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Tight spherical designs

(A preliminary report of some joint:work with R. M. Damerell)

Eiichi Bannai (Gakushuin Univ.)

ﬁn»important generalization of the concept of t-design has been made by
Delsarte‘[4]. Namely, he defined the concept of t-désign;in certain association
schemes which are called Q-polynomial.schemes. (Sée [4] for the details.)

Yet another important generalization of the concept of t-design has been
made‘recently by Delsarﬁe—Goethals—Seidel [5], which is the topic of the present
paper; |

Definition (I5]) Let £l. be the unit sphere in the d-dimensional

d
Euclideén’spaceA m@ . A subset X in fld is said to be a spherical t-design

(in i‘-g;’ld)_ Cif

(1) }Xl < 3 and
(ii) Z:. £(5) =0 for any homogeneous harmonic polynomials £ of degree
. % ex _ v
- ‘ . 132 2 2
1,2,-..,t . (Here, harmonic means ( + e+ )f(x ,0m,xy) = 0 L)
l ‘ 9x2 9x2 L . d
1 d :

Spherical t-designs were studied extensively by [5]. In particular the
following inequalities, which are analogous to the generalized Fisher's ine-’
“quality for ordinary t-designs, have been shown.

Fisher type inequalities (15]) If X is a épherical t-design in 'fl

d’
then
. /d+s-1 % ; d+s-2 . .
(i) }Xi Z\ z-l ! L z-l } , if t = 2s is even, and.
f d+s- . .
(ii) {Xi:?Z dts-1 \ , 1if t = 2s+1 is odd.

4 .\ da-1 ;
X 1is said to be tight if the equality holds in either of the above
inequalifies.’
Now, we want to classify tight spherical t-designs (in ~£ld)' It is known
that %f d =2 then X is a tight sphericalvé—design if and only if X in

the set of vertices of a regular (t+l)-gon. So, without loss of generality,
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we may assume that d 23 . Delsarte—Goethals-Séidel [5] have shown that there

exist no tight spherical 6-designs. The purpqse‘of the present paper is to

announce the following theorem. The details will be published in [1] and [2].
Theorem ([1]1, [2]) Suppose that 4 2z 3 . |

—

(i) If t =2s > 6 , then there exist no tight spherical t-designs in ;Zd .

]

(ii) If t 2s+1 > 9 , then except for t =11, d = 24 and |[X| = 196560 ,

there exist no tight spherical t-designs in Eld .

(The classificatignffor t <5 and t = 7 seems very difficult, and;;sk
still open. For t =11 and d = 24 , there actually exists a‘tigﬁt spherigal»
1l1-design which is constructed from the Leeéh lattice ([5]). However, the

uniqueness problem is still open.)

Sketch of the proof of Theorem
We utilize the Lloyd type theorem that was implicitly obtained in Delsarte-

Goethals—-Seidel [5] and explicitly mentioned in {1, Theorem 1].. Namely, if

there exists a spherical t-design in ild" theiall the zeros of the followiné
polynomial ‘éé(x) of degree s are rational:
Yo%) = R_(x) if t =28,
s S :
Yo (x) = C_(x) if t = 2s+1
s s
4 d 4
Here, R (x) :=C (x) + C* _(x) , C (x) :=C*(x)
.S S s-1 s s
m_ ;
. (<1) - 1 (m+ ) , 1 2
= — * =iy, + "; P .
sz(x)‘ ) 2Fl(’m w5 ) and
m — .
J (-1) " | (m+o +1) X 3 2
= = 2x- F_(~ +J+1 ;= .
Com+1 ) m! [ () Xr gy lome Al o x0)

(Note that 2Fl denotes the Gauss' hypergeometric series, Cs(x) is a certain
Gegenbauér polynomial and Rs(x) is‘a certain Jacobi polynomial (cf. [71.)

To begin with, we can prove that any nonzero root of the polynomial .%g(x)
is the reciprocal of an integer. Let us denote by zg(x) the'éolynomial

whose roots are the reciprocal of the nonzero roots of ?f;(x) . Our proof

differ very much according as t is even or odd.



(i) (See [1]1) Suppose that t = 2s . Then, the zeros of the polynomial B%WM
are almost symmetric with respect to the origin, but not exactly symmetric. In
this case, we can ingeneously evaluate the range of the location of the zeros

very precisely by exploiting some special properties of the associated orthogonal
polynomials, and we can show that all the zeros of I]—;"(x) are not integers,
which leads a contradiction to the Lloyd type theorem.

(ii) (See [2]) Suppose that t = 2s+l . Then the zeros of {Fkx) are

exactly symmetric with respect to the origin, and so the method used in (i) is

not available. However, in this case we can use the following two techniques:

(a) Let '“;[%],---, (_l,zﬁl, *?,---,Lx[%] be the nonzero roots of gf(x),
(here note that o= o=, ) .
-1 i _
£, .
Suppose that the ;11 are all integers. Then Tj uxi must be ((; (i.e.,
i=1

a square of an integer), which leads the condition that

(d+2s) (d+2s+2) - - * (d+2s+2 (s-1)) - f%

1-3:5+ «+- -(2s5-1) ' for s = even ,

(%)

(d+2s+2) (A+25+4) - - - (d+4s) _ | - _
3-5+ -.. -(2s+1) =4 for s = odd .

Now, by extending the method that was used by Erdds [5] to solve the diophantine

equation

X 2
. =Y ’
1 -

we can show that the above diophantine equations (%) have no integral solutions
for sufficiently large s (and for any d » 3). By elaborating the method -
of Erdds, we can actually show that it is all right if s .» 38 , say.
(b) Let us recall the definition and a property of Newton polygon (for a
n-1

. n
P . - c
prime p) of a polynomial £(x) anx + alx + + a aO #0 , ai A

For the a; # 0, let a; = p%'bi with (p, bi) =1 . We plot the points

{n-i, ri) in the xy-plane. The Newton polygon (for p) of the polynomial
f(x) 1is the set of line segments which are the lower boundary of the convex

hull of the points (n-i, ri) (see the figure below). Now, we have



Lemma 1. Suppose that f(x) = f}(x - d&2) . :ji ¢ Z . Then any slope

of the Newton polygon must be an even integer.

i

‘ 4 2
/Example of Newton polygon. For f(x) = x5 + 6x + 8x + 10x + 8, p = 2\\

/

Now, suppose that all the zeros of ¥Plx) are integers. Then any slope
- 5
of the Newton polygon of ‘f(z) with 2z = x must be an even integer. By
studying very closely the Newton polygons of ‘ykz) for p =2, we can shbw,

after the very complicated and tedious calculations (which need improvements),

that for all the remaining s 26 , the zeros of E?(x) are not all integers.

The cases s =4 and 5 are eliminated separately by studying certain

diophantine equations.

- Concluding Remark

Finally, I would like to point out that the tight spherical t-designs are

very important for some permutation group theoretical aspect. (cf. [31)

Let G Dbe a transitive permutation group on a set il Let Ae 1) and
let G, be the stabilizer, and let ~5x i, ZXl, 432, Sl Aﬁr be the orbits
LA L T AL e e 1A
of Gy . (Let k = gLﬁl‘ SHTE PRI .ESAAIS) .

(i) (well known) Let G be primitive, and let z&l be self-paired. Then

we have

JCLIL 1+ k + k(k=1) + -+ 4 k(k-1)F 77 (2 x5 .

If the equality holds, then i‘li[ = k'(k—l)l—l and the orbital graph (iz,/gl)
is a Moore graph, and it is shown that such a graph does not exist if r » 3

and k > 3 (Damerell-Bannai-Ito).



(ii) Let G be primitive, and let all the orbitals are self-paired. Let
B N 4 :'s be the permutation character, and let

d = deg.,'l < deg. /2 Gomem deg.Lxs .

Then, Cameron-Goethals-Seidel [3] have shown that

i rd¥s-l L d+s=2 . a5 )
a-1 . a-1 (o
s . ‘ X ,
_ - dei-l . a+i-3
- o on — i B - 4( I
{=1 a-1 a-1 ,
and if the equality holds, then
deg. d+i~1 % d-i-3
9y d-1 . a-1 ,
and "i is the i-th symmetrized Kronecker product of }Xl , and moreover, we
get a tight spherical 2s-design in "id . Our theorem shows that this situation

also does not hold, if s »3 and d » 3 , which solves the 'dual' extremal

problem of Moore graphs.
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