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Abstract
Two partial orders are defined for pairwise sufficient
o-flelds. With respect to one of these partial orders we prove
the existence of a pairwise minimum sufficient o-field for the
coherent families of Hasegawa énd Periman (Ann. Statist., 1974);
this is used to prove their main result on the existence of the
minimal sufficient o—field for coherent families. With respect
- to the second partial order we prove the existence of infinitely
many minimal palrwise sufficient o-fields for the discrete case

with an uncountable sample space.
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1. Introduction

Burkholder (1961, Corollary 3, p. 1197) showed that a
minimal sufficient o-field if it exists is essentially con-
tained in every sufficient o-field and hence is the minimum
sufficient o-fileld, 1.e., necessary and sufficient in the
sense of Bahadur (1954). Pitcher (1957) showed that minimum
sifficient o-fields do not exist alwayé. However for the so-
called compact case Pitcher (1965) proved the existence of
minimum sufficient o-fields. Pointing out a gap in his argu-
ment Hasegawa and Perlman (1974) gave a new proof of this result
in a slightly more general set up. Similar questions relating
to pairwiée sufficient o-fields seem worth exploring, particu-
larly in the light of. the comments in Section 5 of Hasegawa and
Perlman (1974). |

Let g' be a fixed family of probability measures on a
fixed measurable space (Q,A) and recall that a o-field
A, © A is pairwise sufficient if A_ is sufficient for {P,,P,}

—S

on A, for all P P2 € P. To define minimality we introduce

1’
two partial orders on tﬁe family of sub-o-fields of A. All o-

fields considered in this note are assumed to be sub-o-fields

of A.

Let N, be the family of all P-null sets A € A. Let
N,= NN, and N, , = 0 N, =N . Let A,, A, Dbe
£ orer’” "R gm0t RYR 1 =2

two sub-o-fields. We shall write A, < A(P) or A; < A,(I) 1if



glven AL €A there exists A, € A, such that the symmetric

1° 2 2
difference 'Al A A2 € Nf’ i.e., gl c Az(I) if Al c 52 ) Nf
where A, V EP is the smallest o-field containing A, and

Np. Similarly A, © A,({P;,P,}), P, P, € P or A, < A,(II)

if for any pair P P, and A, € Ay there exists A, € A,

1 2
. - .
such that A; A A, € HPl’P2’ i.e., A ©A(II) if
Al c n (A, VN ). Of these two partial orders the first
- . —P ,P
P15 P,EP 1° 2

is one of several due to Bahadur (1954) and is the one most fre-
quently used for sufficient o-fields. The second seems more

natural for pairwise sufficient o-fields. However for pairwise

sufficient o-fields Al’ 52 it is easy to show
C 3 = —-
Ay 52(11) iff Kl c 32 where Ei PQP(Ai \Y ﬁP). Thus re

stricted to the class of pairwise sufficient o-fields the
“second ordering is equivalent to one also introduced by Bahadur
(1954).

If in the family of all pairwise sufficient o-fields.
A is minimum (minimal) under the partial order (I) we shall
say A  1s a minimum (minimal) pairwise sufficient o-field.
If the partial order (II) 1s considered then the terms used are
par;wise minimum and pairwise minimal o¢-fields. Thus As 1s
pairwise minimum sufficient 1f it 1is pairwise sufficlent and
for évery pair Pl’ P2, it is contained in all pairwise suf-

ficient o-fields up to the {P,,P,}-null sets N . The
. 1’°"2 =P, P,
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relative position of pairwise indicates whether it refers to
sufficiency alone or to minimality as well.

Certain facts follow rather easily from these defini;
tions. Burkholder's (}961) argument applies to the second
ordering and shows if a pairwise minimal sufficient o-field
exists it is actually pairwise minimum sufficient; see in this
connection Remark 1 of Section 5. Clearly if A, © A,(I) then
A, © 52(11) and hence minimal péirwise sufficiency implies pair-
wise minimal sufficiency which, as we just saw, is equivalent
to pairwise minimum sufficiency. The converse implication is
not true in general.

We now state our main results. Under the assumption of
- coherence of Hasegawa and Perlman (lé?ﬂ) we show a pairwise
‘minimum sufficient o-field always exists. This is used to fix
the gap in Pitcher's (1965) proof pointed out by Hasegawa and
Perlman (1974). In the discrete case with uncountable sample
space of Basu and Ghosh (1969) we give a simple characterisa-
tion of the pairwise minimum sufficient o-field; we also show
that there exist infinitely many minimal pairwise sufficient

o-field$and hence no minimum pairwise sufficient o-field

exists.

2. Preliminaries

For any sub-g-rield 51, let



X = n (A, VN )
"l - - P aP
Pl’PQ in P 12
and
K= n @aviy.
PinP
Then
A. < (A, VN) <K <X
=1 =1 ~P -1 = =1
WY
n v v
A—I—Kl’ A—l Al'

Moreover by Lemma 3.3 of Hasegawa and Perlman (1974) applied to

each pair {Pl’PE}’

v
A. pairwise sufficlient implies A = zl oo (*)

1

Lemma 3.3 also yilelds

Al sufficient implies A V NE = K .. (¥%)

Definition 1. For any probability measure Q the

support of Q (relative to P) 1is an A-measurable set S,

such that



(1) Q(SQ) =1
(11) if A€ A, ACSy and Q(A) = 0 then P(A) =0 for

Such a set doesn't exist always (vide Example 2 of Pitcher

(1965)) but as Theorem 2 will show SQ exists in the coherent

case.
If Séi), i=1, 2, are both supports of Q then
sél) A séZ) is  {Q} U P-null.

If P is dominated and A 1is an equivalent o-finite
measure then, i.e., A(A) = 0 iff A € ﬁg then SQ -may be taken
as the set where dQ/d(Q + A).> 0. If SQ exists its indicator
function will be denoted by IQ. Usually for any set A the in-
dicator function will be denoted by IA'

For each pair P,, P, € P, 1let ¢ be any fixed
1 2 ~ Pl’PZ

version of dPl/d(P1 + P2).

Let F be a family of A-measurable functions. Then the

smallest o-field with respect to which all elements in F are

measurable is denoted by A(F).

Proposition 1. Let Aps be a sub-o-field of A. The

following three conditions are cquivalent

i) éps is pairwise sufficient for P on A.

i1) For each pair P.s Py € P there exists an gps—measurable

function f such that = ¢ a.e., {pP,,P,}.
—_— P1P2 — P1P2 Ple S 1°°2



111) Aps i1s pairwise sufficient for P*¥ in A where P¥

is the family of countable convex combinations ~zAiPi of

elements P, € P

Proof. Equivalence of (1) and (ii) follows form the
factorisation théorem for dominated families. Equivalence of
(i) and (i1ii) follows from the well-known eqﬁivalence of suf-
ficency and pairwise sufficiency for dominated families. For

an elegant proof see Speed (1975).

Theorem 1. Suppose for each P € P the support SP

relative to P exists. Let V¢ = ¢ (1 + T - I_ 1)
P, P, P, P, Py P, P,7P, 7

F o= {wPlPZ,Pl,P2 € Pl u {Ip,P € P} and 5mps = A(F).

Then Apms is pairwise minimum sufficient.

Before proceeding to the proof let us note that under the
hypotheses of the theorem, I + I - I, I is just the in-
Py Py TRR

dicator function of the support of (P, + P,) and is
1 27 Py P, ,

a version of dPl/d(Pl + PZ)‘

Proof. By Proposition 1(1i) and the preceding remark

i b .

concern%ng ¢P1P2, Apms s pairwise sufficient Suppose gps

is any pairwise sufficient o-field. 1In view of (¥) it 1is enough

to show A <A VN for all P € P. This will be the case
—pms ~ —psS -P L

if for each pair P, P, € P, Vp P, and IPi are

1
» 11
Aps \' EP measurable for a P € P,

7
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By Proposition 1(i1i) and (i1i) there exists an gps—'

measurable function f, such that f, 1is a version of

i i
a(p,)/d(P, + P). Let B, € A,s Dbe the set where f, > 0.

- Clearly

fvd(P- + PS = P, (B(T)s® ) = o.
—voe TiFL Y g \BL Jop
jBi( )SPi, ; : . AT .

Since f; > 0 in 'Bi, this implies

‘ ‘ “\aC y .

(2.1) P(B,(")Sp ) = 0.
i

c,- cy _ v .
Also Pi(Bi( )SPi) < Pi(Bi)f_ 0.  But by definition of SPi this
implies ' '

. . c‘,‘_.l. oy T
(2.2) L P (B ( )sPi) = 0.

By (2.1) and (2.2)

(2.3) I =1 a.e. (P).
By R T
- Hence
(2.4) T o+ I. -I I, =1 o a.e. (P).
| / By By "By'By 7S, +P,



=g
7

By Proposition 1(i1i) there exists an Aps—measurable

function g such that on SP1+P2

g/= ¢P P a.e.. (P1 + P2)
and hence bn S
(2.5) g = ¢pp a.e. (P).
By (2.3), (2.4) énd (2.5)
(2.6) g-(Ig +Ig -Igp) =¥y p a.e. (P).

It follows from (2.3) and (2.6) that I and ¥
P, P P,

are A_V Np-measurable. This completes the proof.

3. Coherent Families

‘Throughout this section we suppose (&,A,P) is coherent
in the sense of Hasegawa and Perlman (1974). Compactness in the
sense of Pitcher (1965) implies coherence. It is an interesting
open question whether coherence implies compactness. Note that
there are serious gaps in the proof of Lemma 1.2 and Theorem
1.1 of Bitéher (1965).  See in this connection Morimoto (1973,
Appendix). 1If correct Pitcher's results would imply the eqguiva-

lence of compactness and cohercnce. Using the symbols of Pitcher
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(1965) we note that by his Lemma 1.2 which is correct for
p = ®, coherence of a family of measures M on a measurable
space (X,S) implies the compactness of B_(X,S,M) in the
el(X,S,M)—topology where the last two terms are defined as in
Pitcher (1965). 1Incidentally the application of Pitcher's
Lemma 1.2 made by Hasegawa and Perlman (1975) is valid since
all their functions are in B_(X,S,M).

It may be worth mentioning here that compactness is
equivalent to a property called weak domination. See in this

connection Yamada (1976) and L. Rogge (1972).

Theorem 2. For each P € P, the subport Sp exists.

Hence a pairwise minimum sufficient o-field exists.

Proof. Fix P, Q€ P; Q and P may be identical. Let
AQ be the set where dP/d(P + Q) > 0 and IQ the indicator
function of AQ. Then {IQ,Q € P} 1is countably coherent. For

take a sequence Q; and let Qg = 22—;Qi, Ay = {w;apP/d(Q, + P)

>0} and I the indicator function of A.. Then I =1
0 0 Qi 0

a.e. [Qi]. Since (9,A,P) is coherent there exists an A-
measurable function f such that f = IQ a.e. [Q], Qe P.

Let S = {w;f > 0}. Then

(Q), Q#Pp, Qe P.

i
=4
o9}
(¢

fo



7))

This implies S 1is the support SP of P in P
The last part of Theorem 2 now follows from Theorem 1.

Let ﬂpms be the pairwise minimum sufficient o0-field.

Proposition 2. If As 1s a sufficient o-field then

Proof. gpms < As V' NP+Q for all P, Q in P which

implies

v
A <A =
“pms — =§  —s
X ¥
* - - X
by (*). so K ok =a =a VN by (5F).
Theorem 3. A is minimum sufficient.

~pms
The proof of this is the same as that of Theorem 2.5 of
Pitcher (1965) except that we use Proposition 2 to complete the

gap pointed out by Hascgawa and Perlman (1974). Since the proof

is short it is reproduced for the sake of completeness.

Proof; Kpms is sufficient by the argument given in the
proof of Theorem 2.5 of Pitcher (1965). The proof is completed

by appealing to Propositlon 2.

4, Discrete Case

We consider the discrete set up of Basu and Ghosh (1969).
See also in this connection Morimoto (1972, 73), Kusama and

Yamada (1972) ‘and Brown (1975).

/1
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Suppose then A 1is the class of all subsets of &
and P € P is a discrete measure. We denote the probability
function corresponding to P byv p so that P(A) = ] p(w).
To avoid-trifialities assume 8 1is uncountable. We :igo as-
sume for each w € @ there exists P € P such that P({w}) > O.

As shown by Basu and Ghosh (1969) the minimal sufficient
partition D - (D} 1is a family of disjoint sets of Q@ whose
union 1s §Q and which- satisfles the collowing condition: .

For any ﬁ € D, Wi, W € D iff p(wl) >0 implies
p(w,) > 0 and p(w,)/p(w)) 1is independent of »p for all PE€ P
for which p(wl)p(wz) > 0. Note that each D' is countable.

We say a o-field Al separates elements of D if given

D1 7 D, € D there exists B € Al such that B> D1 ana B® > D..

Theorem 4. él is palrwise sufficient iff it separates

elements of Q.’

Proof. Suppose Al is pairwise sufficient. Because of
Pfoposition 1(iii) we assume without loss of generality P is

closed under countable convex combinations. Hence given D1 # D2

we can find bPO € P such that
(h.l)‘ po(w) >0 1if we D, U D, .

Since D.1 # D2 we can find P € P and Kl 7# K2 such

that

/2



(4.2) : p(w)/py(w) = K, 1if - D, 1=1, 2.

Let A = {w;p(w)/po(w) = Kl}. By Proposition 1(ii)

B € A, such that P,(B A A) = 0. Hence by (4.2), B> D, and

1
B® o Dys 1.e., A, separates elements in D.
Conversely suppose Al- separates elements in D. Choose
P;» P, € P. Then for any fixed K, E = {w;p;(w)/(p;(w) + p,(w))

= K,py(w) + p,(w) > 0} 1is a countable union of elements in D.

Moreover F = Ec_ﬂ'SP +p is a countable union of elements in
1 °2

D. Clearly A, separates E and F and so there exists

1

BE€ A, suchthat B> E and B°> F. So JP,(BAE)=0. An

1
appeal to Proposition 1 completes the proof.

Let AO be the o0-field containing only countable union

of elements in D and their complements.

Proposition 3. For fixed D € D 1let A(D) be the sub-

c-field of A, containing all countable unions of elements of

0
D which do not contain D and their complements. Let A, be

a proper sub-g-field of 50. Then gl separates elements of D

iff there exists Dy € D such that A, = A(D;).

Proof. Suppose Al has the separating property. Since Al

separates elements of D, 1f Al contains a countable union U Di’

then each Dy € A,. .Since A : Ay> there exists a Dy € D such

/3



Dy € A;. By our previous argument, A, cannot contain any

countable union H = UD, such that Dy % H. By the separating

1
property there exists B € A, such that B> Dy and B> H.

Obviously B must be uncountable and so B® is countable im-

1 So gl contains all countable unions H which

do not contain Dy Thus Al = 5(DO)' The converse is obvious.

We can now state the main result in this section.

plying H € A

Theorem 5. go 1s pairwise minimum sufficient. For

each D € D, A(D) is minimal pairwise sufficient and hence

no minimum pairwise sufficient o-field exists.

Proof. Note that SP = {w;p(w) > 0} is a countable union

of elements in D. Also if wPlP2 is’ defined as in Section

2, then {W;wPlPZ < K}. is a countable union of elements in

D if X < 0 and is the complement of such a set if K > 0.

So Ad is identical with the o-field Apms defined in Theorem
1. This proves the first statement. The second statement fol-
lows immediately from Theorem 4 and Proposition 3, if we recall‘

HP is just the empty set here.
Remark. This result as well as Theorem 4 is valid if
A 1is any o-field separating points of Q. Only slight changes

in the proof are needed to show this.

I



- {4

5. Miscellaneous Remarks

Remark 1. Theorem -4 of Burkholder (1961) is trivially
true if we replace P Dby a fixed pair {Pl’PZ}; this follows
from Proposition 1(ii). Burkholder's (1961) Corollary 3 then
follows with P replaced by {Pl’PZ}' This implies any pair-
wise minimal sufficﬁent o-field is pairwise minimum sufficient.

Remark 2. R. V. Ramamurthy has construced an example
where no minimal pairwise sufficient o-field exists.

Remark 3. In the set up of Section 4, B. V. Rao and R.
V. Ramamurthy have shown there are many minimal pairwise suf-
ficient o¢-fields not covered by Theorem 5. But a complete
description of all minimal pairwise sufficient o-~fields seems
difficult. | |

Remark 4. It is perhaps worth pointing out that in the
first example of Pitcher (1957) no minimum pairwise sufficient
o-field exists, but existence or non-existence of pairwise
~sufficient o-fields of other types seems difficult to settle.
In view of the remark following Theorem 5, infinitely many
minimal pairwise sufficient o-fields exist iﬁ his second
example.

Remark 5. It would be interesting to know if pairwise

minimum sufficient o-filelds exist in all problems.

Acknowledgment. I am 1ndebted to B. V. Rao for Propo-

sition 3, and H. Morimoto and R. V. Ramamurthy for providing
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a pairwise sufficient audience while the results in this note
were taking shape in my mind. It was H. Morimoto who told me
of reference [13]. I must also thank the referee for many

useful suggestions.
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