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An inequality forefinite permutation groups

Masao Kiyota

(University of Tokyo)

0. Introduction
Let (G,0Q) be a permutation group of degree n. For any
subset X of G, we put
F(X):= {«xe_Q ’VXe’X o(xzof}
£(X):= |F(X)] .
For x eG, we use f(x) instead of f({x}).
(Definition 1) Let ’Zi (i=1,---,r) be integers such that
0< < <h<n. We say that (G,Q) is an {4, - ,¢.} —group,
if | £(x) IxeG, x#1 } g__{/l,‘”,jr} .

E. Bannai and M. Deza posed us the following conject;ure 3
if (G,Q) is an (fl,"',jr} -group of degree n, theanlgﬂ(n—Ii).
In §1 this conjecture is proved. In$¢ 2,3 we consider ;;:l’jle case
[G,:T—,—(h—[i). Finally in § 4, using the same method as in

Theorem 1, we give a proof of the Burnside-Brauer Theorem.

1. Proof of the conjecture
Here we prove the conjecture mentioned above.

Theorem 1. [5] rLet (G,Q) be an { [1’“"fr} -group of degree n.

Then |G| divides | [(n-4).
i=1
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proof. Let @ be the permutétion character of G, and let lG be
the principal character of G. Then it is well known that
r
2
9 ==ITI(9-211G) )
1:
is a generalized character of G. By the definition of £, we

A
nave f(g)=0 for all geG, g#l. Hence, the multiplicity of 1, in

A

9 is given by v
A 1 A 1 2 1
(B216)=1g7 ) O =o7 6= [ [(n-4)

Thus, we get the desired result. 1=1

Corollary 2. Assume the hypothesis of Theorem 1. Then we

X A
nave that |G|=T|'(n-zi) if and only if [ is the regular

. .=1 A\
character of G,lwhere @ is defined in the proof of Theorem 1.

2. {L&,-~,1}} -sharp groups

(Definition 2) Assume the hypothesis of Theorem 1. We say
that (G,Q) is an {:4}-~,1Q} -sharp group, if |G]=1£T(n—£i).

We remark that {0, 1, ,r-1}-sharp group is sha?ély r-
transitive (see Corollary 4). Hence our concept is a
generalization of sharply transitivity. It is natural that one
hopes to classify all {[&,~‘,1}} -sharp groups. But in general
it seems to be difficult. So we must study special cases at
first.

Now we state some examples and known results.

Example 1. Zy Z, is a { 0, 2)-sharp group of degree 2./.
Example 2. { 1,3}-sharp groups
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(1) 6=s, ;Q=A0u/ G“=s3, G”=s4.
(2) G=PSL(2,7) ; Q=Au/, G° is 2-transitive of degree 7,

G” is 2-transitive of degree 8.

Known results. For the following L= {fl,v-hﬁr}, L-sharp

groups have been classified.
L= {2} Iwahori [ 3]
IL={3} Iwahori and Kondo [ 4 )
L= { 0,2} Tsuzuku[6 )

The following lemma is due to E. Bannai.
Lemma 3. Let G be a (O,f%,".,fg} —-sharp group onf2. Then G
is transitive on(), and G, is an {0p=1y++y 01} —sharp group on

Q- {ot}, where o/is any element of().

Applying Theorem 1 to Gy , we can easily get the proof of

Lemma 3.

Corollary 4. Let G ve a {0,1,--,r-1} ~sharp group.

Then G is sharply r-transitive.

‘The following Theorem, due to T. Ito, is an extension of
Corollary 4.
Theorem 5. [2] Let G be an.{[,ﬁ+l,~-,j+r-l}—sharp group on
N(r>2). Then f(G)=/and G is sharply r-transitive on()-F(G).

-3 -
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Remark. It looks very likely that every {[1,'~,j}} -sharp
group hasdfl+l orbits. Note that Lemma 3 is a special case

where.fi:O.

3. The case r=2

Now we consider the case r=2 i.e.(lﬁl#s} -sharp groups.
In this case we can show that f(G) is considerably large and‘
that /-f(G) is bounded by a function of s. Hence the essential
parameter is s alone. More precfiﬁ‘ly we have
Theorém 6. [2] Let G be an {/,/+s} —sharp group.

Put s’ t=max {1, [sgl] } , :=‘f+(1~s)s’+s’2~1.

Then we have £(G)>m.

For s=1,2,3,4 this inequality is best possible. For s>5 we
guess that f£(G)=m does not occur. But I can not prove it yet.

Using Theorem 6, we can classify all L[,£+s}--shar§ groups
for s=1,2,3,4. For example, the [/,/+2)} -sharp groups are the
following groups ; G=Dg, Sy GL(2,3), PSL(2,7). These groups
are determined up to permutation isomorphism. For more details

see [2). The case g>5 is very difficult.

4, Final remark
We give another example which can be proved by the same
method as in the proéf of Theorem 1. Let G be a finite group,

and let ) be & faithful character of G. Let (1) =00, o/ ps-"yolpy

-
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A n
be the distinct values taken by f. We put § :=T_T(€-ai).
Since @ is faithful, we have 1=2
D = o p= Zo(,m),}’, whereo(-[Gl 9(1)@0.

Since 9(1)#0, we ﬁé&ggéﬁo On the other hand 9 is a C-linear
combination of 93 for 0<j<m, as it can be seen from the
definition of é\. Then every)(elfr(G) must be a constituent
of some 93. Thus we obtain
Theorem.(Burnside-Brauer cf. [1] p49) Let £ be a faithful
character of G‘and suppose #(g) takes exactly m different
values for geG. Then every X eIrr(G) is a constituent of
‘one of the characters @j for 0< j<m.

A .
| If some o(;=0, then { is a €-linear combination of @9 for
0<j<m. Thus we obtain o
Corollary. "Assume the hypothesis of the Theofem.‘ Suppose
that f(g) =0 for some geG. Then every X eIrr(G) ié‘a

constituent of one of the characters 93 for 0<j<m.

We remark that every non-linear faithful irreducible

character of G satisfies the hypothesis of the Corollary.
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