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UNBOUNDED DERIVATIONS IN COMMUTATIVE C*—ALGEBRAS
Shéichird Sakai

§1. Closcd *-derivations in a commutative C*-algebra and

Silov algebras.

Let L = C(K) be the C*-algebra of all complex valued
continuous functions on a compact Hausdorff space K. A
linear mapping & in (1 is said to be a derivation in 07

if it satisfies the following conditions:

(1) _D(8) is a subalgebra of O0¢ and separates the

points of K, where ) (§) is the domain of §.
(2) &(ab) = §{a)b + as(b) (a,b € .O(8)).

Let & be a derivation in (7 and define H;allléfs

a g§(a); X vy
!}{ )11(21? bel}s)), where ( ) (x,y,2, w&0l)is
0 a

\z W

the matrix of 2x2 over {f{I . Then ) (§) is a normed alge-
a d&(a)

bra with ||l sqné , for a - ( ) is an isomorphism.
0 a

1.1, Proposition. Let § be a derivation in {2 and sup-

Sithoy- ci1.2)  an K,
pose that L) (6) is a Banach algebra under some norm |l«liy
Cef Ped. 1 2) A »

then Hlallly gklally (a €4(8)), where k is a fixed posi-

12
tive number.

Proof. By Johnson's theorem (Theorem 3 in [2]) there is a
finite family of mutually orthogonal idempotents eO’e1""’en
in L(8) such that for p € the support of €y
D)

w8

L-Ongé /)7-‘:5 Pﬂ}u?cl; Lhda};g;;:’enﬂg thal f/”:a Ibn![?t’-’»if:'a‘n Chivm bo X(&:ﬂla'nﬁ’f‘*t
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a -» §(a) (p) (a &D(8)) is continuous with respect to
llelly and “0(6)61 (i =1,2,...,n) has a unique maximal

n .

sy e, =1. since L(8)e. (i = 1,2,...,n)
=g & i

is semi-simple, it is one-dimensional and so the support

proper ideal and

of ey (i =1,2,...,n) consists of one point Py

Then S(a)(pi) = G(a)(pi)ei(pi) = 6(a e;)(py) =0
(a €.D(S)); hence a - §(a)(p) = fp(a) is continuous with
respect to |Il»lly for each p € K. Since {fplp € K} is
compact in _D(8)*, where J(8)* is the dual of Q(6)

with respect to |le]ly , sup NE Il < 4.
DEK p

Since a - a(p) (a € L (8)) is a character of the
Banach algebra A (§) for each p € K, llall < llally for

. a(p) 6(a)(p)
a € L(8). Hence |llalll, = sup n\ \
S 0

Il < kilall
$ pEK = 1

a(p) /

(a €D(8)). This completes the proof.

A derivation § in 07 is said to be a *-derivation

if it satisfies:

(1) AL (8) is a dense *-subalgebra of (Z

(2) - &tab) §(a)b + as(b) (a,b € D (8)) .

(3) 6(a*) = &(a)* (a € D(8)).

1.2. Definition. A commutative Banach algebra A consi-
sting of some of the continuous functions on a. compact
Hausdorff space X wunder a norm possibly larger than the

sup norm is said to be a Silov algebra if for any point
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D

p of X and disjoint closed set S, A contains a

function vanishing at S and not vanishing at p.

Let Jl= C(K) and let § be a closed *-derivation

in JZ; then J(s) 'is a Banach *-algebra under the norm
IIMH(S with Hlél*llléS =HIaH|5 (a ¢ D(8)) .
1.3. Proposition. Let {6ala € N} Dbe a family of closed
*-—derivations in (0L and let L = n 00(5(1)_. For a € ,
a€ll .
define |[llalll= suplllallls  ~and let J o = {allllalll <+, a €ED}.
o€ll ;

Then 0 is-a Banach - *-algebra.

Proof. Let {an} be a Cauchy sequence ih As 0 under

IItelll 3 then it is Cauchy under IH’ﬂlda so that there is an /
element ba such that uan—balla 0 and ”6a(an)—5u(ba)“ - 0.
Therefore ba = bB =b for . a,B €N and b € qO(Ga) for

each ¢ € . For £ > 0, there is a positive number n{(eg)

such that ]uam—annl= zgﬁluam~anlﬂda < e for m,n > n(e).
Hence luam—anlnda < e for m,n > n(e) and o € I, and so
supluam—b|n6 =jfla_-blll < ¢ for n > n{(e). This implies
o€l o m - -

lIblll <+ and a_ - b in D o and completes the proof.

l.4. Proposition.  Suppose that -4)0. is dense in J{; then

0 is a Silov algebra.

Proof. Let p, be a point of K and let S be a closed
set in K such that Py € S. Take a positive element h

in {2 such that h(pyg) =1 and h(p) = 0 for p € s.



0 <e <1/3 let k >0 with

For
xk €Dy

2/3 < kipg) < 4/3.

then O < k(p) < 1/3 for

Let
function on the real line such that £
f(t) > 1 for t € [

+ € [0,1/3] and

£(k) € D(8)

(
2
3
(cf. §3) for each a € I
£(k) (p) =

Moreover § (f£(k)) = £'(k) e éa(k)

Ilh-k1|] < €

p € S

t)
4
1_3"] ’

f(k(p)) = 0O

(cf
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and

and

f be an infinitely differentiable

= 0 for
then
and v
for p € S.>

and so

. §3)

¢4
suplll£(k) N8 < NE' (k)1 supllikill§ + £ ()l < +o. This

a€ll a
completes the proof.

be a *-derivation in (fL

n, D"

Let §

for some positive integer

and suppose that

is dense in 0C ;

then Jj(én) is a dense *-subalgebra of 1. It is clear
that D (8™ > D (™) (m <n). For a € D(s™), define
2 n
- 8 §
a é&(a) é?) ........... ——é%l
2 n-1
§7(a) 3 (a)
0 a S THT e T
. 0 o a o - ' f
Htalité = |l ) ; .
) 0 0 a . >
o , : §(a)
™ [} )
0 g 0 o - o a
becomes a normed *-algebra under the norm

Then jj(én)
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Inaludn, for a-

Suppose that ¢

*-algebra. Denote -that &(a) =

then 9(f(a)) =

particular

1.5. Proposition.

and suppose that ANCI)

integer n;
IHlesn .

1.4.

Let A Dbe a Silov algebra on

primary if I

Given a maximal ideal MD ’

vanishing at

primary ideal attached to

COO0OCO

is closed; then

f(®(a)) for

£(a) € D (8™ if

then

p(E K),

n
s(a) ... 12l
a ¢§(a)- -°°
0 a BN
0 -_&(a)
0 0 a

o

a
' 0

0

)
I
!

0 0
0 o

f € c(R)

Let §

A (8™

&

M. 3
P

A (8"
d(a)

a € Jﬁ(én) and

K.

is an isomorphism.

is a Banach

§2(a) s (a) ;

2! " n!
§(a) ~ - ,
a e e - - I‘
2

§° (a)

a5

0 o - 8(a)
) o - -2

(cf. [ 1). = In

f € C(R).

be a closed *-derivation in JZ
is dense in (I for some positive
is a Silov algebra under the norm

The proof is similar with the proof of Proposition

Call an ideal I
is contained in exactly one maximal ideal.
consisting of all functions
there exists a unique smallest closed

it is the closure of the

set of all functions vanishing in a neighbourhood of p

(the neighbourhood depending on the function). Let us write

J(p) for this ideal.



1.6. Proposition. Under the assumptions of Proposition
1.4, consider the Silov algebra AD o i then J(p) c {ala(p)=

s(a)(p) = 0 for a €l g and all o € i}.
x

pProof. Let I = {ala(p) = du(a)(p) 0, a €¢l)0};
then I is a closed set of 43(). For y €0,

(ya) (p) = 0 and ¢ (ya) = § (y)(pla(p) + y(p)s (a)(p) = 0;
hence I is an ideal. Since I, = {an((a(P) 5a(a)(P)) =0,
o o 0 a(p)

{a(p) 6a(a)(p)\ . v . D

a € &30} and a-+\ 0 a(p) ) is a homomorphism, O/Ia
is at most two-dimensional, a unit element together with an
element of square 0. If Ia c Mq{p # q), then Ia c Mp n Mq
and so dOO/Iu is two~dimenisonal, semi-simple, a contradic-
tion. Hence Ia is primary so that J(p) < Ia and so
J(p) « n Ia = I. This completes the proof.

o€l
1.7. Proposition. 'Qnder the assumption of Proposition 1.5,

consider the Silov algebra Jj(sn); then J(p) c {ala(p) =

§(a)(p) = ... =6%a)(p) =0, ae€dM}.

The proof is similar with the proof of Proposition 1.6.

1.8. Definition. Let A be a Silov algebra on X. A is
said to be of type C if the norm in A 1is equivalent to
the sup, taken over x (x € X) of norms in the quotient

algebra A/J(x).
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1.9. Proposition. Let § be a closed *-derivation in
61 ; then the Silov algebra JAJ(§) with the norm

|“vﬂ|6 is of type C.

, a(p) a(p)'\ a(p) 6(p)\
Proof. |llalll, = sup u( ' 1"

I
PEK 0 a(p)/ 0 a(p) /
< the norm of a in the quotient algebra D(8)/J(p)

and H(

hence lHa|H6 <sup { the norms of a in the guotient algebra

" pEK
D(8)/T(P)} < Illallls. This completes the proof.

1.10. Propositioh. Let § be a closed *-derivation in
-~ (1 and suppose that D (s™) is dense in OL fbr some posi-
yﬁéi&é integer n; theh the Silov algebra JD(ﬁn) with the
norm !HOH%n is of typév C. |

The proof is similar with the proof of Proposition 1.9.

1.11. Proposition. Let (L #VC(K) with a totally discon-
nected compact Hausdorff spaCe K. Then every closed *edefé—

vation § in (1 is identically zero so that J) (§) = gz .

Proof. Consider the Banach algebra "D (s) with the norm
i*l}]l . . The space K of all maximal ideals of J(§) is

6 Ccf.83) :
totally disconnected, so that by Silov's theorem any idempo-
tent in $Z belongs to . (§). Suppose that e is an idem-
potent; then §(e) = 6(e2) = ef(e) + S§(e)e = 2§(e)e and
so §(e)e = §(e) = 0. Let 010 be the set of all finite

linear combinations of all idempotents in {]; then §(a) =
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for a € 0’10 and lllallly= lall (a € 6l ,) . Since oL 5
is dense in ZQ., AD(s) = f2 and 6(x) =0 (x €0L).

This completes the proof.

Problem 1.1. Suppose that K is not totally disconnected.

Then can we con¢c.lude that C(K) has a non-trivial closed
1 _

Aderivation? ( The answer 8 mo. If K Bas a Zotally olisconnodter

open dense Swbset, Then C UK Ras o swm—deisial closeed X- devivaliore

5%

-

Now-let 72 = C([0,1]) with the unit interval [0,11
and 6, = & with b5, =c M (10,11, where ¢ (10,11)
0 dx 0
is the algebra of all continuously differentiable functions

on [0,1]. Then 60 is a closed *-derivation in O1.

For p € [0,1], it is well known that J(p) =

{ala(p) = a'(p) =0, a€ D(sy}.

I

(a(p) 60(a) (p))

Hence J(p) = {a I\ 0, a € 43(50)}
0

a(p)
and so X)(GO)/J(p) is a two-dimensional algebra, a unit

element together with an element of square 0.
Now let 61 be another derivation in O7= C([0,11]1)
with ”6(61) = dg(éo). Then by Proposition 1.1,
Mallis, skiklis, (a € Dsy)). Let
a(p) &,(a)(p)

a |
P Lo a(p)
a closed primary ideal i;xabd;l Since Ip M

=0, a € [3(50)} ; then Ip is

7 I .
pr JP =1

Hence

1) o . '
The '/buc"umél .brcl"&'" s "’/;"’"Mt""g' ..S"‘/?['I"ﬁ"ﬁ- hal CULK)Y) Bosn « Cpo_;zt[,*-c'/gnvnz:dn.

Ther Can we conclude thaof y Centecns [o, 1] f—zz beg rent. ?
. L Za st WA 4 J .
2) This Yemarh w due £ J—c

Ansor

g



(3 §4(a) (p)) (2 ao(a)(p)>”

i Jll < k|
\ 0 a(p) - P \ 0 a(p)

(a €D (61) and p € [0,1]) where kp is a positive

number depending on p.

a(p)-a(p)1- §;(a) (p) (alpr-ap1 s5(a)

/N

0 a(p)-a(p)1 = P 0 a(p)-a(p) 1’

and so 16,(a) (p)i < kpléo(a)(p)l (a € £(8y)). Hence

there is a number A(p) such that 61(a)(p) = A(p)&o(a)(p)

(a € D(sy)) -
Put ao(p) =p (p € [0,1]); then 60(a0) = 1 and
so 61(a0)(p) = A(p). Therefore we have the following
theorem.
1.12. Theorem. Let § be a derivation in C([0,1]) such

that ‘l)(é) = C(l)([0,1]); then there is a unique continu-

ous function )X on [0,1] such that 6§ = X- é% on

¢ ro,1m.

1.13. Theorem. Any derivation & defined on c‘% (0,11
is closable.

Proof. By Theorem 1.12, § = Aé% . Suppose that Han||» 0

and I (ay)-bll> 0 with b € C([0,1]). Let‘O€={kaqﬂl>e} for

> OanﬁAlet£>€08. Since C(l)([0,1]) is a Silov algebra, there
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is an element ¢ in C(1)([0;1]) such that c(p) % 0

and C(q) = 0 for q € 0€. Then anc2 -» 0 and S(ancz)

N O

= 5(an)c2 + anﬁ(cz) - bc”. On the other hand, G(ancz)(r)=

A(r)do(ancz)(r) = A(r){ao(an)(r)cz(r) + an(r)(ZC)(r}GO(C)(r)};

hence A(r) = 0 implies d(ancz)(r) = 0 and so 6O(anc2)(r)

G(ancz)(r)

' 2 2 1

| 3 (D) . Therefore Go(anc Y {(r) - b(xr)c ér)- X(z7 for

r € [0,1], where if A(x) = 0, define 28X)C7(X) _ 4.
A(x)

Since b(r)c2(r) X%§T is a continuous function d on
(0,11, Go(ancz)(r) > da(r)  (r € [0,1]). since §, 1is
closed, d = 0 ; hence bc2 = 0. Since ¢ 1is arbitrary,
b(r) = 0, when A(r) # 0. It is clear that b{(r) = 0,
where A(r) = 0. Hence b = 0. This completes the proof.
1.14. Theorem. Let § be a derivation in C€([0,1]) such

that L (8) = C(n)([0,1]) for some positive integer n,
where C(n)([0,1}) is the algebra of all n-times continuously

differentiable functions on [0,1]. Then there is a unique
d
‘ax

The proof is similar with the proof of Proposition 1.12.

continuous function A on [0,1) such that § =

1.15. Theoremn. Any derivation defined on c‘“%ﬁ:o,.l] )
for some positive integer n 1is closable. »

({0,11) = n C
(o) n=1
norm on C ([0,1]1) under which <C

(o) (n)

({[0,1]); then there is no
(o)

Let C
([0,1)) becomes a

Banach algebra, for if there were such a norm, then C(m)([0,1])

/o
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m

becomes a semi-simple Banach algebra so that 60 0,

a contradiction

Problem 1.2. is trerc a non-closable derivation on

() —
C ({0,112 ( The insSwer s no 7] ny Q,'g,,z,‘.,ru—/}un ccyf C m[[u//] D
,L;vt:‘ C ( [t",/J ) ‘s 4 Zp}c‘:ly&, ),) )

Problem 1.3. Can we extend Theorem 1.13 to general cases?

Namely let be a closed *-derivation in a commutative

%o
C*-algebra (J1 and let & be a derivation defined on { (3§).

Then can we conclude that § 1is closable?

l1.16. Proposition. Let & be a closed *-derivation in
C([0,1]) and suppose that J(§) contains a self-adjoint
elemnet h such that the C*-algebra generated by h is
c([o,11).

Then there exists a *-automorphism £ on C([0,1])
[FEp -

(f € C(1)([0,1])) where )\ is a continuous real valued

such that £ ¢ ([0,11) < .Hs) and eoe” £

function on [0,1].

Proof. Let k = WRUIFh b k(t) # k(s) if t + s.
| TTHIT +0 1] ok
. 0
Let k(t.) = inf K(t) and let P = ——O ___
o = 7~ mxx, o1

then the spectrum of 5 = [0,1] and t - pn{(t) 1is a homeo-
morphism on [0,1]. Moreover n € JQ (8§) and &(f(n)) =

M (to,11 .

§(n)f'(n) for f € C
Consider the mapping f(n) » £ of C([0,1]) onto

C([0,1])); then it is a *-isomorphism & of C([0,1]) onto

D Ths remadk  4's chuo 2 J}ﬁnsa‘n_.

//
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c([0,1]). Moreover under this isomorphism

£6 (£(n)) = £66  VEf(n) = €68 £ = _ A.f
for £ ec(ro,11). mence gocT'e= a4 L.
This completes the proof.
Problem 1. 4. Can we conclude that a Silov algebra A (§)

for a closed *-derivation in C([0,1]) has a single self-
adjoint element h such that the C*-algebra generated by

h is C([0,1])?

Now suppose that a closed derivation & in C([0,1])
is an extension of é% - i.e. § = é% on 00(5%0 = C(1)([0,1]).
Since é%»D(é%) = C([0,1]), for any a.E £ (8§), there is
an element b in vO(é%) such that §6(b) = 6(a) and so
§(a=b) = 0. Let b= {x16(x) =0, x € D(8)} ; then L
is a subalgebra of ) (§). Moreover, |lIIxI|lI§= lIxll ; hence
%- is a norm closed subalgebra éf c(lo,1]1).
Moreover D (8) = ¢V (r0, 11+ ana M ([0,11) n L

¢1 and §(f-) = 0.

It

Problem 1.5.  Is there a closed derivation § inm C¢[0,11)
such that L (8) 2 ¢V ([0,11) and & = S on cMro, 112

Remark. R. Herman conmunicates to theﬁauthor that there is a

non-closable *-derivation 61 such that 43(61) s C(1)([0,1])

/2
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« . _ 4 (1)
and 51 = gx ©°n C ({o,11).
1.17. Proposition. Let (L = C(T), where T is a one-dimen-
sional torus group and let § be a closedAerivation in 0L
such that ) (§) is dense in {7 and 1,6 = 81, for all

t € T, where a(s) = a(t+s) (a £€C(T)). Then L (§) =

(1)

T
C (T) with § = ké% (k #+ 0, a constant) or fLis) = OL

with & = 0.

Proof. IlIatHI(S:IIlaIH(S (t € T) for a€&(8), where
(at)(s) = a(tt+s). Hence the mapping t - at is continuous

on .(}(6) for each a € L (8).

1 Jzn -int_t
e a

= — . S =
Put a_ Z dt (a € Q (8)); then a, (x)
ins : _ ins _ ins
e an(x). gince an(s+x) = e an(x) and an(s) = e an(m
I I | int
an(O) = ox Jo e a(t)ydt.

Since L (8) is dense in C(T), there is an element

a in J)(8) such that a,(0) # 0; hence '™ € 0 (o)

ins in(s+t) int ins

(n=0,%1,%22,...). Ttd(e ) = 8 (e ) = e S (e ) .
Put §(c'™) = £ (s); then £ (t+s) = e'™f (s). Hence
£ (t) = ™% (0) and so §(e'PS) = £ _(0)elPS,
n n £.(0) £,(0)"
s(eity = £ (0)eit = - it a it
1 i = 71 4t i nence
. . £, (0) .
t t 1 d t
8™ = 5™ = —— g e’ (n = 0,51,52,...).,
Let g(t) € ¢ (m ana qt) = = ¢ e™; then
o . n=-—oo
g'(t) = % cninelnt . Since }cnnp] - 0 (n » o) for each

/3




positive integer p (note g € C(w)(T)), g'(t) =
¥ cnineint is absolute convergent; hence §(g) =
n: -0
£, (0) . I
4 S (9 for g€ C(T), and ¢ (1) < .0 ().

By Silov's theorem (cf. [4]) D (§) = ¢™ (1) for
some non-negative integer n. By Theorem 1.14, A (8) =

c(1)(T) or D () =00L. 1f D (s) = C(1)(T), then

| £, (0)
M) (7))  and so 3 = 11 = k.

§(g) = Ag' for g € C

If A (8) = C(T), then § = 0. This completes the proof.

Problem 1.6. Let Ol = Co(R), where C,(R) is the algebra
of all continuous functions on the real line R  vanishing
at infinity and let § be a closed *~derivation in CO(R)

such that 1 6§ = §7v (g € R). Then can we conclude that

(8) C (1)(R) and § = k. S (k # 0, a constant) or
0 dt
4)(6)

CO(R) and § = 0?
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