omega_S = \Omega_S(q) \in L^2(q, d\mu_0) \in \mathcal{F} \text{ and the cyclicity of } \Omega_S \text{ [1]. Further} \]
\[\Omega_{S^{-1}} = [\det(a^{-1})]^{1/4} \exp[-\frac{1}{2}(q,(a^{-1}-1)q)]. \]
Let \(a = a_r + ia_1 \) where \(a_r \) and \(a_1 \) are selfadjoint real matrices
(this follows from the properties of \(a \)). If \(a_r \) is positive
(then strictly positive since \(a_r^{-1} \) is H.S.), since
\[(a^{-1})_r = (a_r + a_1 a_r^{-1} a_1)^{-1}, \]
\[(a^{-1})_1 = -a_r^{-1} a_1 (a_r + a_1 a_r^{-1} a_1)^{-1}, \]
then \((a^{-1})_r \) is again a (strictly) positive operator. Thus \(\Omega_{S^{-1}} \in \mathcal{F} \). The \(\Theta \)-isometricity of \(U_S^{-1} \) follows from
\[<\Omega_S, P(\phi_\theta(f))\Omega_S> = <\Omega, P(\phi_\theta(Sf))\Omega> \]

-7-
which is proved in [1]. Finally
\[
\langle \Omega, \Omega_S \rangle = \langle \Omega_S, \Omega \rangle = \int \Omega_S(q) d\nu_0 = \det^{-1/4} [1 + S(\mathcal{F}) S_+].
\]

From the above proof, the reader can guess that \(\alpha > 0 \) is needed to ensure \(\| \Omega_S \| < \infty \).

(Sketch of the proof of Theorem 5)

Since \(\alpha \) is a \(\mathcal{F} \)-selfadjoint operator, \(\alpha \) takes the following form on \(JK_+ \otimes JK_- \):
\[
\begin{pmatrix}
(\alpha_+^+ & \mathbf{1} & \alpha_+^-) \\
\mathbf{1} & (\alpha_-^- & \alpha_-^+)
\end{pmatrix},
\]
\[
\alpha_{ij} = P_1 \alpha P_j.
\]

First assume that \(f \in JK_+ \) be an eigenvector of \(\alpha \) belonging to the eigenvalue \(-\lambda < 0 \). Since \(\Phi_\mathcal{F}(f) \) is selfadjoint,
\[
\| \exp[i \Phi_\mathcal{F}(f)] \| = 1.
\]

Note
\[
\langle \Omega_S, \exp[i \Phi_\mathcal{F}(f)] \Omega_S \rangle = \langle \Omega, \exp[i \Phi_\mathcal{F}(Sf)] \Omega \rangle
\]
\[
= \exp[- \frac{1}{4} \langle Sf, Sf \rangle] = \exp[- \frac{\lambda}{4} \| f \|^2].
\]

If \(\lambda > 0 \), the right hand side can be made arbitrarily large, which contradicts
\[
|\langle \Omega_S, \exp[i \Phi_\mathcal{F}(f)] \Omega_S \rangle| \leq \| \Omega_S \|^2 \leq \infty.
\]

The case of \(f \in JK_- \) is similarly discussed.

Our theory can be applied for quantum electrodynamics-type models where \(\mathcal{F}(\mathcal{H}) \) is the Fock space of the gaugeon (ghost particle which has a negative norm) and \(\mathcal{F}(\mathcal{H}_+) \) is the Fock space of physical particles (photon, etc.). In these...
models, the Hamiltonian H is expected to be θ-selfadjoint
(namely $H\theta$ is selfadjoint). As a simple example, let H be
θ-selfadjoint and bilinear with respect to creation and annihi-
lation operators. Let H be diagonalized $[1,2]$ by a transforma-
tion defined by $\phi_\theta(f) \mapsto \phi_\theta(Tf)$ for any $f \in \mathcal{H}$. Then Ω_T is the
physical vacuum of the Hamiltonian. If T is weakly θ-unitarily
implementable, then $\rho_T(\cdots) = \langle \Omega_T, \cdots \Omega_T \rangle$ is a normalized θ-self-
adjoint linear functional on the field algebra, which typically
appears in QED-type models. ρ_T is called a Lorentz state in

Theorem 5 implies that the linear functional ρ_T defined
by
$$\rho_T(P(\phi_\theta(f)) = \langle \Omega, P(\phi_\theta(Tf)) \Omega \rangle$$
cannot be a continuous state in general on the C^*-algebra gene-
rated by $\{\exp[i\phi(f)]; f \in \mathcal{H}\}$, where $\phi(f)$ is the selfadjoint
Segal's field.

The converse problem, namely to obtain a representation
(or T) from the expectation values, is the problem which
must be solved to construct a QED-type model in a mathematically
rigorous way $[2]$. This corresponds to a generalization of the
GNS-construction. This will be discussed someday.

-References-

[1] K.R.Ito, "Canonical Linear Transformation on Fock Space
with an Indefinite Metric", RIMS-preprint (1977) to appear
in Publ.RIMS.

-9-