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Trans fer theorems for

cohomological G-functors

Tomoyuki Yoshida

(Hokkaido Univ.)

Maps and functors are usually on the right. G 1s a finite

group, p a prime, k a commutative ring with identityelement.

M

is the category of finite generated right R-modules. A

k-algebra is a k-module P with a bilinear multiplication

(a0, B) — a*B. A G-algebra over k 1is a k-algebra A, on

which G acts as algebra automorphisms.

Definition (Green [2]) A G-functor over Mk is defined

to be a quadraple a = (a, 7, p, 0), Wwhere a, T, p, O are

families of the following kind

1Y
1

(a(H)) assigns a k-module a(H) for each H < G;

(TE) assigns a k-homomorphism Tg

=l
|

a(H) — a(K)

—~ of for each pair (H, K) such that H < K < G;

p = (pg) assigns a k-homomorphism pﬁ : a(K) — a(H)

B — By for each pair (H, K) such that H < K < G;

o = (o%) assigns a k~-homomorphism o a(H) — a(H®):

g
H
for each pair (H, g) such that H < G, g ¢ G.
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Tg, pg, 0% are sometimes simply denoted by TK, Py ob.

These families must satisfy the following

Axioms for G-functor. (In these axioms, D, H, K, L < G}
g, 8" € G; a ¢ a(H), B ¢ a(K)).

(a) ol = a, (aK)L = oF if H

| A
=
A
=

(b) By =8, (By)p =8y if D <H<K;

P 1
h a if h ¢ H, (cxg)g

(e) o

]
Q
-

g
(@) (a8 = (@&, (8)E = (88) q3

(e) (Mackey axiom) If H <L, K<L and T = Rep(H\L/K),

then

Ly _ g
(a™), = (o )
K géf KnHE

Definition. A G-functor a = (a, T, p, 0) 1s called

cohomological if it satisfies the axiom C:

(C) If H<K <G and B e a(K), then

Definition. Let a = (a, 1, p, 0) and a' = (a', 1', p',

c') be G-functors over Mk’ A morphism 6 of G-functors

6 : a — a' is a family 6 = (eH)H<G‘ of k-homomorphisms
GH a(H) — a'(H) such that for all H, K, g with H < K < G,
g € G, _
K K K K g g
* = ' = ' - 1
(¥) 7y Og = Oy T'ys Py Oy = Oy Py, Of O.g = Oy o'y
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We denote by Mk(G) the category whose objects are all G-functors
over Mk and with morphisms as just defined. Mk(G) is an
abelian category. M;(G) denotes the full subcategory of Mk(G)
whose objects are all cohomological G-functors over M '

-

Remark and Definition. The original definition of G-functors

by Green [2] contains the Frobenius axiom, that is, each a(H)

is a k-algebra and for all H < K < G, a ¢ a(H), B « a(X),

K

(F) aK-B = (a-BH)K, Rep = (BH°a)K

The axiom of the multiplicative G-functor is as follows:

(M) (B'B')H = BH'B'H for H < K < G, B, B' « a(K).

AK(G) denotes the category whose objects are all G-functors
over Ak’ the category of k-algebras and k-linear maps, which
satisfy (F) and (M) and morphisms are morphisms 6 = (GH)
between G-functors such that GH is multiplicative for each

H < G. AK(G) is a subcategory of Mk(G)' AE(G) is the full

subcategory of Ak(G) whose objects are cochomological.

Examples of G-functors. In these examples, H and KX are

arbitrary subgroups of G such that H < K; g 1s an arbitrary
element of G. Other examples are found in Green [2]. All
G-functors in the examples are cohomological except for Example 1

and 10. V denotes always a kG-module.
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Example 1. <ch : the character ring functor.

ch(H)

T

K
Py
g
H

for each

(0]

the character ring bf H;
o — aK : the induced characﬁer;
B — B|H: the restriction to H;
a — a® : the conjugate by g (i.e. aB(y) = a(gyg_l)

y e H).

This functor is in AZ(G). The Mackey axiom is the Mackey

decomposition theorem. The Frobenius axiom is the Frobenius

reciprocity.

(o)
Example 2. Hé.:= 2 H%. the cohomology ring functor.
n=0 ‘
o
Hs(H) 1= H*(H, V) =) HH(H, V) : the cohomology group of
n=0

Tg = cory g the corestriction (transfer);

) b
pg = resK’H the restriction;
0% = cong g : the conjugation.

2

¥ . .
HV is in

in AE(G).

Examp

cV(H)

T

K
H
K
Py
g
°H

M (G). If V is a G-algebra over k, then H} is

le 3. cy = H% : the centralizer functor.
i= {ve V| vh = v for all h e H};
a ——+~aK 1= E ag, where g runs over Rep(H\K);

B — B (inclusion);

a —* og.

H;
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This functor is in M;(G) and ¢, = Hy. If V is a G-algebra,

.. c
then ¢y 1s in Ak(G).

Example 4. H; 1= z H% the Tate'cohomology ring functor.
' nez
/\* A ~
HV(H) ;= HY(H, V) := Z HY(H, V) the Tate cohomology
nez
group of H.
TE, pg, c§ are same as Example 2.
H; is in ME(G). If V is a G-algebra over k, then it is
in A(G).
Example 5. Cy % H% : the Tate centralizer functor.

This is a quotient functor of Cy in Example 3.

CV(H) 1= cy(H)/Vty, where t, :=h§H h.

This is in M;(G) and if V 1is a G-algebra over k, then this

is in AE(G).

Example 6. ab : the abelian factor fanctor.

ab(H) := H/H';

Tg xH! — xK' : the natural map;
pﬁ : yK' — T(y)H' : group-theoretic transfer;
og :oxH' — xg(Hg)': the conjugation.

This is in M;(G).
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Example 7. 7~ the dual group functor.
~(H) :=f := Hom(H, Q/Z) ;
Tg Do — Tﬁ(a) : the character-theoretic transfer;

K . . 3 3 .
Py * B — BIH : the restriction; :
o 1o — o (aB(y) = u(gyg_l) for y e H®).

This functor is in ME(G) and the dual functor of ab. See [3].

Example 8. Lp i The Lie ring functor.

Assume that G acts a p-group P with a decending central

0 2P ) Dbe the

associated Lie ring on which G acts.

serles P =Py > Py > +++. Let L(P) : = ®] (P, /P,

Lp(H) == ], Cp (HIPy, /Py = LB

Tg : o — ) a°, where g runs over Rep(H\K);
K

oy B — B : the inclusion;
og : o — ab.

This functor is in A;(G), where k is the ring of rational

integers or p-adic integers, and this is a subfunctor of CL(P)
Example 9. ﬁQ(a), ho(a) : O-dimensional cohomology "group"

functors of a G-functor a = (a, 1, p, 0) over Mk' These are

quotient fanctors of a such that

R0(a) (1) := a(a)/Im 7h + Ker ol
wo(a)ym) := a(u)/Ker p?.
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These functors are in ME(G). If a dis-in Ak(G), then these

are in A§<G)'

Example 10. 2z : the center functor.

z(H) := Z(kH) : the center of the group ring kH;
Tg i o — ) g_lag, where g runs over Rep(H\K);

pg : C—>Cn H, where C is a conjugate class of K

and C is the class sum;

o8 i 0 — g 1a
5 g Tag.

This functor is in Mk(G).

Transfer theorems. After this, a := (a, 17, p, 0) denotes

always a cohomological G-functor over Mk'

Lemma 1. Let H < G. Assume that (¥) |G : H| l.(g) 1is
’an automorphism of a(G). Then pg is a monomorphism, Tg ig
an epimorphism, and a(H) = Im fzg il Ker(pg .

Proof. Set 1 = Tg, p = pg. Then pe+1 = |G:H|1, and so
p 1s a mono and <t is an. epi by (¥), 0 — Ker T —> a(H)

= a(G) — 0 1s split, so a(H)

Im p & Ker 1.

Remark. If there is |G:H|™ % e k, then (%) holds. If

(p, |G:H|) = 1 and ch(k/J(k)) = p, then (¥) holds.
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Lemma 2.(Maschke, complete reducibility). Let a ¢ Mk(G)

and let a' Dbe a subfunctor of a such that a(H) and a'(H)

are k-free for each H < G. Assume that |G|k = k. Then a'

is a direct summand of a.

Lemma 3. Let a e M;(G). Assume that |Glk = k. Then

a 1is isomorphic to Ca(1)? where a(l) is regarded as a
g

G-module by oa*g = a°, o ¢ a(l), g ¢ G.

The proofs of these lemmas are not short but easy. An

analogue of Lemma 3 holds for non-cohomological G-functors, too.

Lemma 4. (Tate). let a := a/J(k)a := (a, T, p, 0) be a

guotient functor of a such that a(H) = a(H)/J(k)a(H) for

each H < G. Let H < G and assume that |G : H| lyg) is an

automorphism of a(G).

(1) Let A be a k-submodule of Ker TS. If A/J(k)A =

-G _ G
Ker TH» then A = Ker Ty,

(2) Let B Dbe a k-submodule of a(H) containing Im pg.

Assume that a(H) is Artinean. If Soc(B) = Soc(Im pg),

then B = Im pg.

Proof. Let K := Ker TG and J := J(k). By Lemma 1, we

H
have that K = A + JK, so K = A by Nakayama's lemma. B =
0.

Impg@(BnK). Thus Soc(B n K) = 0, and so B n K =
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Hypothesis A. a = (a, T, p, 0) € ME(G), H < G, ch(k/J(k))

= p, a(K) 1is k-free for each K < G, (p, |G:H|) = 1.

Theorem 5(Generalized co-focal subgroup theorem). Assume

that Hypothesis A holds. Then

Im.pg = {a ¢ a(H) | (0® - a )H = 0 for all g e G}
HnE®  HoHE
= {0 ¢ a(H) | o = o for all g e G}
HnHE HaHE
= {o c a(m | oy = |a:H|a).
: G . _ g H
Proof. By the Mackey axiom, a'p - |G:H|a = }(a - a ),
: HoH®  Hou®
where g runs over Rep(H\G/H). If aGH = |G:H|a, then a =
[G:H[_laG ¢ Im o0, Let B ¢ a(G) and a := B, so that a e
H H H,

Im pg. By the axioms of G-functors, aanHg = o8 for each

g e G.

Theorem 6 (Generalized focal subgroup theorem). Assume that

Hypothesis A holds. Then
-1
g "H H
<Oy HE - %g0u®
1

& H_ gH |

Ker Tg = | o € a(H), g € G>

8 c a(H n HE), g ¢ &>

o - Je:H|a | a e ati)}.

This theorem is the dual of Theorem 5.
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vThere are many other transfer theorems for cohomological
G-functors which are generalizations of transfer theorems in
finite group theory. Assume that a ¢ ME(G), p ¢ J(k) and

P 1s a Sylow p-subgroup of G. We can define the conjugation

familz'for alP € M;(P) by the same method as one in finite
vgroup theory. Using it, an analogue of Alperin's transfer
theorem is proved. The principle proving Zappa-type theorems
which are most primitive as transfer theorems in finite group
theory seems to be Green's theorem([2, Theorem 2]). To generalize
. Grun-Wielandt type transfer theorems, we need to introduce the

concept of singularities which is defined in [3] in the case of

the dual group functor.

Definition. Let a e Mﬁ(G), S <G, ace alS), X< G. Then

(3, a, X) is called a singularity in G for a provided
G v
(a) «a x # 0,

(b) o =0 for any Y < X -and u e G.
SnY

The analogue of [3, Lemma 3.2] holds.

Lemma 7.(See [3, Lemma 4.1]). Assume that Hypothesis A

holds. Let B Dbe a k-submodule of a(H) which contains

properly Im §.  Then there is o ¢ B such that o # 0 and

aG = 0. Take a minimal subgroup X of H such that Oy # 0.

X) is a .

Then there is g ¢ G - H such that (S, ugs - Qg

- 10 -



211

singularity in H for a H? where S := H n HE,

Remark. The above definition and lemma are not self-dual.
Thus the co-singularities are similarly defined. This concept
is used to study Ker TG , but 1t is not easy to . See

H Lot

Glauberman's lecture note (AMS).

Applications. Throughout the remainder of this note, we

assume that the following holds

~Hypothesis B. P 1is a Sylow p-subgroup of G, k is a field

of characteristic p, V 1is a kG-module, E := Endk(V). E is

a kG-module by vo¢® := Vg—l¢g, veV, ¢ cE, g e G.

Lemma 8. Assume that G 1s a p-group. Then V 1is kG-free

_if and only if GV(G) = 0,

Hall-Higman's theorem. The abelian case follows from

Lemma 8 and the general focal subgroup theorem for 8V . The
extra-special case 1s reduced to the abelian case by the

~

consideration of CR -

Coprime action. (1) If G dis a p'-group, then V =

CV(G) ® [V, G]. (2) If ap'-group Q acts on a p-group P,

then P = Cp(Q)[P, QI.

- 11 -
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These are proved by the application of Lemma 1 to Cy and

Cohomology groups. If P 1is abelian, then a(G) ~ a(NG(P)),

* ~ %
where a =~Hk or Hk’ k 1s a trivial kG-module.

This follows from the general focal subgroup theorem.
This is a geﬁeralization of Johnson's theorem for elementary

abelian P.

Mas chke-Higman-Gaschitz theorem. V 1is P-projective. In

particular, if G 1is a p'-group, then V 1s complete reducible.
* .
If x € H (G, V) and res P(X) = 0, then X = 0 (Gaschutz).
>

*
Apply Lemma 1 to Cp and HV'

Groups with cyclic P. Assume that P 1s of order p,

N := N.(P). If dimV < (p - 1)/2 and V is indecomposable,

then VN is also indecomposable. (This result can be more

generalized).
Since Ti = 0 for CE5 the co-focal subgroup theorem

yields that cE(G) ~ ¢y (N), and so cE(N) is also a local ring.

Finite groups. Let apply transfer theorems for G-functor

to the functors ab and ~. Lemma 1 yields that (P n G')/P!

is a direct summand of P/P'. This is proved Thompson. Lemma 4

- 12 -
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yields Tate's fheorem. Applying general focal (fesp.vcofécal)
subgfoup theorem to ab (resp. "), we have the focal subgroup
theorem. By Lemma 7, we have that 1f P has no gquotient groups
isomorphic to zp\ zp, the; PngG'=Pn NG(P)'. Green's |
theorem ([3, Theorem 2]) yields Zappa's theorem : If W 1is

) . ' v t
weakly closed in P, then Ql(CP(W)) nG = Ql(CP(W)) n NG(W) .

Concluding remark.

Definition. Let F be a weak conjugation family for a

Sylow p-subgroup P. Then F 1s called a conjugation family

for aIP provided whenever g e G, a € a(P), Q = P n Pg, and

R = gQg_l, then R is F-conjugate to R® via g' and of. =

Q
. .
a® Q Since a conjugation family for P 1s a conjugation
family for aIP, there is a conjugation family for alP by

Alperin's theorem. By the genéral focal subgroup theorem, we

have the following

Theorem 9. Let P Dbe a Sylow p-subgroup, ae M;(G),

P <H <G, k a field of characteristic p, F a conjugation

family for alP' Then Im.pg consists of all . a € Im pg such

that (o - aF)gQP =0 for each (F, N) ¢e F, n e N, g ¢ G,

F
Q=P n F&.

We observed that many transfer theorems in finite group

- 13 -
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Vare generalized to some for cohomological G-functors. There
are also some transfer theorems for general G-functors. They
are usually called induction theorems (e.g. Artin's theorem,
Brauer's theorem, Green's theorem [2, Theorem 2], etc.). Some
of them afe equivalent to the vanishing theorems for (relative)
cohomology "groups™" for G-functors which are defined by.the
Siﬁilar‘method as sheaf cohomology. The state of affairs seems
like a‘part of sheaf cohomology in analYtic function theory of
seﬁeral variables. Not only (relative)cohomology group functors
of G=functors but also simple G-functors are almost cohomological.
For the reason, I believe that the transfer theory for
cohomological G-functors is the guide princeple of induction
theorems for general G-functors.

I give only three fields in which G-functors seems to be

applicable.

1. Representation theory. I am interested to reconstruct

" the modular representation tﬁeory of finite groups by application
\Qf (cohomological) G-functors. In particulaf, how can the
Brauer'é theorems bé rewritten? There are some theorems which
can be regarded as transfer theorems. I remark that the Brauer's
first main theorem is also proved by the use of the functor z.
(Green proved it by the functor Cpo where A := kG regarded

as .G-algebra by the conjugation). Since Mk(G) is 1like MkG’

where ch(k) } |G|, I am also interested to study M (G)



along the ordinary representation theory.

2. Class field theory. The use of G-functors can rewrite

the axioms of abstract class field theory, so we reach the
concept of Galois G-functors.

3. Topology. Reseach objects in topologies of some kind
are often naturally acted by groups. For example, remember the
spirit of Erlangen problem and the covering spaces on which
their monodoromy groups acts. Thus we are interested 1n spaces
on which groups acts. In order to study such spaces, we can
define a general equveriant cohomology theory with G-functors
(or "sheaves" on G) as coefficients. This can be regarded as
a functor of CW-pairs on which G acts to Mk(G). In general,
given a space X on which G acts and a functor of the category
of spaces to Mk’ we obtain some sheaves or co-sheaves on G, |
e.g., H — h(XH), h(X/H), etc. Furthermore, there are some
special functors (e.g. H*: cohomology groups functor) on G-spaces
which give G-functors by the éimilar method as Atiyah—HirZebruch
([2, Example 5.4]), e.g. H — H*(X x EG/H).'

Can we extend the definition of G-functors to (locally)
compact groups ? The answer was given by Dress [1]. He

introduced the concept of the Mackey functors and has been

applying it to various fields. I expect that his theory will
be perhaps equal to the category theory in the future mathematics.

For example, his theory is applied to topology by Qliver,
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fom Dieck, etc., I have no good knowledgé.of topology, but I
beiieve that finite group theory is useful for this field.

I don't know how cohomological Mackey functors are defined
andfwhethef transfer theorems for cbhomological G~functors can
be generallized to Mackey functbfs.« Both Green and Dress do not

attach much important to cohomological G-functor in my view.

Re ferences

[1] Dress, A.W.M. : Contributions to the theory of induced
representations, in Algebraic K—theoryfli, Lecture Notes in
Math., 342 (Springer, 1973).

[2] Green, J.A. : Axiomatic repreSenfation theory for finite
" groups. J. pure appl. Algebra 1, 41 - 77 (1971) .

-[3] Yoshida, Tf:’Character—théoretic transfer, J. Algebra 52 (1978)

Note. Prof. Neumann told me after the symposium that Holt

proved the following surprising result

Ebggrem.(Holt). If a Sylow p-subgroup P of G is of

class at most p/2, then H2(G, k) ~ H2(NG(P), k),'where. k =

Zp, trivial G-module.

I think that he pro&ed the following lemma, probably

Lemma ? Let P be a p-group of class at most p/2. Then P

- 16 -
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has no proper singularity for the functor Hi

If so, Holt's theorem is probably generalized as follows

Theorem ? Let P be a Sylow p-subgroup of G and let

Q be a strongly closed subgroup of P. If @ is of class at

most p/2, then H2(G, k) ~ H2(NG(Q), k).

This is an analogue of Glaberman's theorem ([3, Corollary
h.6.2]). Comparing with [3, Lemma 3.7], it seems that there

is much room for improvement of Lemma ?.
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