Report on a 20 minute talk at Kyoto Permutation Groups Meeting, January, 1978.

Doubly transitive but not doubly primitive permutation groups

Cheryl E. Praeger

My research interest in doubly transitive permutation groups which are not doubly primitive arose from some beautiful results of Michael O'Nan and a special problem of my own. Suppose that G is a 2-transitive permutation group on Ω , and that for $\alpha \in \Omega$, G_{α} has a nontrivial normal subgroup N . Michael O'Nan [2,3] showed that, if N satisfies any one of the following three properties, $PSL(n,q) \leq G \leq P\Gamma L(n,q)$ in its representation on the points or hyperplanes of the projective space, where $n \geq 3$ and q is a power of a prime.

- (i) N is abelian and is not semiregular on $\Omega \{\alpha\}$.
- (ii) N is not faithful on its orbits in Ω $\{\alpha\}$.
- (iii) N is 2-transitive on its orbits in $\Omega \{\alpha\}$, |N| > 2 , and N is intransitive on $\Omega \{\alpha\}$.

Notice that the set Σ of orbits of N in Ω - $\{\alpha\}$ is a complete set of blocks of imprimitivity for G_{α} in Ω - $\{\alpha\}$ such that N is contained in the kernel of the action of G_{α} on Σ . Thus properties (ii) and (iii) are essentially properties of the kernel of G_{α} on Σ . Now in order to discuss my problem let us assume.

(*) G is a 2-transitive permutation group on Ω , and for $\alpha \in \Omega$, G_{α} has a set $\Sigma = \{B_1, \ldots, B_t\}$ of nontrivial blocks of imprimitivity in $\Omega - \{\alpha\}$, where $|\Sigma| = t > 1$, and $|B_i| = b > 1$ for $1 \le i \le t$.

I wanted to know if such a group could exist with $G_{\alpha}^{\Sigma} \supseteq A_{t}$ and t much larger than b. If t > b+1 it is easy to show in this situation that G_{α} contains a non-identity element fixing B_{1} pointwise. I was able to show in [4]:

Theorem 1. If (*) is true, $G_{\alpha}^{\Sigma} \supseteq A_{t}$ where $t \geq 3$, and G_{α} contains a non-identity element which fixes B_{1} pointwise, then $t \leq 5$ and G is a collineation group of a Desarguesian projective or affine plane of order t-1.

Thus it seemed that perhaps the group G could be characterised if strong assumptions were made on either the kernel of G_{α} on Σ , (as 0'Nan had done), or the way in which G_{α} acted on Σ . My best result in this direction is the following.

Theorem 2. ([5,6]) Suppose that (*) is true, G_{α} is 3-transitive on Σ of degree $t \geq 3$, and G_{α} contains a non-identity element which fixes B_1 pointwise. If either

- (a) G_{χ} is not faithful on Σ , or
- (b) G_{α} is faithful and 3-primitve on Σ , then G is a collineation group of a Desarguesian projective or affine plane of order t 1 .

I conjecture that this result is true with the restrictions (a), (b) removed. Now projective and affine planes are special examples of block designs with parameter $\lambda = 1$, (where by a block design I mean a set of v points and a set of blocks with a relation of incidence between points and blocks such that each block is incident with k points and each pair of distinct points is incident with λ blocks, where v > k + 1 > 1, $\lambda > 0$). If \boldsymbol{g} is a block design with parameters $\lambda = 1$ and k > 2, and if G is an automorphism group of ${\mathfrak D}$ which is 2-transitive on the points of ${m {\mathcal G}}$, then G is not 2-primitive on points, (for if Δ is a block of ${\bf \mathcal{J}}$ incident with a point α then the set of points incident with Δ and distinct from α is a nontrivial block of imprimitivity for G_{α}). Moreover M.D. Atkinson (see [1]) has conjectured that any 2-transitive but not 2-primitive group G either is a normal extension of a Suzuki simple group, or is an automorphism group of a block design with parameter λ = 1 , or has a regular normal subgroup (with restrictions on the degree). With this conjecture in mind we could ask.

Given that (*) is true, under what conditions on G_{α}^{Σ} can we conclude that G is an automorphism group of a block design with parameter $\lambda=1$ in which the blocks containing α are precisely $B_{\mathbf{i}} \cup \{\alpha\}$ for $\mathbf{i}=1$, ..., t?

One result which partially answers this question is:

Theorem 3. ([6]) Suppose that (*) is true, that G_{α} is 2-transitive on Σ , and G_{α} contains a non-identity element which fixes B_1 pointwise. Then either G is an automorphism group of a block design with parameter $\lambda=1$, the blocks of which are the translates under G of B_1 \cup $\{\alpha\}$, or $PSL(n,q) \leq G_{\alpha}^{\Sigma} \leq P\Gamma L(n,q)$ on points or hyperplanes of the projective space, where $n \geq 3$ and q is a power of a prime, and G_{α} is faithful on Σ .

I conjecture, of course, that the second possibility can be removed. (I have shown in unpublished work that in the second case $t \le bq$.)

References:

- 1. M.D. Atkinson, Doubly transitive left not doubly primitive permutation groups II, J. London Math. Soc. (2) 10 (1975) 53-60.
- 2. M. 0'Nan, a characterization of L_n (q) as a permutation group, Math. Z. 127 (1972) 301-314.
- 3. M. O'Nan, Normal structure of the one-point stabilizer of a doubly transitive permutation group II, Trans. American Math. Soc. 214 (1975) 43-74.
- C.E. Praeger, Doubly transitive permutation groups which are not doubly primitive, J. Algebra 44 (1977) 389-395.
- C.E. Praeger, Doubly transitive permutation groups in which the one point stabilizer is triply transitive on a set of blocks,
 J. Algebra.
 47 (1977) 4 33-440.
- C.E. Praeger, Doubly transitive automorphism groups of designs,
 J. Combinatorial Theory (Series A), (to appear).

University of Western Australia Nedlands, Australia, 6009.