ベル数 B(N) のしつの算式

名工文 大芝 猛

N個の要素からな3集合 P={0,1,...,N-1}の分割全体をある条件をみたす N集数の集まりであらわす。このような N進数全体の個数として下の分割全体の個数(Bell数)を表わす次9式をうる。

$$B(N) = \sum_{1 \le r \le N} \sum_{d_1 + \dots + d_r = N-r} 1^{d_1} \cdot 2^{d_2} \cdot \dots \cdot \gamma^{d_r}$$

またこのようなN進数全体に自然な順序を与えることにより、分割全体をとりのこしなくカウントする1ヵの方法を示す。

(定義) N 進数 $\mathcal{V} = (n_0, n_1, \dots, n_{N-1})$ $(n_i \in \{0, 1, \dots, N-1\})$

 とすると 1:1 onto 字像 $g: \mathbb{F}^N \to \mathbb{C}^N$ は次のように与 之53:

 $\mathcal{V} = (n_0, n_1, \dots, n_{N-1}) \in \mathbb{F}^N$ is it

 $g(v) \stackrel{\text{deb.}}{=} \{ \{i \mid n_i = 0\}, \{i \mid n_i = 1\}, \dots, \{i \mid n_i = M(v)\} \}$

 $\underline{H} (M(V) = \max_{0 \le i \le N-1} n_i)$

從って B(N) = #(FN) ···· FNの個数.

(証明) (1) $\nu_1, \nu_2 \in F^N, \nu_1 \neq \nu_2 \rightarrow g(\nu_1) + g(\nu_2)$

(2) $C \in \mathbb{C}^N \to \exists \nu_0 \in \mathbb{F}^N \ g(\nu_0) = C$ $\xi = 0$

• N = 1 のときは明らか

(1) \mathcal{V} , $\mathcal{M} \in \mathbb{F}^N$, $\mathcal{V} = (n_0, \dots, n_{N-l}) \neq \mathcal{M} = (m_0, \dots, m_{N-l})$, N > 1身(い)のプロック {il mi= mio} は Io をもち

タ(ル)のプロックをi | mi=nro} は Ioをもたない.

しかるに、 $\mathcal{N}_{J_o} = \mathcal{N}_{J_o} = \mathcal{N}_{J_o} = \mathcal{N}_{J_o}$ (JoくIo) なるJoを芝通にもフ放 $g(V) \neq g(M)$

 $I_o > 0$ By $\max_{j' \in I_o} \mathcal{N}_j + 1 = \max_{j' \in I_o} \mathcal{M}_{j'} + 1 \ge \mathcal{M}_{I_o} > \mathcal{N}_{I_o}$ $\begin{array}{lll}
\text{Min I} & \text{max } N_j \geq N_{I_0}, & \text{fix } \exists_j \text{ } j < I_0 & \text{k} \text{ } N_j \geq N_{I_0} \\
\text{J} < I_0 & \text{min } \{j \mid j < I_0 & \text{k} \text{ } N_j \geq N_{I_0} \} & \text{k} \text{ } \text{k} < 1
\end{array}$

版フェブ $_{0}$ < I_{0} , $n_{J_{0}} \ge n_{I_{0}}$, $j < J_{0} \rightarrow n_{j} < n_{I_{0}}$ $n_{J_{0}} \le \max_{j < J_{0}} n_{j} + 1 \le n_{J_{0}}$ 版に $n_{I_{0}} = n_{I_{0}} = m_{J_{0}}$

 $\eta_{J_0} \leq \max_{1 \leq J_0} \eta_1 + 1 \leq \eta_{J_0}$

(2) gか onto であること.

$$\Gamma = \{0, \dots, N-1\}$$
 の任意の分割 $C = \{A_1, \dots, A_p\} \in \mathbb{C}^N = 2$ $d(k) = min A_k \quad (1 \le k \le p), (特 = d(p+1) = N) \times \pi < -$ 知性を失うことを(、 $d(1) = 0 < d(2) < \dots < d(p) \le N-1 < N = d(p+1)$ $v_0 = (n_0, n_1, \dots, n_{N-1}) \times 2 + 3 = \mathbb{E}$ f で ての $v_0 \in A_j$ に対し、 $n_1 = v_1 = v_2 = 1 - 1$ ($j = 1, \dots, p$) .

特 $f = d(j) \in A_j$ な $f \in$

また Vo ∈ FN である.

(ii)
$$0 = d_1 \in A_1$$
 & y $n_0 = 0$
0 It $\hat{\xi}_i$ 0 $i > 0$ is \hat{z}_i ($i \in A_k$ & 3 k ($1 \le k \le p$) & 1).
 $d(k) \le \hat{z}_i$ & $n \ge 1$ $n_i = k - 1$.
 $d(k) < i$ o ≥ 1 $n_i = n_{d(k)} \le m_{ax} n_i < m_{ax} n_i + 1$
 $i < i$

(2)
$$d(k)=i$$
 $g \in \mathbb{R}$: $m_i = n_{d(k)} = k-1 = (k-2)+1 = n_{d(k-1)}+1$
 $\leq \max_{j < i} n_j +1$

(Proposition 2)

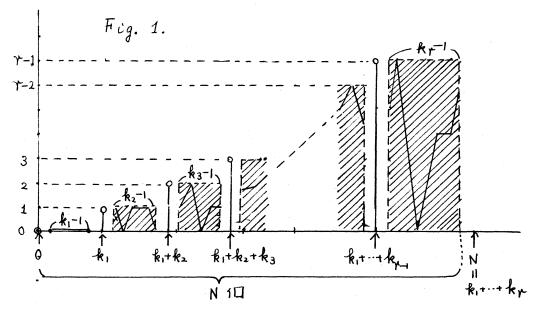
$$B(N) = \sum_{1 \le r \le N} \sum_{k_1 + \dots + k_r = N} 1^{k_1 - 1} 2^{k_2 - 1} \dots \gamma^{k_r - 1}$$

$$k_1 \ge 1, \dots, k_r \ge 1$$

(記明) $1 \le Y \le N$, $k_1 + \dots + k_N = N$, $k_1 \ge 1$, \dots , $k_N \ge 1$ のとま $Q(k_1, \dots, k_N)$ と

 $\stackrel{\text{def}}{=} \left\{ (n_0, \dots, n_{N-1}) \in \mathbb{F}^N \middle| \forall_j : (1 \leq j \leq r) \left(n_{k_1 + \dots + k_{j-1}} = j - 1 \right) \right.$ $\wedge \forall_i : \left(k_1 + \dots + k_{j-1} < i < k_1 + \dots + k_j \right. \to 0 \leq n_i \leq j - 1 \right) \right\}$

と定義する。(但し j=1のとき、 $k_1+\cdots+k_{j-1}=0$ とする。) $\mathcal{Q}(k_1,\cdots,k_r)$ は「Fig.1.9 の印 の身 正通り、斜線の内部を任意の打線グラフで結んでうる N延数 全体」と一致する。



グラフのおまでロック 配り $k_1+\cdots+k_{j-1}< i< k_1+\cdots+k_j$ 内の 折線グラフの全体は j^{k_j-1} 個 である、従って $\#(Q(k_1,\cdots,k_n)) = 1^{k_1-1} \cdot 2^{k_2-1} \cdot \cdots \cdot \chi^{k_n-1}$ - $T^N = U$ $U_{1 \leq r \leq N}$ $k_1+\cdots+k_n = N$ $Q(k_1,\cdots,k_n)$ $k_1 \geq 1,\cdots,k_r \geq 1$

$$\frac{h^{-1}}{2}$$
 7 $B(N) = \#(|F^N|) = \sum_{1 \leq N \leq N} \sum_{k_1 + \dots \neq k_N = N} 1^{k_1 - 1} 2^{k_2 - 1} \dots \chi^{k_N - 1}$
 $h^{\geq 1}, \dots, k_N \geq 1$

(註) トモ fix したとま、外側の ∑を除りた式は N们の集合のト分割全体の111数(オ2種のスターリング数) を与える。

$$S(N, \gamma) = \sum_{d_1 + \dots + d_N = N - \gamma} 1^{d_1} \cdot 2^{d_2} \cdot \dots \gamma^{d_r}$$

[下かの要素面の)順序とカウント弦]

 $V = (n_0, \dots, n_{N-1}), M = (m_0, \dots, m_{N-1}) \in \Gamma^{\Gamma} (\Gamma = \{0, 1, \dots, N-1\})$ $1 \in \not \exists L$

 $V < \mu \iff \exists_{k} 0 \le k \le N-1 (n_0 = m_{0 \wedge \cdots \wedge} n_{k-1} = m_{k-1} \wedge n_{k} < m_{k})$ で定義なれるが、

FN9要素にもこの順序をそのま、用いる.

- 1° (0,--,0),(0,1,···,N-1) は F^Nの最小, 最大の要素であることは容易に確かめるる
- 2° B(N)個 q F^{N} の要素を上記 < q 順序で番号をつけ $1 \le d \le B(N)$ なる d 番目の要素を P(d) であらわす. (定義 $)_{(1)}$ P(1) = (q ,..., q)
 - (2) $1 \leq d < B(N)$)= $\tilde{p} \neq L$ $p(d+1) = min \{ \nu \in \mathbb{F}^N | p(d) < \nu \}$

(Proposition 3) 1 \(d < B(N) \(\text{P}\)

 $P(d+1) = (n_0', \dots, n_{N-1}')$ if $p(d) = (n_0, \dots, n_{N-1})$ を用いて、次のように計算される:

生が、 $\max \left\{i \mid N-1 \ge i > 0 \right\}$ $\max_{j < i} n_j + 1 > n_i \right\} = k \times L$

$$(*) \begin{cases} n'_{0} = n_{0}, \dots, n'_{k-1} = n_{k-1} \\ n'_{k} = n_{k} + 1 \\ n'_{k+1} = \dots = n'_{N-1} = 0 \end{cases}$$
 \(\times \frac{1}{3} \)

(従って Fig. 2. カフローチャートをうる.)

(計用) $P(d) = (n_0, \cdots, n_{N-1}) \in \mathbb{F}^N$, $1 \leq d < B(N)$ 后対し,

- (6) $\exists_i (N-1 \ge i > 0 \land \max_{j < i} n_j + 1 > n_i)$ ご上記をが定義すれる $z \in \mathcal{L}_{n_i}(x)$ の β うに定めた $\beta = (n_0', \dots, n_{N-1})$ にっき.
 - (1) Tp(d) < f, fe FN
- (2) 「 $p(d) < M < \beta$ なる M はまべて $M \in \mathbb{F}^N$ を示す.
 ます (0) につりて: しかうぎるてきは, $(n_0, ..., n_{N-1}) \in \mathbb{F}^N$ に注意すれば、 $\forall_i (N-1 \geq i > 0 \rightarrow \max_{j < i} N_j + 1 = n_i)$, $n_0 = 0$...
 このとき、「 $n_j = j$ (j = 0, ..., i)」を立に包する 帰納はで客
 易に示しうる。 従って $p(d) = (n_0, ..., n_{N-1}) = (0, 1, ..., N-1)$ 矛盾。
- (1) |E| > |i| > |e| > |e| < |e| <

謝辞 本稿に関連して、山梨大学の野崎昭弘教授、東海大学の成島弘助教授に確々协注意、資料といたじいたことを感謝いたします

