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Report on a 1 hour talk at the Kyoto Permutation Groups

Meeting, January, 1978.

Elements of prime order in primitive permutation groups.

Cheryl E. Praeger

In 1873 C. Jordan, and at the beginniﬁg of this century W.A. Manning
investigated certain properties of an element of prime order in a primitive
group which is not alternating or symmetric. They found that the numBer
of fixed points of such an element is bounded by a function of the number
of its cycles of prime length, provided that the number of cycles is small.
Let us make the following assumptions.

(*) G 1is a primitive permutation group of degree n, and G é_Ah .
G contains an element of prime order p , where p divides |G! , which

has q cycles of length p and f =n - qp fixed points.

In 1873 and 1875 Jordan [2,3] showed (or claimed) that if
1<q<5 and q<p then f < g+ 1. The proof for q > 1 was not
‘published however until early this century, when Manning [4] I,IT, published
a proof of the result and obtained better bounds for f if 2 <q<p - 2 .
In 1928 M. Weiss [11] obtained similar bounds for q ¢ {6,7} , q <p ,
and very recently Jan Saxl [8,9] improved Manning's bounds in the cases
q=4 and q = 5 .
Now Manning was interested in finding a bound for f for a larger range
of values of q . His first result in this direction was obtained in 1911
when he showed [5] that if q < 2p + 3 and G is not 2-transitive then
2

f < mak{q2 - q, 2q° - p2} .
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This bound is too large to be useful in practice although there are exaﬁples
in which the value of f differs from this bound only by a small constant
multiple. (If G is AC or Sc permuting the set of n = c(c-1)/2
unordered pairs of distinct points, where c¢ = (5p + 7)/2 , then G is

a simply transitive primitive group which contains an element of order p
with 2p + 3 cycles of length p and £ = (9p2 + 36p + 35)/8 fixed points,
while the bound for £ is 2q° - p> = 7p2 + 24p + 18 .) Manning's main
result [4] III was published in 1918 and gave very useful bounds on f

as well as limiting the p-part of !G] . We state it below.

Theorem 1. (Manning) If (*) is true and 5 < q < (p + 1)/2 then

f £4q - 4 and IGI is not divisible by p2 . Moreover if G 1is not

2-transitive then f < 4q - 7 .

It is easily checked that if 1 < q <4 and q <p , then again !G]
is not divisible by p2 . Thus if 1 <q < (p + 1)/2 we have a good bound
both on the degree of G and on the p-part of the order of G . One might
ask if these bounds can be extended for larger values of q , and indeed
a partial answer was given a few years ago by Michael O'Nan and myself in
(6,71 . , -

Theorem 2. (0'Nan, Praeger) If (*) is true and q < p then one of the
following is true.

(a) p2 does not divide IGI

(b) ASL(2,p) < G < AGL(2,p), and G permutes the n = p2 points

of an affine plane of ofder P -

(c) G = PTL(2,8) of degree n = p2 =9 .
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A similar result has been proved for q < 2p - 2 , (see [7] II). The
problem of extending Manning's bound on the number of fixed points f ,
even for the case q < p , is more difficult since the bound f < 4q - 4
does not hold in general. Indeed if G = AC or Sc permuting the
n=c(c - 1)/2 unordered pairs of distinct points, where p <c < (3p - 1)/2 ,
then G is a simply transitive primitive group which contains an element of
order p with q =c¢ - (p + 1)/2 cycles of length p , where
(p-1)/2<q<p, and f = ((.p2 - 1)/4 - q(p - q))/2 fixed points, (and if
c=(3p -1)/2 then f =q(q - 2)/8 .) I have been able to show very recently
that these are the only groups which prevent Manning's bound holding for
q <p , at least for simply transitive groups.
Theorem 3. If (*) is true, G 1is not 2-transitive, and 2 < q <p ,
then p2 does not divide lG| and either f <4q -7, or G is Ac or

Sc permuting the n = c(c - 1)/2 unordered pairs of distinct points, where

c=q+ (p+ 1)/2.

By using an argument shown me by Peter M. Neumann together with the
result above a similar bound can be obtained for 2-transitive groups.
Theorem 4. If (*) is true, G is 2-transitive, and 2 <q <p , then

f <4q - 3.
It may be possible to reduce the bound on f in the 2-transitive case.

(Notice that I have stated the results for q > 2 , for the bounds of Jordan

and Manning for q = 3,4,5 are even better than 4q - 7 .)
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Discussion of the proof of Theorem 3.

Theorem 3 is proved by induction on the degree of G . The result for
p <7 follows from the results of Jordah, Maﬂning and Weiss, so we may
assume that p 2 11 . We may use Jordan's or Manning's results to start
the induction, so we assume that G 1is a group satisfying (%) which is
not 2-transitive and is such that 2 < q < p , and we assume inductively
that the theorem is true for groups of degree less than n . Let A be a
subgroup of G of order p , degree qp,,.and with f fixed points.
Without loss of generality we may assume that f > 0 , so suppose that o
.is a point fixed by A . By Theorem 2 A 1is a Sylow p-subgroup of G ,
and hence of G, . If T dsan orbit of G, in @ - {a} then by [121 18.4,
A acts nontrivially on T . Thué Gg is a transitive group of degree
[TI <n with a subgroup Ar of order p and degree less than p2,. The
‘next step is to find a primitive representation of degree less than n
associated with this representation which either satisfies (%) or is

alternating or symmetric. Suppose that A has q'

orbits of length p
and f' fixed points in T .

Lemma  Associated with Gg is a primitive permutation group X of degree

X , where IFI = xy , which contains an element of order p  and degree
(q'"/y)p with f'/y fixed points, for some y 21

Proof Let M be the largest normal subgroup of Gu such that IGa:Ml
is not divisible by p , and let I be the set of M-orbits in T . Then
¥ 1is a set of blocks of imprimitivity for Gg and |ZI is maximal such
that AZ =1, (for AcM . Let Be L and let H be the setwise
stabilizer of B in Ga , (possibly B=T) . Let DcB, D# B, be a
block of imprimitivity for HB such that IDI is maximal, (possibly

Ip] = 1)
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Then D is a block of imprimitivity for GZ . Let A= {D%g ¢ Gu} and

let A(B) = {D8;g ¢ H} .

Set X = HA(B) . Then by the maximality of ]D‘ , X 1is a primitive

group of degree IA(B)| = x say where IPI = xID ZI . By the maximality

' < p it follows that

of lZI s, A ‘acts nontrivially on A, and as ¢
A permutes q'p/|D| elements of A and fixes f'/|D| elements of A
pointwise. Moreover as A is a Sylow p-subgroup of M , A permutes

the same number of points in each element of £ , and it follows that A

permutes q'p/|D|+|Z| elements of A(B) and fixes £'/|D|+|Z| elements

of A(B) . Since |r| = x|D|+|Z| ; the lemma is proved.

Before proceeding we note that MA(B) is a transitive normal subgroup
of X.
If q'/y = 1 then by Jordan's result either f'/y <2 or X2 A ,

= 7x
A(B) > A
= x

and in the latter case clearly M so that AX is a composition

factor of Ga . If 2<q"/y £ (p+ 1)/2 then by Jordan's and Manning's

results, f'/y < 4(q'/y) - 4 , (for X é'Ax since p2 does not divide

|X|) . Finally if q'/y

v

(p + 3)/2 , then since q' < g <p, y =1 and
so X = Gg is primitive. Since q' > q/2 this situation can arise for at
most one orbit of Ga . Moreover since the number of nontrivial orbits of
A in an orbit T' of Gu other than T is at most q - q' < (p - 1) -

(p +3)/2 <q' - 2, a small calculation shows that for every possibility

It*| < 2|r| . It follows from [1] that Gg is not 2-transitive. Thus by
induction either £' < 4q' - 7 or Gg is Ac or S, on the set of
‘IP! = c(c - 1)/2 unordered pairs of distinct points for some c¢ =2 p . In

the latter case AC is a composition factor of Ga .
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If ‘Gu has no composition factors isomorphic to Ac for some ¢ =2 p ,
then essentially by adding the bounds for the number of fixed points of A
in each orbit of Ga we obtain the required bound on f . If Gu has a
composition factor isomorphic to AC for some c¢ = p then the result

follows from the following proposition.

Proposition Let G be a primitive permutation group of degree n and
suppose that G contains an element of prime order p = 11 and degree less
than p2 . -Then,

(a) if G has a composition factor Ac for some ¢ 2 p , eitherb
n=c¢ and G E-An ,or n=c(c-1)/2 and G is AC or Sc
permuting the set of unordered pairs of distinct points, and

(b) ©if a‘one—poipt stabilizer in G has a composition factor Ac
for some ¢ =2 p , either n=¢ + 1 and G E-An , Or
n=1(+2) (c+1)/2 and G is Ac+2 or S_,, permuting

the set of unordered pairs of distinct points.

The proof of this proposition is very complicated. One half of the proof
involves a combinatorial argument using ideas from graph theory. The other
half invpives an investigation of subgroups of prime power order (for some

prime less than p), and exploits the methods of O'Nan's paper [61].

Conclusion I would like to improve these results in two ways. First, using
an idea of Peter Neumann it may be possible to reduce Manning's bound to,
perhaps; f £ 2q . Second, I would like to obtain bounds on f for

q £2p -2 . To do this I need a generalization of the Proposition.
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