On representations of R-elementary groups at 2

Midutaka Hikari (Keio Univ.)

G(finite group) の R(real number field)上の表現を考えたい。ここでは、Braner-Witt induction theorem ([4], P31)による立場に立ち、R-elementary groups at 2 の R上の表現を考える。この小文の目的は次の問題の1つの解答を得る事である。

Problem. Let G be an R-elementary group at 2. If G has an irr. char. of Schur index 2 over R. Then G?

1. 2-groups

2-groups については、Witt-Roquette theorem ([2], P73)に、 次のLemmaを混ぜて、ちょっとかき回してみると、問題の解 答を得る事ができる。(Witt-Roquette + Lemma) Theorem)

Lemma. G: a finite group, H; a subgroup of Gr.

(1). J; a linear char. of H. $\chi = J^G$. Then χ is not irr. iff $\exists x \in G - H$ such that $x h x^{-1} h^{-1} \in \text{Ker } J$ for $\forall h \in H^X \cap H$.

(2). J; a char. of H. $\chi = J^G$. Then $\text{Ker } \chi = \bigcap_{g \in G} (\text{Ker } J)^g$.

 Λ & the ordinary quaternion algebra over Q z \dagger 3.

Theorem. F: a field of characteristic 0. P: z-group. Then, ${}^3\chi$: faith. irr. char. of P such that $m_F(\chi)=2$ iff

- (i) $P \ge {}^{3}Q > {}^{3}A > {}^{3}K$ such that Q P K, $A \times i$ cyclic and 10: A1 = 2,
 - (ii). Q/k: generalized quaternion of order 2n+1≥8,
- (iii). $x \in P-A \Rightarrow \exists \alpha \in A^x \cap A \text{ such that } x \alpha x^{-1} \alpha^{-1} \notin K$.
- (iv) $\bigcap_{x \in P} K^x = 1$
- (v). $F(\mathcal{E}_{2}^{n}+\mathcal{E}_{2}^{n})\otimes_{\mathbb{Q}}\Lambda$ is a division alg., where \mathcal{E}_{2}^{n} is a primitive 2^{n} -th root of unity.

Remark. 条件 (V). にっいては、Fein、Gordon and Smith [1] を参照されたい。特にF=Rの時は、 $R(\mathcal{E}_{2n}+\mathcal{E}_{2n})$ $O_{\mathbb{Q}}\Lambda=$ H (Hamilton's quaternion field) z" ある.

Example. Wi a generalized quaternion group. $P = W \setminus Z_2 \setminus Z_2 \setminus Z_2 \setminus Z_2 \cdot (P; a \text{Sylow } 2\text{-group of } Sp_2r(8))$ $\Rightarrow \exists x \text{; faith. irr. char. of } P \text{ of } Schur \text{ index } 2 \text{ over } R.$ $M_{2^{r-1}}(H)$ is a simple component of RP.

2. IR-elementary groups at 2.

この節では次の Frobenius - Schur theorem を R-elementary group at 2 の場合に ,群の言葉に書きなかす。

Frobenius - Schur theorem ([2], P21). G: finite group. χ : irr. char. of G. $\nu(\chi) = |G|^{-1} \sum_{g \in G} \chi(g^2)$. Then

- (i) $\nu(x) = 1$ iff $\mathbb{R}(x) = \mathbb{R}$ and $m_{\mathbb{R}}(x) = 1$
- (ii) V(X) = -1 iff R(X) = R and $m_R(X) = 2$
- (iii) $V(\chi) = 0$ iff $\mathbb{R}(\chi) = \mathbb{C}$.

Assumption. A + 1, P + Q.

引,引jaset of representatives of Pa, X; irr. har. of H such that $Ker X \cap A = 1$, とすると,次の事はすぐめかる。

Lemma. $\exists \mu$; irr. char. of $\exists \tau$; taith Linear char. of \exists such that $\mu^{\dagger} = \overline{\mu}$, $(\mu \tau)^{\underline{\mu}} = \chi$.

Lemma. (i) V(X) = -1 iff $|P|^{-1} \sum_{h \in Q} (\mu + \mu^{\frac{1}{2}}) ((gh)^{2}) = -1$. (ii) It $|P|^{-1} \sum_{h \in Q} (\mu + \mu^{\frac{1}{2}}) ((gh)^{2}) = -1$, then

(2) μ^P : non-irr. $\Rightarrow 33,3'$; irr. than of P such that $3 \mp 3'$ and $\mu^P = 3 + 3'$. Further

(a)
$$\nu(\mu) = \nu(3) = \nu(3) = -1$$

R上Schur index との char. をもつか否かという問題は 2-groupに関する議論に移る事になる。上の Lemmaの(ii)のと れいれの場合について考察する事により2尺の Theorem を得る.

Theorem. $\exists x : irr. char. of H such that <math>v(x) = -1$ and $\ker X \cap A = 1$. it one of the following conditions (A),

- (B), (C) are satisfied.
- (A). ${}^{\exists}K \leq Q$ such that $K \triangleleft P$ and P_K is a cyclic group of order 4.
 - (B). ∃Kd∃T ≤Q which satisfy the following conditions.
 - ii). Tk: cyclic
 - ii). x ∈ Q T ⇒ = a ∈ TXnT such that xax a d & K.
 - (iii) = y & P-Q such that yby b = K for Vb & TYnT.
- (iv) $X = \{h_1, \dots, h_m\}$; a set of representatives of Q/T. $d = \#\{(h_i, h) \in X \times Q | h_i(gh)^2 h_i^{-1} \in T K, h_i(gh)^4 h_i^{-1} \in K\}$, $\beta = \#\{(h_i, h) \in X \times Q | h_i(gh)^2 h_i^{-1} \in K\}$. Then $|Q|^{-1}(\beta d) = -1$.
 - (C). =K≤=T≤=S≤P which satisfy the following conditions
- (i) SDK, S/k; a generalized quaternion group,

 T/k; a cyclic subgroup of S/k of index 2.
 - (ii). x ∈ P-T => = a ∈ T nT such that x a x a = a = k.
 - viii). One of the following conditions are satisfied.
- (a). $K \leq T \cap Q$ and $(S \cap Q)_{K}$ is a cyclic subgroup of $S \setminus Q$ of index Z.
 - (b). KSTAQ and (SAQ) K is non abelien.
- or $K \not\equiv T \cap Q$. $X = \{h_i, \dots, h_m\}$; a set of representatives of $Q(T \cap Q)$. $Y = \# \{(h_i, h_i) \in X \times Q \mid h_i(g_h)^2 h_i^{-1} \in T K, h_i(g_h)^4 h_i^{-1} \in K \}$, $S = \# \{(h_i, h_i) \in X \times Q \mid h_i(g_h)^2 h_i^{-1} \in K \}$. Then $\|P\|^2 (S X) = -1$ and

IT: TOQ = 2.

References.

- 1 B. Fein, B. Gordon and J.H. Smith, On the representation of -1 as a sum of two squares in an algebraic number field, J. of number theory 3, 310-315, (1971).
- 2. W. Feit, Characters of finite groups, Benjamin, 1967.
- 3. R. Gow, Real-valued characters and the Schur index, J. of Alg. 40, 258-270, (1976).
- 4. T. Yamada, The Schur subgroup of the Brauer group, Springer-Verlag, 1974.