<table>
<thead>
<tr>
<th>Title</th>
<th>Hecke Rings Over Arbitrary Fields (SEMINAR ON PERMUTATION GROUPS AND RELATED TOPICS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SAWADA, HIDEKI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1978, 325: 154-157</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/104063</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hecke rings over arbitrary fields
Hideki SAWADA
Department of Mathematics, Sophia University

Let \((G,B,N,R,U)\) be a split \((B,N)\)-pair of characteristic \(p\) and rank \(n\), and \(K\) be an algebraically closed field of characteristic \(p\). Let \(KG\) be the group algebra of \(G\) over \(K\) and
\[
\mathcal{U} = \sum_{u \in U} u.
\]

At the conference the author introduced a construction of bases of Hecke rings over arbitrary fields, but in this note we concentrate on proving the next theorem. Further properties of general endomorphism rings of induced linear representations, i.e., Hecke rings over arbitrary fields are found in [2], [4] and [5].

Theorem 2. Let \((G,B,N,R,U)\) and \(K\) be as above. Let
\[
\mathcal{E} = \text{End}_{KG}(KG\mathcal{U}),
\]
then \(\mathcal{E}\) is a Frobenius algebra.

We use the same notation and definitions as in [5].

Lemma 1. Let \(AE\) be a one-dimensional right ideal in \(\mathcal{E}\) generated by \(A\). Then \(A(\mathcal{U})\) is a weight element of weight \((\gamma|H, \gamma(A(w_i)) = \gamma(\mathcal{U}) = \gamma(A(h)A(\mathcal{U})) = \gamma(A(h)A(\mathcal{U})) = \gamma(h)A(\mathcal{U})\) for \(h \in H\), and \(Ax = A(\gamma(x))\) for all \(x \in \mathcal{E}\) and \(\gamma(h) = \gamma(A(h))\) for all \(h \in H\).

Proof.
\[
hA(\mathcal{U}) = A(h\mathcal{U}) = A(h\mathcal{U}) = \gamma(h)A(\mathcal{U})\]
for \(h \in H\), and
\[
uA(\mathcal{U}) = A(u\mathcal{U}) = A(\mathcal{U})\]
for \(u \in U\).

\[
\mathcal{U}(w_i)A(\mathcal{U}) = A(\mathcal{U}(w_i)\mathcal{U}) = A(\mathcal{U}(w_i)\mathcal{U}) = \gamma(A(w_i))A(\mathcal{U})
\]
from [5, Lemma(1.4)].

Q.E.D.

Proposition 1. Let \(\{\pi_i | 1 \leq i \leq s\}\) be as in [5, Theorem(2.11)]. Then \(\mathcal{E} = \pi_1 \mathcal{E} \oplus \cdots \oplus \pi_s \mathcal{E}\) is a decomposition of the right regular module \(\mathcal{E}\mathcal{G}\) into non-zero indecomposable submodules \(\{\pi_i \mathcal{E}\}\);
\((\text{ii}) \, \pi_i E \cong \pi_j E \text{ if and only if } i=j, \text{ for all } 1 \leq i, j \leq s; \)
\((\text{iii}) \, \text{all the right irreducible representations of } E \text{ are one-dimensional.} \)

Proof.

(i) is clear from \([3, \text{Corollary(54.10)}]\), because \(\{ \pi_i \} \) are primitive idempotents of \(E \) such that \(1=\pi_1+\ldots+\pi_s. \)

(ii) is also clear, because \(E \) has exactly \(s \) equivalent classes of irreducible representations and right principle indecomposable modules from \([3, \text{Corollary(54.14)}]\) and \([5, \text{Theorem(2.11)}]\).

(iii) Since \(E \) has \(s \) linear representations (see \([5, \text{Theorem (2.11)}]\)), \(E \) has also \(s \) one-dimensional right modules, which are all the right irreducible representations of \(E. \) Q.E.D.

Proposition 2. Let \(E=\text{End}_{KG}(KGU). \)

(i) Let \(AE \) be a one-dimensional right ideal in \(E \) generated by \(A \), then \(A(KGU) \) is an irreducible left module of weight \((\gamma|H, \gamma(A(w_i))^{1 \leq i \leq n}) \) where \(\gamma \) is a linear character of \(E \) afforded by \(AE. \)

(ii) Let \(EA \) be a one-dimensional left ideal in \(E \) generated by \(A \), then \(A(U) \subset KG \) and \(A(U)KG \) is an irreducible right \(KG \)-module of weight \((\gamma|H, \gamma(A(w_i))^{1 \leq i \leq n}) \) where \(\gamma \) is a linear character of \(E \) afforded by \(EA. \)

Proof.

(i) Since \(KGU=\sum_{\chi \in \text{Hom}(E,K^s)} \theta_{KG}(\chi) \) where \(K^s=K-\{0\} \) and \(\epsilon(\chi)=\sum_{b \in B} \chi(b^{-1})b \) (see the proof of \([5, \text{Proposition(2.8)}]\)), \(A(U)=m_{\chi_1}+\ldots+m_{\chi_t} \) where \(m_{\chi_i} \in KG \chi(\chi_i)-\{0\} \) for all \(1 \leq i \leq t. \) Since \(A(U) \) is a weight element from Lemma 1, \(m_{\chi_i} \)'s are also weight elements of the same weight as of \(A(U). \) From \([1, \text{Corollary(6.11)}]\), \(m_{\chi_i} \)'s generate irreducible modules \(KGm_{\chi_i} \)'s in \(KG \chi(\chi_i). \) Since the socle of \(KGU \) is multiplicity-
free (see [5, Proposition (2.8)]), $t=1$ and $A(\mathcal{U})=m_{x_1}$. Hence $A(KGU)$ is an irreducible module.

(ii) Since $A \in \text{End}_{KG}(KGU)$, we have $A(\mathcal{U}) \subseteq \mathcal{U}$ from [5, Proposition (1.5)]. Since $A(\mathcal{U})=A(\mathcal{U})(w_1)\mathcal{U}_1$ and $A_nA(\mathcal{U})=A(\mathcal{U})h$, $A(\mathcal{U})$ is a right weight element of weight $(\mathcal{Y}H, \mathcal{Y}(A(\mathcal{U}))_{1 \leq i \leq n})$. Hence we can prove the assertion by the similar argument as in (i). Q.E.D.

Theorem 1. Let $E=\text{End}_{KG}(KGU)$ and $\{\pi_i \mid 1 \leq i \leq s\}$ be the primitive idempotents as in [5, Theorem (2.11)]. Then,

(i) for all $1 \leq i \leq s$

socle of the right ideal $\pi_i E=KA(w_o^j, w_o^\chi)$

where w_o is a unique element of maximal length in W, and

socle of the left ideal $E \pi_i =KA(J, \chi)$,

where $A(J, \chi) \pi_i =A(J, \chi)$;

(ii) let E_o be the socle of the right regular ideal E_o, then E_o is also the socle of the left regular ideal $E E$ and

$$E_o = \sum_{(J, \chi) \in P} \text{KA}(J, \chi).$$

Proof.

(i) Since $A(J, \chi) \pi_i =A(J, \chi)$ if and only if $\pi_i A(w_o^j, w_o^\chi) = A(w_o^j, w_o^\chi)$ for all $1 \leq i \leq n$ and $(J, \chi) \in P$, it is clear that $\pi_i E \subseteq KA(w_o^j, w_o^\chi)$ if $A(J, \chi) \pi_i =A(J, \chi)$.

Let M be an irreducible right module contained in $\pi_i E$, then M is one-dimensional, i.e., $M=KA$ for some $A \in E-\{0\}$. From (i) of Proposition 2 $A(KGU)$ is an irreducible module. Since $\pi_i A=V$, $A(KGU) \subseteq Y_1$ where $Y_1 =\pi_1(KGU)$. Hence $A(KGU)=A(w_o^j, w_o^\chi)(KGU)$, because the socle of $Y_1 =A(w_o^j, w_o^\chi)(KGU)$. From [1, Theorem (4.3)] we have $A(\mathcal{U}) \subseteq \text{KA}(w_o^j, w_o^\chi)(\mathcal{U})$ and $KA =KA(w_o^j, w_o^\chi)=M$.

Again let $A(J, \chi) \pi_i =A(J, \chi)$, then $E \pi_1 \subseteq \text{KA}(J, \chi)$. Let M' be an
irreducible left ideal of E contained in $E\pi_1$, then $M'=KA'$ for
some $A'\in E-\{0\}$. From (ii) of Proposition 2 $A'(\tilde{U})K$ is an irreducible
right KG-module contained in $\tilde{U}K$. Since the right socle of $\tilde{U}K$
is multiplicity-free, there exists a unique pair $(j', \chi')\in \Phi$ such
that $A'(\tilde{U})K=A(j', \chi')(\tilde{U})K$ and $KA'=KA(j', \chi')$. Since $A(j', \chi')\pi_1$
$=A(j', \chi')$, $(j', \chi')=(j, \chi)$.

(iii) is clear from (i).

Q.E.D.

Proof of Theorem 2.

Let M be an irreducible left E-module; then the dual module
$M'={\text{Hom}}_E(M, E)$ is one-dimensional, because the socle of E is
multiplicity-free. Hence M' is irreducible. Similarly the dual
module $N'={\text{Hom}}_E(N, E)$ is also one-dimensional and irreducible
where N' is an irreducible right E-module. From [3, Theorem(58.6)]
we can conclude that E is a quasi-Frobenius algebra.

Since E is quasi-Frobenius, E and $(E_E)^*={\text{Hom}}_K(E, K)$ have the
same distinct indecomposable components. Since E is being
decomposed into distinct indecomposable components $E\pi_1, \ldots, E\pi_s$
and $\dim_K E=\dim_K (E_E)^*$, E and $(E_E)^*$ are isomorphic. Hence E is a
Frobenius algebra.

Q.E.D.

References

1. Curtis,C.W.: Modular representations of finite groups with
split (B, N)-pairs. In: Seminar on Algebraic Groups and
Related Finite Groups. Lecture Notes in Mathematics 131,
2. Curtis,C.W.,Fossum,T.V.: On the centralizer rings and characters
3. Curtis,C.W.,Reiner,I.: Representation theory of finite groups
5. Saweda,H.: A characterization of the modular representations