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Representations of finite Chevalley groups
(after G. Lusztig)
N. Kawanaka

(osaka University)
§1. Lefschetz number.
Let X(C:KN) be an .affine algebraic variety defined over

K=F_, and g an automorphism of X of finite order. Then,

there exists a power g of P such that both X and g are

defined over Fq. If F : X—>X is the Frobenius map (Xl’

n
ceey xN)Fﬂ——ﬁ(x%, ey xg) of X, |XF 9| < © for n =1, 2,...
(If o 1is a transformation of a set S, S0 denotes the set of

o-fixed points of S.) We consider the formal power series:
n
_ v ® F gy, n
fx,q(t) = Zn=l [ x5 9] 7.

Theorem(Dwork) . fX g is a rational function in t with
I
rational coefficients. Moreover, it has only simple'poles and -

no pole at t =,

Now, we define the Lefschetz number L(g, X) by

(1) - Lg, X) = fxlgf”).
It can be shown that L(g, X) is independent of the choice of
rational structure of X.

There is another definition of L(g, X) which is due to
Grothendieck. Fix a prime number 4% different from p. Let

Hé(x, ©y) (0 21i=22 dim X) be the g-adic etale cohomology
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group of X with compact support. Then, since g 1is an
automorphism of X, g acts on Hi(x, 62) as a linear transfor-
mation, and L(g, X) can be expressed as

(2) g, ¥ =] L Tlg, H (%, 8)).
(The equivalence of the férmulae (1) and (2) follows from the

Lefschetz fixed points formula:
F ir on i -
[x7 9] = J(-1)VTr(Fg, H (X, §)).)
3 :
By (1) and (2), we have:

Theorem. (a) L(g, X) is a rational integer. (b) If G is
a finite group of automorphism of X, the 2Z-valued function
L(*, X): g——>L(g, X) on G 1is a generalized character of G.

§2. The Deligne-Lusztig construction (Ann. Math. 103, 1976).

Notations.

G = a connected reductive linear algebraic group defined
over [F ,
q
F = the corresponding Frobenius map of G,
T = a F-stable maximal torus of G,

6 a (C-valued character of TF,

w
n

a Borel subgroup containing T (not F-stable, in
general),

U = the unipotent radical of B.

Let X = {g ¢ G g_lF(g) € U}. This is an affine variety.

The finite group GF x o acts on X by



1

-1 F F
(go,t)g=gogt (goéG,téT,geX).
Hence, by the results in section 1,

(Ggr t)—> Ll(gy, £), X)

is a generalized character of GF X TF. Hence, if we define a
¢-valued function RTGe‘ on GF by
r
G O LF -1 F
Rpglgg) = [T | 7] g Lllggs D), X)elt)  (go& G,
t T
this is a generalized character of GF. (It can be shown that
RTG6 is independent of the choice of B.) 1In partidular, if B
14 .
F 8 ’
is F-stable, RTGe = indGF(a), where 3 : BF~——% BF/UF X TF-‘--"""> Cc*.
4
B
In a sense, RTGe's are almost always irreducible. This can
B 7 .

be seen from the followihg

Theorem. Let T and T' be F-stable maximal tori of G,

) w
and © and 6' characters of TF and T'" respectively. Then,

G G — F —
<RT,9’ RT',9'>GF = #{w € w(T, T'") le = ’e'°W}r\v‘
where W(T, T') =T {n €& G] n_lTn = T'}.‘ In particular,

(a) If T and T' are not GF—conjugate the above inner
product is zero.
(b) If ©& isin general position (i.e. {w € W(T, T)|g e w

— _ G
=0} = {1}), then RT,G

is irreducible up to signature.
G

Next, we are interested in the values of RT x
14

Definition. Define a €-valued function Qg on the set of
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unipotent elements of GF by:

G

T, 6(W -

G —
QT(u) = R

(It can be shown that the right hand side is independent of

A~
6 € TF.) Qg's are called Green functions of G.

Using Green functions, we can state the following:

Theorem. Let X = su = us be the Jordan decomposition of
an element x of GF(s = the semisimple part u = the unipotent

part). Then,

0 )
RT?G(X) = lzg<s>Fl 1y QZ_£S)(U)6(gSg Ly,
g g Tg

where the sum is over the set of g € GF such that gsg"l T

and Zg(s) = the connected component of the centralizer of ‘s in
. ‘ 0 . . Zo(s)

G. (It is known that fZG(s) is reductive. Hence Q _, means
g Tg

Green function of Zg(s).)

The above theorem tells us that if one wants to know the

G
one must calculate Q Here are some known

values of R p

T,e,
results about ng

(a) G = GLn' In this case, J. A. Green (Trans. A. M. S. 80,
1955) proved that Qg(u)'s are polynomials in g and showed

how to calculate them.

(b) G =10U_. R. Hotta and T. A. Springer (Inv. Math. 41,

n
U GL_ -
1977) proved that QTn(u)(q) = Q Tn(u)(-q)-

(c) ‘G.vLusztig (Proc. London Math. Soc., 33, 1976) calculated
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Q$ for the Coxeter toruslof the symplectic and orthogonal

groups G.

83. Classification of irreducible representations of finite

classical groups.

Let G and T be as in section 2. We denote by X(T) the
z-module Hom (T, K%, and by Y(T) its dual Hom(K*, T). The

Frobenius F acts on X(T) and Y(T) by

F(a) (Ft) = o(t)9 (¢ € X(T), t € T)
and

F(h(x)) = (Fh) (x9) (h € Y(T), x € K*)

respectively. In X(T) (resp. Y(T)), we‘have the root system

z (resp. coroot system z*) of G with respect to T.

Definition. A connected.reductive group G* defined over Eq
is called the dual group of G if it has a F-stable maximal

torus T* such that

(1) X(T*) % Y(T)
and Y(T*) = X(T),
(ii) The action of Frobenius F on X(T*) and Y(T*) is

given via the above isomorphism,
(iii) The root (resp. coroot) system of G* with respect to

T* is )* (resp. }).

Remarks. (a) G and its dual G* have the same Weyl group.

a
v

(b) (G*)* = G.
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(c) There is a natural bijective correspondence between
{F-stable max. tori of G}/GF—conj. and {F-stable max. tori

of G*}/G*F—conj. .

Examples.
G g
GL GL
n n
U ' U
n n
SPon SO2n+1
+ +
50, SO5n
: 0
CSp G ‘
2n 2n+1 the connected compo.
Coi’o Gi’o of Clifford groups
2n 2n

i

Here, CSp2n=={g € GL2n|thg = (scalar)-J} for skew symmetric J.

Proposition. There exists a bijective correspondence between

/\
{(r, e)]T: F-stable max. tori of G, g & TF}/GF—conj.

and

{(T', s)|T': F-stable max. tori of G*, s € T'F}/G*F—conj.

Hence, we can write RT',s for RT,e if (T', s)«<—> (T, ¢).

Theorem. Assume that the center of G 1s connected. For

semisimple s €& G*F, put

G)- . .
o - (_l)c( ) Sg 1 N
S ‘ (T',s')mod G*F <RT',S" RT',S'>GF T's
s' v s
a*t
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where o(G) = the split rank of G and .GS = the split rank of

ZG*(S). Then,
(i) are irreducible characters of GF,
Ps
(ii) Pg = Pgr . if and only ‘s and -s' “are G*F-conjugate,
...)‘ dim o = - ]G*F‘[ ’
(iii im p_ = ( |ZO (s)F|
« o* p!

( (-)p. means the p'-part of (.).),

(iv) {pS! s semisimple in G*F} exhausts all the irre-

ducible characters of GF whose dimensions are prime to p.

Theorem. (i) For any irreducible character p of GF,

there exists some RT;s such that <p, RT,S>GF # 0.
(ii) If there exists an irreducible character p of GF

such that <p, R ># 0 and <p, R > # 0, then si and

Tl’sl Tz,s2

F .
s, are G*” -conjugate.
Hence we have a surjection:

¢ : {irreducible char. of GF} —> {semisimple conj. class of G*F}

defined by

¢(p) = s such that Ry o o for some T.
: 14

(Note that ¢_1(s) = pg for any semisimple s.)

Next we want to know what ¢_l(s) looks like. To answer this

question we need the following notion:

Definition. An irreducible character o of GF is called

unipotent if <p, R > # 0 for some T.

T,1l
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Theorem. (C. R. Acad. Sci. Paris 284, 1977, pp. 493-495;

Irred. repr. of finite classical groups (to appear)). Let G

+,0
2n * “C2n+1

(These groups have connected center.). Let s be a semisimple

be one of the following groups: GLn, u_,; Cszn,vCO S

n
element of G*°. Then ¢_l(s) is in bijective correspondence
with the set of unipotent irreducible characters of (ZG*(S))*

in such a way that
dim p = (dim ¢) x (dim p.)

if p ¢ ¢-l(s) corresponds to the unipotent irreducible

character ¢ of (Z,(s))* :

Remarks. (a) Lusztig also calculated the dimensions of
the unipotent irreducible characters of classical groups. Hence
the dimensions of the irreducible characters of the groups
mentioned in the above theorem are now known. |

(b) Lusztig conjectures that the above theorem will be

true for any reductive G with connected center.

§4. A conjecture.

bt

Lusztig has done much,Nthere remain many open problems.
For example, the explicit calculation of Green functions,
determination of values of unipotent characters and so on.
Hotta and Springer (loc. cit) has proved the so called Ennola
cbnjecture for finite unitary grou§£§%2§ P i n, q large.
. Their result says that 'the character table of U(n, qz) can

be obtained from that of GL(n, q) by changing ¢q into -qg.'
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By inspecting the character tables of Sp4(q) (Srinivasan,
Enomoto) and Gz(q) (Chang—Reé, Enomoto), one sees that the same
principle also holds between Sp4(q) (resp. Gz(q)) and itself.
Hence, although we have no rigorous formulation, we are tempted
to believe that 'the generalized Ennola principle' holds for

any finite reductive groups. The results of Lusztig in section 3

also give support to this 'conjecture'.



