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Abstract

This paper discusses the problem of discrimination between
two test procedures whose Bahadur-efficiencies are equal. Since
it is usually believed that equal Bahadur—efficieﬁcy is equivalent
to equal Cochran—efficiéncy, we have discussed the problem from
the point of view of Cochran as well; it is shown that at the

level of deficiency, this equivalence does not hold true.



Comparison of Tests with

Same Bahadur-Efficiency

0. Introduction.

In [9], Hodges and Lehman studied the problem of discrimi-
nation betﬁeen two statistical procedures which are, according to
some criterion, equally "efficient"; deficiency is essentially a
guantitative measure of this discrimination. In the same spirit,
we have discussed here the problem of discrimination between two
test procedures which have equal Bahadur-efficiency.

It is suggested by Bahadur ({1],[2]) that in many cases
alternative test procedures might be compared on the basis of
the associated limiting "attained levels." Following his
suggestion we have introduced the notion of Bahadur-deficiency
for two test procedures thch are equally efficient from Bahadur's
view-point. It appears that this approach of discrimination in-
volves some difficulties; for example, the quantities involved
are, in general, unlikely to be .constants almost surely.

On the other hand, Cochran ([5]) measuredithe efficiency
of a test procedure by the rate of convergence (to zero) of its
size, when the power is held fixed against a specified alter-
native. It is well-known that the Cochran's approach to
efficiency usually leads precisely to the same conclusions as

Bahadur's approach does. Motivated by this fact we have introduced



in section 2 the notion of Cochran-deficiency (to be referred to
as BCD for reasons explained in the next paragraph) and>have
shown by means of an examéle that at the level of deficiency,
the above equivalence between Cochran's and Bahadur's view-points
is no longer true. A necessary and sufficient condition for the
existence of Cochran-deficiency is‘proved. In most cases this
condition does not hold and so Cochran-deficiency will rarely
exist. When appropriate asymptotic expansions of the significance
levels are available, an "apprqximate" Cochran—defiéiency is
calculated as a compensation. Conditons under which the said
expansions are valid are also investigated.

As Bahadur-deficiency will, in>general; be random, one
may like to go to fhe considerations of taking some sort of
average of Bahadur—aeficieﬁcy. But since the computations involved
in such considerations appear to be quite difficult, we proceed
along a somewhat different route in section 4, leading to a new
interpretaﬁion of Cochran deficiency more in line with Bahadur's
approach. In view of this interpretation we shall refer to Coch-

ran deficiency as Bahadur-Cochran-deficiency (BCD). -



1. Notations and Preliminaries.

Let (X,B) be a measurable space; let {Pe: be®} be a

family of probability distributions on X.

Let s = (xl,xz,....) be an infinite

sequence of independent observations on x . Let T = {Tn(s): nx>1}
be a real-valued statistic such that, for each n , Zn(s) depends
on_ s only through (xl,...,xnl. In the next paragraph, a brief

synopsis of Cochran's efficiency is given; for details consult
{51, [1] and [2].

Let @h - be a proper subset of @ . We are interested in
testing Hy: edﬁb against Hj: 66@%~@% . For this purpose, we
consider a test procedure which is based on a test statistic T

and which regards the large values of Tﬂ(S) to be significant;

i.e., the critical region Wn of the test procedure is of the

form

(1.1) | . Wn = {s: Tn(s) zkn}

Fix a 6 in @D-Gq) and a B such that 0<g8<1 . Choose

{k_: n21} such that

n
(1.2) ) Pe(wn) — B

as n > B8 . Note that kn will depend on R as well as on 6 .
Let an(s) = an(e,s) be the resulting size of the test, i.e.,
let

(1.3) an(e,B) = Sup{Peo(Wn): 60 eC%}
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Cochran'argued that the rate at which an(B,B) converges (to
zero) is an indication of asympotic efficiency of T against 6.
Equivalently, one may proceed in the following way which is more
suitable for our purpose: for each 6:,0<8§<1 , let |

M(8) = M(6,8,8) be the least integer m=1 such that a (B) <6

for all n=2m ; otherwise let M(8) be infinity. Henceforth, we

shall assume that uq(B) + 0 as n » =, which ensures that M(§)

is finite for all &§ . The Cochran-efficiency of the test pro-
cedure, when it exists, is equal to the limit of [2 log(l/8)/M(S8)]
as & > 0 .

Suppose now that @ﬁ, Gb are two distinct subsets of
@-@O with @2 c@l ; consider the testing problem Hy: 6 e@o

vs. Hy: 6 e@ﬁ as well as H 0 e@b Vs. szee@b . The first

0:

testing procedure is based on the test statistic Tl(s) =

{Tln(s): nz=1} , while the second is based on the test statistic
Tz(s) = {Tzn(s): n>1l} . Fix a eeJ@Z and also a R such that
0<B<1 . We want to discriminate between these two procedures
when ¢ obtains. Define Mi(a) , 1i=1,2 , in the usual way.

Clearly, the limit of [Mz(é)/Ml(é)] as & » 0 gives the
Cochran-efficiency of Ty relative to T2 when 6 obtains.

When this efficiency is 1 , [Ml(G)'-M2(6)]/Ml(6) >0 . 1In
typical cases, however, [Ml(é)-M2(5)] remains bounded’as § » 0,

and so for the purpose of a more subtle distinction, one may use

the limit of [Ml(a)-sz(G)]' as & - 0 , whenever this limit exists.
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Definition 1.1. The lower (upper) Bahadur-Cochran-deficiency

(BCD) at © of the first testing procedure w.r.t the second is

b.(6,8) = li?+énf[Ml(6)-M2(6)l

1

(D (8,8)

lim sup(M, (§) - M, (8)]) .
50 ! 2

In case these two deficiencies are equal, we say that‘the
BCD at 6 exists and is equal to the common value.

Of course, QC = DC = 4+ or =-o if lim[Ml(G)/Mz(é)]
exists‘and # 1 . The main use of deficiency is to discriminate
tests for which lim[Ml(G)/Mz(G)] is 1 . Note that although
the relative Cochran-efficiency of two test procedures is usually
free from 8 (see proposition 11, []), their relative BCD need
not be so.

Let ¢(x) stand for the distribution function of the standard
normal distribution and ¢(x) stand for its density function.

For 0<B<1l , we define =z by requiring that @(ZB) =1-8 .

B
The following results will be needed in the sequel.

Lemma 1l.1. (See Chapter VII, [6]).

If x 1is positive,

1-0(x) = 9—‘5—)-(1--—17+0(x_4)) .
X

Lemma 1l.2. (See Chapter Xv, [7]).

Let {X;} be i.i.d. random variables with the common



distribution F(x) and with E(X;) =0 , E(Xi) = 6% . Let

Fn(x) be the normalized n-fold convolution of F(x) . If

F(x) 1is not a lattice distribution and if

m3 = E(Xi) is finite
then one has
| M3 2 -1
F (x) = ¢(x) + (1 -x%)¢(x) + o(n ?)
n 3 -
65~ vn

uniformly in x .

For the next result, let {Yn} be a sequence of i.i.d.

random vectors with values in Rm(mzl) . Let fl,...,fk be

m

-y \1

real-valued Borel measurable functions on R . 1In the below,

j stands for a positive integer > 2 . Assume

(Alj): Elfi(Yl)lj < 4o for ls<ic<k .
Write
z, = (fl(Yn),...,fk(Yn))
o= EZl r V = Cov Zl .
Assume
(Az): V is nonsingular.

Let H be a real-valued function defined on some neighborhood

N of p . Assume

I



)2 H has bounded continuous derivatives

(A
3.3 on N of all orders up to and including j .

Let

L = (DlH"f"DkH)(“)

where Di denotes differentiation w.r.t. the ith coordinate.
Assume

(A4): L #0 .

Define H' arbitrarily‘(but measurably) on all of Rk . We are

interested in the asymptdtic expansion of the distribution

function of the statistic

W= /n(H(Z) -H(u)) ,

where

Lemma 1.3. (See theorem 2, Bhattacharya and Ghosh, [4].)
Assume (Alj), (A3j) (for some integer 3j =22), (Az) and (A4)
hold. If in addition the distribution function of (Zl-u)

satisfies the Cramer's condition, namely,

<1,

lim sup ” / kexp{i<t,2> }Q(dx)l
Il el += R

then there exists polynomials q,. l<rs<j-2 , whose coefficients

dépend only on the cumulants of (Zlfu) (of order j and less) and



the derivatives of H at p. (of order j-1 and less) such that

u/o j-
sup_ | Prob (W, < u) -/ w1+ Z
u R -0 r=

2

n—r/zqr (v) 1dv
1

- o(n=(372)/2)

14

where 02 is the wvariance of <%,zl—u

In [4], the methods of computing the polynomials q, are

also given. For details, the reader is referred to this paper.
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2. Coghrapn's Approach.

tn thim weotlon, we dlacusm Cochran'm approach to our
problem. It is proved that for the existence of a finite BCD,

the size functions of the test-procedures must be related in a

very special way. Under appropriate asymptotic expansions of
these size functions, the bounds of the upper and the loweéer
BCD's are found out; also the methods of evaluating these
deficiencies are discussed. All proofs are deferred to the

appendix.

2.1. Existence of a finite BCD:
Recall that 6 is a fixed element in ®2C @-@0 and B
is a fixed real number s.t. 0<B <1 .

Obviously, lim(Ml(G)-ﬁMz(G)) , 1f it exists, will be
§+0

either an integer or, one of the two infinities; also

lim(Ml(S)-Mz(G)) exists and is equal to

(2.1.1) -0

an integer d = d4(6,B8) ,

iff for all sufficiently small 6 , 'Ml(G)-Mz(G) is identically

equal to' d . Thus at least in one case, e.g., when

there exists an integer d such that
(2.1:2) |

0] = a

2 n for all sufficiently large n ,
’

1,n+d

(2.1.1) holds true and hencé the BCD is d . Our main theorem

2.1.1 of this section states that the converse implication is

|0



also true. For the proof of this theorem, we need the part (c)
of the following proposition, which may be of independent
interest.

Let {an} be a sequence of real numbers in [0,1] , and

put of = sup o (n>1) . For each &, 0<&8<1, let M(8)
m2n

be the smallest integer m  for which a&«:@ . Considering the

graph of the function &6 » M(§) , one can easily convince oneself

of the following proposition.

Proposition 2.1.1.

Let 0 < an <1, n<l and an + 0 . Then

(a) The function & -+ M(8) from (0,1] ~» I, is a left
continuous, decreasing step function. (I+ is the set of nétural
numbers.)

(b) & is a point of continuity of M(8) iff

* =
v (8) -1 >68§ or M(S8) =1.

*

(c) The functionh § > M(§) determines o uniquely férb

all m=21 . More precisely, let S = {M($§) >1: 0<8§ <1} and

let the elements of S arranged in ascending order. be

1 < my < m2 < .e.; let Gi be such that ‘M(si).= mi and Gi
'is a point of discontinuity of M(S§) . Then,
61 ’ if n<ml
* _ . . B
% = {6 EE My omemy
0 if S has a maximum element mk

and n;zmk .

We now state Theorem 2.1.1.

Il



Theorem 2.1.1.

Suppose that for each i=1,2 , %in isva decreasing
function of n for all sufficiently large n . Then (2.1.1)

and (2.1.2) are equivalent.

Remark 2.1.1l. It should be& noted that the main reason why the

existence of a finite Cochran's deficiency imposes a'strong
condition like (2.1.2) on the functions %in is the discrete
nature of Mi(G) . Unfortunately, any attempt to make the sizes
continuous by taking resort to mixtures, as done by Hodges and

Lehman in [9] doesn't seem to work here.

2.2. The bounds for the upper and the lower Cochran's

deficiencies; the notion of approximate Cochran-deficiency.

As we know from the analysis of the previous section that
the BCD will exist rarely, we now turn to the problem of finding
the bounds for the upper &nd the lower BCD's --- ofrcourse, under
suitable assumptions on thé significance levels of the two test
procedures. |

We assume that

(2.2.1) Each of {al'n} and {az'n} is a decreasing

function of n for all sufficiently large n ;

(2.2.2) For each 1=1,2 , there exists an extension {ai xl
’ {

of ;{ai nt DE I+} for non-integral values of x ,
14

l<x<® , which is also a decreasing function of x ;

12
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for the next assumption, define for each n=21 , a real number

m(n) such that o Assume that

2,n = 0Ll,m(n) :

(2.2.3) The limit of (m(n)-n) exists (the limit

may be infinite).

Werlet d(B8) = d(6,B) stand for this limit; in the rest of this
paper, d(B) will have this meaning only (unless otherwise is

stated). Note that d(B) need not be an integer.

Definition 2.2.1. The approximate BCD of the first testing

procedure w.r.t. the second one is the real number d(6,B8) .

Note that the approximate BCD depends on the particular

extensions {a } ,i=1,2 , we are using. We shall, however,

i,x
suppress this dependenéé.

The above assumptions (2.2.1)-(2.2.3) are valid ﬁhder“
appropriate asymptotic expansions of ,{ai'n} . (see lemma
2.3.1.)

Note that, under (2.2.1), ;Mi(G) is simply the firs;
integer m=2=1 such that ain1<6 . Consequently, if we let,
for each & (0<8s1), M;,(8) and M ,(8) satisfy

o = q 1 s Q = 0 ’
1,Mll(6) 2,M2(6) 1 1,M,.,(8) 2,M2(6)

12

then

(2.2.4) ’ Mll(d) < Ml(s) < Mlz(d) + 1 .
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‘Because of the assumption (2.2.3), one has
QC(S;B) 2 d(e,8)-1 , DC(G’B) 2 d(e,B)+1 ;
or equivalently,
(2.2.5) =-[-d4(8,8)]-1 < QC(G,B) < DC(G,B) < [d(e,B8)]1+ 1,

where [t]. stands for the greatest integer < t .

Remark 2.2.1. It follows that the BCD is +» or -« according

as the approximate BCD is +« or -« .,

Remark 2.2.2. If the BCD exists (it may be infinite) then it

must be equal to d and so d will be an integer; d may.,
however, be an integer even if the BCD doesn't exist. (See

examples 2.4.1 and 2.4.2.)

If d is non-integral (and finite), say, d =m+t
(0<t<1l, m is an integer), then the bounds given by (2.2.5)

are sharp enough to conclude that

In this case, it is possible to give the following interpretation

of D. and Do: For each § (0<§ 21), let Ml3(5) be the

smallest integer k such that alez(a) 2 al,k . Assumptions

(2.2.2) and (2.2.3) will then imply that

I
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]
Ol

éig(Ml3(6)-‘M2(6)) = m+l

Similarly for QC .

Remark 2.2.3. If d is an integer, the bounds given by (2.2.5)

cannot immediately be used to find out the values of QC and

ﬁé . However, when m(n) “n always lies sfrictly on one side
of d , one of these bounds can be improved upon as described in
the next paragraph.

An improvemint &f the tpper bound of Ml(é) given by
(2.2.4) is Ml(é) < [M12(6)1-+1 ; also from the assumption (2.2.3),
M;,(8)1 = My(8) +[d]l or M,(§) +[d]l -1 for all sufficiently
small & .

Suppose now that d is an integer and that m(n) -n-d > 0
for all sufficiently large n . Then [Mlz(a)] < M2(6)-+d-l
and hence ﬁé < d . Clearly the BCD cannot exist. Thus one has
from (2.2.5) \ |

Similarly when d is an integer and m(n) -n-d < 0 for all
sufficiently large n , one has D.=4d , ﬁé==d+l .

When asymptotic expansions of the size functions {ain} v
i=1,2 , are available, it is possible to determine the exact
rate of convergence (to zéro) of_ m(n) -n-d and hence to verify
 whether for all sufficiertly large n , m(n) ~-n-4 is pésitive

or negative. (8Ske the sedtion 2.4(A) for details.)
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2.3. Determination of the approximate BCD

We assume throughout this section that the significance
‘levels {ain} , i=1,2, of the test procedures admit of the

following asymptotic expansions:

log o, (6,8) = -na,;(6,8) +vn b,(6,8) +c,(6,8)logn
(2.3.1) '

+dﬂ6&)+%}h (i=1,2)
where a;(6,8) >0, i=1,2.

. In typical‘cases, ai(e,B) will be free from B -~--
this will be the case if the Bahadur-slopes of '1‘l and T2
‘exist; for a precise résult, see Theorem 2 of Ragharachari [11].
Note that M;(8)[M,(8) ~ 1 4iff a, (6,B) = a,(6,8) = a(6,8) ,
say. Henceforth we shall aséume that this is the case. F&r
convenience, we shall suppress the dependence on 6,8 of tﬁe
kquaﬁtitités a, b, ci, a, .

The foilowing lemma connécts the two sets of assumptioné

made in the present and the previous sections.

Lemma 2.3.1. Assume that (2.3.1) holds. Then (2.2.1), (2.2.2)
and (2.2.3) are valid. In fact, (2.2.2) holds in the following
strong sense: There exist extensions {aix} ’ 1.51,2, which

"satisfy (2.3.1) for noﬁ-integral values of x as well.

We shall work with such extensions {aix} only. The
next theorem gives the possible values of the approximate BCD

ace,g) .

/6



Theorem 2.3.1.

Let '{ai n} , i=1,2, satisfy (2.3.1). Then one has
14 c

(a) if bl=b2

and €L =Cy then d = (dl-dz)/a :
(b) if bliéb2 , then 4@ 1is +» or -« , according

as b, >b

1>Pby or by <b,;

(c) 1if bl=b2 and clyfc2 , then 4 1is +» or -« ,

according as ¢y >c2 or ¢y <c, .

Remark 2.3.1. 1In general, the value of the approximate BCD will

depend both on 6 and on B . However, in the examples dis-

cussed here, it will be free from B8 . In these examples, the

situation (a) occurs and dl(B,B)-dz(e,B) is free from both
6 and B ; as observed earlier, a{(6,8) will usually be free

from B8 .

2.4. Examples.’

In this section, we discuss two examples. As these
examples will clarify different points of the next section 2.5,
we prefer to go through the details. For simplicity, we deter-
mine the constants kn(e,B) (cf. (1.2)) such that

Pg(T, >k, (6,8) =6 .

(A) In many examples, the size functions {ain: ne I+} , 1=1,2

admit of extensions {aixi xe[l,0)} , i=1,2 which are decreasing

functions of x and moreover, for large values of x , the

following asymptotic expansions of these extensions are valid:

1]
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- 1 _
log o, (6,8) = -xa(0) + /X b(e,s)-3log:<+di(e,s)

(2.4.1)
-5 =% .
+e(8,8)x * + o, (x7) (i=1,2)
where a(6) >0 , b(6,8) =0 iff B==% and finally dl(G,B)-dz(e,B)
is always nonzero. Moreover, when 8==% .
log a, (8,%) = -xa(6) -Llogx+d, (8,%) +e(6,}4) x ?
g ix ke 3 g i ’ ’
(2.4.2) .
-1 -1 .
+ £(8)x T+ o0, (x7) (i=1,2)

From Theorem 2.3.1, the approximate BCD is d(6,B) =
(dl(e,B)<—d2(e,B))/a(6) . We want to compute QC(B,B) and
5&(6,8) , making use of the analysis made in the remark 2.2.3. For
this let us first observe the following result about the rate of

convergence to zero of tn z m(n) -n~-d(6,8) .

Lemma 2.4.1. Assume th. . the size functions {ai n} , 1i=1,2
7

satisfy (2.4.1) and (2.4.2). Then /n t, + (d(e,B)-b(e,B))/2a(e) .

If g=%,nt > d(e,4)/2a(e) .

We assume below, without loss of generality, that d(6,8)

is positive for all B8 . Three cases may arise.

Case I. Let B be such that b(6,8) >0 . 1In this case, vn t
converges to some positive number. Consequently, m(n)-—p-—d(e,B)
is positive for all sufficiently large n . It then follows from
the remark 2.2.3 that the BCD doesn't exist and D,(6,8) = d(6,B)

while _QC(B:B) = d(epB) -1.

18



Case II. Let B8 be such that b(8,8) <0 . 1In this case,
m(n) ~n~-d(6,B) is negative tor all sufficiently large n .
So the BCD doesn't exist and Bc(e,s) = d(9,R)+1 while

D,(6,8) = d(6,8) .

N

Case III. Let B8 be such that b(6,8) =0 , i.e., let B=
In this case nt, converges to some positive number. So the

conclusions of the Case I are valid.

(B) Examgl\e 1. mm&_pistripution)
Let ® be the real line (-=,+w) , @0 = {0} , and

@l = ®-{0} , ®2 = (0,) . For 6 ¢® , let P, stand for the

normal distribution with mean 6 and variance 1. Fix a 6
in @2 .

For the testing pregblem HO: the population mean is zero
against the alternative that it is nonzero, the critical region

of the most powerful unbiased invariant test is given by

{|v/a X_| > k, _} where §1=n—l X, and k is such that
n P

1l,n

e

1,n 1

g = 1—<1>(k1n-/5"""é) + 0(-K;, -/ 8) . TIts power at & is B

and its size is a, (6,8) = 2(1 ok, )) . Bahadur's (as
well as the Cochran's) efficiency of T, = {|v/n in{: nzl at
2

‘6 is 67 .

For the t#sting problem H the population mean is zero

0}
against the alte¥hative that it is positive, the critical region-

of the most powerful test is given by {v/n X >k, '} where k, -
’ .
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2
(2.4.5) exp(x67) (log alx-log aZX-log 2) - 0

To -this end, first observe that k2x serves as a good asymptotic

approximation to klx ; (2.4.4) implies that (k

k2x) - 0 . In fact, we have

-/x 8) > z
x B

1 g "

i.e., (klx-

=0

| . 20
(2.4.6) lim exp(2x6 )(klx-kZX)

X+

for one has, from the definition of k2x and (2.4.4),

1 - 0k, +VE 0) = (ky, -k, )6(£(x)) for some £(x) satisfying

2

B 1x B

as x-» , Thus

< E(x) < k,_-vYx 8 . By what has been proved, £(x) +>z

2
2 o exp(2x6~) | _
exp(2x8 Y ki~ ko) = 3 (E () (1 <I>(k2x+/x 8))
= o(x—%) , by Lemma 1.1.

This completes the proof of (2.4.6). Now the l.h.s. of (2.4.5)

is exp(xez)(kzx-klx)¢(£l(x))l(l-—@(&l(x))) for some gl(x)

satisfying k < El(x) < k

1x

2% ; in particular, £;(x) = /¥ 6(L+0o(l)).

So (2.4.6) and Lemma 1.1 now complete the proof of (2.4.5).

Example 2. (The Student's Distribution)

Here @ = {(y,0): =@ <p<», 0<o<w} , @0 = {0} x (0,%)

®l =®-®0, @2 = (0,°)x(0,o) . For 6 =(u,c) 1in @, let Pe

stand for the normal distribution with mean u and variance o .

-
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[

is such that 8 = 1-¢(k, =v/n 0), i.e., k, = /n6+z, . Its
power at 6 1is 3 and its size is azn(e,s) = l-@(an) . The
Bahadur (as well as the Cochran ) efficiency at 6 of

_ T . . 2
T, = {/n X n>1} is 6° .

Thus the two test procedures are equally efficient. At
the level of deficiency, however, their performances are different.
In this example, the situation described in (A) above holds. In

fact, for non-integral values of x , one defines.

(2.4.3) Ay, = 2(1-—®(klx)) roGn = 1 —@(kZX)
where klx is determined from
(2.4.4) B = l-@(klx-/x ) + @(-klx-/x 0)
and k, = /X 0 + z, . We claim that (2.4.1) and (2.4.2) hold
with a(9) = 92/2 , b(o,B) = —zBG ’ dl(e,B) = —(z§-+log(2uez))/2 +
log 2 , d,(6,8) = —(zé-klog(Znﬂz))/Z . e(8,8) = ~zBe‘l and
f(o) = 6-2 . From (A), we can therefore concluce that the BCD
doesn't exist and that the approximate BCD = 2 log2/62 . Also,
D.(6,8) = 2 1og2/6° if 8 > 3= 210g2/0%+1 if B < %— while

. B 2 . 1 2 . 1
QC(G,B) = 2log2/6° -1 if B = 5i = 21log 2/0 if B < 5 - Thus

the approximate BCD doesn't depend on B . The upper and the lower

BCD do depnd on B , but in a very weak sense.

}

We now proceed to the proof of our claim. That {GZX
satisfies (2.4.1) and (2.4.2) is easy —--- one has to use Lemma
1.1. To show the same for {ulx}, it is sufficient to prove that

as X >
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1

Fix a el = (“1’01)' in (:5 i put W= W07, 8 = (y,1) and
6o = (0,1) . Put T, = /n X |s  and T, = [Tzn] where
2 _ 0 = 42 —

an =z (xi-xn) . Note that under 60 , Vn/(n-1) , T2n

1
is distributed as a Student's t-variable with (n-1) d.f.

For the testing problem H the population mean is zero

0:

against the alternative that it is non-zero (the s.d. being

unknown) , the "best" test is based on the critical region

{Tln1>kln} where kln is such that g = Pel(Tln kln) . Its
power at 6, then is B8 and its size is aln(el,B) = ZPGéTZn:>kln)
The Bahadur (as well as the Cochran ) efficieﬁcy at 61 of

T, is log(l+p?) .

1

For the testing problem H the population mean is zero

0!
against the alternative that it is positive (the s.d. being
unknown) , the "best" test is based on the critical region

where k is such that 8 = P, (T >k

Ton > *on? 2n o, (Tan " ¥on) - It
_power at 0, is B and its size is azn(el,B) = PGO(TZn an) .
The Bahadur (as well as the Cochran ) efficiency at 61 of

T, is log(l+y?) .

2

Here too the two test procedures are equally efficient,

though their deficiency is not zero. We shall show that

{oj s mnel},, i=1,2, satisfy (2.4.1) and (2.4.2) with

1, -
= 2log (1+1u?) , b(6,,8) =z, -u(l+z u) (1 +uH7" and

a(o 8

1)

d(ﬂl,B)-d(Ol,B) = log 2 . In this example, we cannot define

22



the extensions. {a,_ : xe[l,0)} , i=1,2 , as we did in the

ix
example 1. One has to take linear averages of 1log ol n and
log. o, for details see the proof of ILemma 2.3.1.

i(n+1) i

From (A) we therefore conclude that the BCD doesn't
. 2
exist and that the approximate BCD is d(el,B) = 21og2/log(1+p°) .

— _ , 1, _ : 1
Alsol DC(SIIB) - d(eer) lf B Zfr - d(ellB) +1 if B <2

. _ ~ . l. _ . l
while Qc(el,B) = d(el,e) 1 if B 25 = d(el,B) if B <3 -

Thus in this example too, the approximate BCD is free from g .

The upper and the lower BCD do depend on B8 , but in a very weak

sense.

The proofs of the different facts mentioned above run
essentially along the same line as that of the example 1; however,
some of the steps have to be justified in different ways
Lemma 1.1, e.g., is to be replaced by the following one, .the

proof of which depends on integration by parts.

Lemma 2.4.2. Let n 25 and o >0 . Put

Ita) = (1+x%) ™/23x  ana Y, () = (n-2) Lo L (1+a%)7P"2/2

¢

Then one has

1 1

¥, (0) [1- (n-4)~ (0" %+1)1 < I (a) < yn(a>[1-3(n—4)'1(n-6)' (0 %+1)7 .

Using this lemma, one can verify
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Lemma 2.4.3. Let p_ stand for P, (T, > a/53+b-+cn‘%-+dn_l) ,
n 60 2n
a>0 . Then
log P, = —% log (l+a2) -/n ab(l-i,—az)"l —%’-logn

-— -1
+ KL?(alblc) + K2(a,b,c,d)n & + of(n ’i) ’

where Kl and K2 are constants (free from n) which depend

on a,b,c, etc. as indicated above.

We also neeg-to, usg the following result, which is a direct

consequence of Lemma 1.3.

Lemma 2.4.4. Let W, = Tén-/ili. There exist two polynomials

Py and p2 whose coeffid®ients are free from n such that

‘ ® P,(u) P,(u) _
sup vniPy (W >ud) = [ ¢(t)dt- (=—+ Yo (u) |— . 0
ueRl 1 u /n n

where § = (l‘*%*uz)!‘5

S F3 b g : =i -1
Define G _{u) =71 -4 () + (Py(w)n™ 2 + P, (W)n "¢ (u) ;
determine the constants (free from n) d, dl’ d2 such that
L -1

Gn(d-kdln— -+d2n ) ='B-+d%n—l) ; one may verify that d4d = z

B
(we do not need the exact values of d, and d,). Put

= -% ? S e = -1 e
/n u + (d+d4)n “+d,n )& . Then k, -kj =o(n ")

1
kan
for a justification imitate the proof of the Lemma 2.5.1. What

we have achieved so far 4s, simply an approximation kén of k2n

24



which guarantees that 1log PGO(T2n >k2n)--log_Peo(T2n >k2n) = o(n

to verify this, one uses lemma 2.4.2. An application of

lemma 2.4.3 then shows that {a. } satisfies (2.4.1) with the -

2n

said values of a(8) and b(8,8) . Consider now the case of -

{aln} . Here B =P (wn>k

0, -/n ) +P, (W <-k

1 1

Because of Lemma 2.4.4, P, (W_<-k -vn ) is o(n_l);. (In
81 n 1n P To

fact it can be shown that it is o(n~J) for each positive integer 3

T S
This implies that (kln-kzn) = o(n 7) ; and so

(T >k! ) = o(n

2n 2n ) - Thus

log P (T2n>>kln)-log Pe

% 0

.

log Oi1p = log 2 + log «a + o(n_é) . This completes the proof o

2n

of the fact that {a,_} satisfies (2.4.1) and that

1n
dl(e,B)-dz(G,B) = log 2 . The proof of the fact that {aln}

and {uZn} satisfy (2.4.2) should now be clear.

Remark 2.4.2. Suppose we replace (1.2) by 1lim Pé(win):zﬁ and
put Rin(e,B) = Pe(Win)-B » (1=1,2) ; then in the above examples

. ' -4
it can be shown that (a) if R, . (6,8) = of(n ?) then the value

of the approximate BCD remains unchanged; (b) if Rin(e,B) = o(n-l)

3/2

and Rin(e,%) = o(n" ) , the BCD doesn't exist and the values

of the upper and the lower BCD remain unchanged.

Remark 2.4.3. In example 2, it follows from Lemma 2.4.3. that

, is log(l +p%6™%) . our

derivation is simpler than any other available in the literature;

the Bahadur slope at (u,o0) of T

compare, e.dg., with the section 5 of;[2] and [10].

2.5

.
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2.5, On the validity of (2.3.1).

Here we shall find the conditions under which the asymptotic
expansion of the form (2.3.1) of the significance level of a test
procedure is valid. We motivate ourselves by considering a test
procedure in which the critical region consists of the large values
of the sum of some sequence of i.i.d. random variables. We have
the following general result in this direction; compare with [3].

Let {Y_: n=1} be a sequence of i.i.d. r.v.s. with the

n

~Ln
m.g.f. M(t) . Put Tn = n" %y Yi . Let u be a constant ( #0)
1l

and {qn} be a bounded sequence of real numbers. Define

p, = Prob(T >/E'p-+qn) . Assume that the distribution of X;

and p satisfy the following conditions: the distribution of
X, is non-lattice; if T Stands for {t: M(t) is finite} ,
then T is a nondegenerate interval; there exists a positive
in the interior of T such that exp(-ptT)M(1) =

inf{exp(-ut)M(t): t in T} = p say .

Proposition 2.5.1. Assume the above set-up. Then

(2.5.1) log p_ = nlogp -/ aqn-%logn-— (a+q§/2) +o(1)

where a,aq,p are constants (free from n); a>0, a>0,

0<p<l.

Remark 2.5.1. If we assume that the distribution of xl
satisfies Cramer's condition, we can get an asymptotic expansion

of log p similar to the one given in the theorem 2 of [3].
n .
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Consider now the set-up of section 1. Our main
interest is to find an asymptotic expansion of Pe(Tn >kn)

where kn is to be determined from the condition (1.2);

Assume that the distribution of {Tn} under P6 and

{p, : 69 e(})} satisfies the following conditions:
0

There exist constants (free from n) u = u(8)

and G =46(6) >0 and a polynomial dg such that

(2.5.2)
if we let Fn(x) = Pé(Tn-/H'u <3dx) , then
-1 -1
Fn(x) = ¢(x) +n éqe(x)¢(x)-+o(n %y, uniformly in x.

Whenever u is a real number and {qn} is a bounded
(2.5.3) sequence of real numbers, {(2.5.1) holds good with
P, = sup{PeO(Tn>>/H u-+qn): 60 in C%} .

Lemma 2.5.1. Assume (2.5.2). Then there exists a constant

- =L -1
d = d(e,B) such that k= ﬁ§u+ch+n3do+oU12).

Theorem 2.5.1. Assume (2.5.2) and (2.5.3). Then

log o = nlogp-vn a z 5-%logn

B

+ (a—a&d—%zé 5%) + o(1) .

2’7
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-l
Remark 2.5.2. It is well known that ({n &

—™MB

Y. : nz21l} satisfies

(2.5.2) where {Yi: i21} 1is a sequence of i.i.d.r.v.s. with a

finite third moment. The main result of Bhattacharya and Ghosh

(1976) indicates that (2.5.2) is satisfied for a large collection

of statistics.

2¥
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3.. Bahadur's and Other Approaches.

"In this section, we shall consider other approaches to
deficiency. It is shown by means of an example that Bahadur-~
deficiency need not exist even though the Bahadur-Cochran-
deficiency exists. A new interpretation of the latter is

suggested in section 3.2.

3.1. Bahadur's Approach.

Assume  the set-up of section 1. For each real t , let

Fin(t) = sup{Pe (Tln >t): %o a@b} and define Lin(s) = F (T, (s))

0
For each & (0<8<1) and for each s , let N.(8,8) = N, be

the least integer m2>1 such that 'Lin(s) <8 for all n:zm ;

otherwise let Ni(s,s) be infinityl

Definition 3.1.1. The random lower‘(upper) Bahadur-deficiency

at of the first testing procedure w.r.t. the second is

D, (8:8) (a.s. P,)lim inf (N, (6,8) -N,(S,8))

(DB(G;B) (a.s. Ps);im sup(Nl(S,s)-Nz(é,s)O .

In case the above two deficiencies are equal, we say that the
Bahadur-deficiency exiéts and is equal to the common value.

As in the case 6ffcaéhran—deficiéncy;'the main use of
studying these random deficiencies is to discriminate tests with
the same Bahadur—efficiency;gi.e., tes£s for which the (a.s. Pﬁ)

limit of (Nz(a,s)/Nl(é,s)) is 1 .

N
~
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In this approach, the main source of difficulty is that
the gquantities sup{Lin(s): n2m} , m=21 1is difficult to
expand --- any possible expansion would seem to depend on the

particular sample sequence considered.

Example 3 (The Uniform Distribution):

Let 6 be such that 0<6<1 ; let fl(x) and fz(x)
be respectively the densities of the uniform distributions over
[0,6] and [0,1]_. Consider the problem of testing
ot f==f2 vS. Hl: f==fl on the basis of the following two

statistics, Tyn = l-—x(n) ’ T2n = l-—y(n) where

H

X(n) = max(x4,x6,o--,X2n) and Y(n) = max(xl'x3,.-.'x2n-l) !

(n=2) . We choose the constants kn(e,B) such that

- . _ n-1 .
PHl(Tn.>kn(e'B)) = R (cf. (1.2)). ‘Then Ay = gO while
%on = B6™ so that the BCD exists and is 1 for all B8 .

We are going to show that the (a.s. or stéchastic) limit of
(Nl(d,s)-Nz(d,S)), if it exists, cannot be degenerate. Note
- n-1 _ n
that L, (s) = (x(n)) and L, (s) = (y(n)) . Clearly,
Pe(Nl(s,é) =m) = Pe(Nz(s,G) =m+l) , for all m>2 . The lemma

below gives the exact distribution of Nz(s,é) under Pe .

Lemma 3.1.1. Let p Z p(6,68) be the integer such that

log ¢ log ¢
(?.1.1) Tog © < p < Tog 6 + 1.

30



Then the distribution function of Nz(é,s) has the following

expression:
p-1
p-l, o
(8/6 ) 6m+l if m<p-2
(3.1.2) Py (N, (s,8) sm) =4 5/0P"1 , if m=p-1
1 if m=p
\_

The proof is straightforward. The next lemma studies the weak

convergence under P, of p($) -N,(s,8) as 6->0 . Then p(3d)

Lemma 3.1.2. For each ¢, 0O0<cs<l , let X, be a r.v.

such that P (X_ =0) = 1-8° and P, (X, =1) = (1-9)-9T171

izl . Let e(8) be the excess over (p(§)-1) of 1log §/log 8
(0 < e(8§) < 1) . Then
(a) if e(6n) + ¢ and dn -0 , p(sn) -Nz(én;s)

converges weakly to Xc under Pe

2(6n;s) converges weakly to X under
Py and Gn >0, {e(én)}, is a convergent seguence; moreover,

X==Xc where ¢ 1is the limit of e(én)

(b) if p(én)-N

e(p—l)+e(6)

Proof: (a) By the definition of e(§) , 6 = so

that -6n/ P(ép)-1 _ ee(én) + 6% . (3.1.1) implies that

1 1

-l,d(p(a)—l) o~ 1s(P(8))

6 < 1 <

3



-1
: (p(Spn) -k)
Thus for each k21, 5np n + 6 . It then follows from

the lemma 3.1.1 that P (p(8 ) -N,(8 ,8) =m) > P (X =m) mz0,
which completes the proof of (a).

(b) Because of (a), every convergent sub-sequence of
{e(dn)} , which is a bounded sequence,'converges to the same real
number.

It follows from the above lemma that tke (a.s. Pe or the
stochastic) limit of (Nl(é,s)-Nz(S,s)) cannot be degenerate;
to see this, one need only note that 'Nl(G,s) and Ne(s,s)
afe independent and then use Theorem 3.2, Chapter VIII of [7].

So in this case we cannot hope to get a single nuﬁerical value

of deficiency from Bahadur's point of view.

3.2. Another interpretation of BCD.

The following result is due to Ragharachari [9] (see his

Theorem 2). The set-up is the same as that given in section 1.

Lemma 3.2.1. For all B8 (0 <B <1l) , 1lim {(log un(e,B)/n) = —=c(6)

n->»oo .

iff log Ln(s)/n + -c(p) (a.s. Pe) .

This fact leads to the following definition.

Definition 3.2.1. Fix a 9{@2) , an € with 0<e<1l and'a §

with 0<8§<1 . Then V(e,8) = V(0,e,8) 4is the smallest integer

m=>1 such that whenever nzm , PO(LD(S) <8) > 1-¢ .,

The next lemma gives the asymptotic behavior of V(e,d)

as &6->0 .
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Lemma 3.2.2. Assume that 'log Ln(s)/n + -c(8) (a.s. P,Y . Then

n
o

for each e , 0<c¢e <%~; log §/V(e,8) » -c(8) as §-0

Proof. The proof depends on routine calculations and hence is

omitted.

The lemma 3.2.2 suggests the following measure of deficiency:
consider the set-up of the section 1 and define Vl(e,d) and

.L.l . )
Vz(e,cS) similarly using Lln(s), L, (s) for Ln(s)

2n

Definition 3.2.2. Fix a eg@% , an € with 0-<e<<% . Then the

lower (the upper) deficiency of the first testing procedure w.r.t.

the second at 6 is

lim inf(Vl(e,é) —V2(€,6})
§-+0

lim sup(vl(e,é)-—vz(a,é)) .
§-+0

Let Fin(t) be a strictly decreasingkcontinuous function
of t, i=1,2 . For each 6 1(2% , we make the same assumption

about Pe{Tini>t} .

For each 9<68<1 , 1let t., (§) = Ffl(ﬁ) . Consider the
in m

sequence of tests ¢in(6) :

Reject H iff T, >t. (8) .
in

0 in

Then the error of first kind for this test is & . We denote

its power by Bin .



Fix 6 ¢H0 . For each 0<B8<1 , define the test wiﬁ):
Reject HO iff Tin >cin(8)’ where cin(B) is such that
Pe{Tih >cin(8)} =R . Let its error of first kind be denoted
byl ain -

Hi

Using the tests win(s) define Mi(B,é) Mi(e.e,s) as

in section 1. Then
(3.2.1) Mi(B,G) = Vi(ljﬁ,ﬁ) .

To see this, note that if n:zVi(l—B,d) then by definition
of Vi , the tests ¢in have error of first kind = § and
power (at 6) > B8 . Hence for nszi(l-B,S) the tests win which
have power = 8 , must have error of first kind % <8§ . By
definition of Mi(B,é) this means Mi(B,G) < Vi(l—B,é),.
Similarly the reverse inequality can be proved.

Thus BCD,‘upper, lower or approximate, agrees with the

corresponding notion as defined here.

3t
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4. Appendix: Proofs of the Results Given in Section 2.

Proof of Proposition 2.1.1l: Easy.

Proof of Theorem 2.1.1: Direct consequence of Proposition 2.1.1.

Proof of Lemma 2.3.1: Assume (2.3.1). (2.2.1) is then immediate.

For (2.2.2) we define {uix}, for non-integral x as follows:
let n < x < n+l ; then x = nAx + (n+l)y for some X and u

such that 0 < A <1, Xy =1 . We define log s =Aloguin +

u loga.

. i L= - . .b. +cC. +d. +¢
i (n+1) We claim that log a, xal-+/§ b, +c; logx+d, +o(l

for this observe that n = x-p and n+l = x+A and so A/n+ p/n+l =

/X + o(x 1) . Also Alogn +ulog (n+l) = log x + o(x 1) . The

definition of as shows that it is a decreasing function of x .

The proof of (2.2.3) is included in that of the theorem 2.3.1.

Proof of Theorem 2.3.1: First note that since log ain/n + -a

for each i=1,2 , m(n)/n > 1.

(a) From the definition of m(n) , one has

b
1 m(n) | (4 -
(m(n)-n)[%"caszjzé} - C log - (dl dz)

i.e., m(n) -n - (dl-dz)/a .

(b) Here we have,

mmon oo L o (b -b) 4,203 o d09 R,
Yn “Vn+ /m : v/n vn

385
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So (m(n)-n)/vn > (b; -b,)/a . From this, (b) is immediate.

(c) follows similarly.

Proof of Lemma 2.4.1: Similar to that of Theorem 2.3.1.

Proof of Proposition 2.5.1: We shall follow Bahadur and Ranga Rao

[3]. Let Hn be the distribution function of the standardized
n-fold convolution, and v the s.d., of the conjugate distribution
of X 7H . Put a==vf . Proceeding exactly in the same way of

the Lemma 2 of [3], we have p, = inn where

1= | eMOX gy (%) .
n n :
9n
K (1-x°) -y
Because of the Lemma 1.2, Hn(x) = §(x) + ——= ¢ (x) + yn(x)n :

n

where yn(x) + 0 wuniformly in x and K 1is a constant.

(I) The contribution of ¢(x) to 'I is

n
S 2
e°/H(“{d¢(x) - exp(—/ﬁaqn-qn/Z) {1- “n .+qn—ll+o(n_l)}
— - 2
a, /2T /n o v/n o na

(use Lemma 1.1).

(ITI) The contribution of K(14x2)¢(x)//ﬁ to I is



X f e-/KCD((x3—3x)¢(x)dx =
/n q
n
Kexp(%naz) ® 3
= / {(y=vna)~ - 3(y-v/na) 1 (y)
vn qn+/5cx :

— 2
exp(-vnag,_ -qg-(2)) =
- n n . o(1)
V2 v/n o

(III) Let €>0 . As supiyn(x)} < ¢/2 for all sufficiently

X
large n ,
1 [« ’ 0
n 2|f exp(-/ﬁux)dyn(x) < af exp(~/5ux)[yn(x)-yn(qn)gdx
q q ‘ :
n n

-l
2

en exp(—/ﬁqun)

IN

-1 '
Thus the contribution of n 2‘yn(x) to I is

n—%exp(—/ﬁ<an-qi/2)'o(l)

From (I), (II) and (III), (2.5.1) follows.

Proof of Lemma 2.5.1. Because of the uniformity condition involved

in (2.5.2), Fn(ze+dn_1/2) = o (z,) +n %4 +qe(7’28))d.>(zs) +o(n %) .

-1 L
Thus if we let d = —qe(zB) R then Fn(zB-+dn 6) = (1-B) +o(n 6)
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= supan(x)-Gn(x)}

Put G (x) = &(x) + n_%qe(x)¢(x) '€, u
and €on = Fn(28.+dn—%) - (1-B) Choose n, > 0 “H1#0) such
that n%ein==o(nn) for each i=1,2 . Then

L (F (2 (@ )n%) - (1-8)}

Tn T

o]

/n {Gn(zB-+(d+nn)n_§)-Gn(zB-+dn-%)}-+o(1)

n

3

-G (E) +o(1)

2l
Sl

. d d  "n .
for some En lying between zB~+—: and zB-+—-+——-; in
/n /n v/n

. particular, gn > ZB . As {Gé(u)} is bounded away from zero
in a neighborhood of ZB , one gets

k -/1p

=4 n
Fn(———w*——)} >0

/n {Fn(zB+ (a + lnn[)n

Tn,T

for all sufficiently large n .
N -k -
(kn-/ﬁu)/c < zB-+dn -+|nnln g for
~ L=k
(kn-VHu)/c > zB-+dn —{nn

the proof of the

This implies that

-1
all sufficiently large n.. Similarly, |n &
for all sufficiently large n . As n, 7 o,

lemma 2.5.1 is complete.

38



39

Proof of Theorem 2.5.1:

' x ~ ~ =% * r . e G
Let k = /ﬁ};-+zeo-+dﬂn and o sup{P_ (T >k ): Myt

Because of (2.5.3),

* ! ~ 1 ”_~_l
log o = nlogp —/chzeo-vilogn + (a-afd-3 z

It suffices to show that

1l

(*) k log «a log a; = o(l) ..

n

*

Put q = (kn-/ﬂ W)/8 and q_

- (k;-/ﬁ‘u)/ﬁ . Then both the

sequences {qn} and {q;} are bounded. By (2.5.3), one gets

*
log anj-log o

_ i~ *_ _]: *.2_ 2
= /n alq, - 4q,) +2(qn q) t o(1l)
(x*-x ) (x* -k )
_ = n_n 1., * n n
= /n o * 3 (q, +qp) G *+ old)

o(l) by lemma 2.5.1.

i

This completes the proof of (*).

29
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List of Changes

41

Page Change To
14 12 from top "m{n)-n-d >0" "m{n)-n-d <0"
14 7 from bottom "m(n)-n-d <0" "m{n)-n-d >0"
18 3 from top "ﬁc(e,s) = d(e,B) +1" "'ﬁc(e,s) = d{e,R)"
18 3 from top “Qc(e,s) = d(e,B)" 1gc(e,s) = d(e,8) - 1"
17 Jast two lines ”ﬁc(e,e) = d(e,B8)" "EE(S,B) = d(e,B) +1"
"D.(6,8) = d(e,8) - 1" "D.(6,8) = d(e,B)"
19 8,9 from bottom "Also, ﬁé(e,s) = "Also, if 2 1092/92 is
2 1092/62" an integer (see remark 2.2.%
for the contrary case)
ﬁc(e,s) = 2 log 2/6%n
22 6 from top "Also, ﬁé(e],e) = "Also if 2 1092/(1-+u2) is
d(e},B)" an integer (see remark 2.2.%
for the contrary case)
D (67,8) = d(8,,8)"
22 2 from bottom "upper bound for "rn(a)[1 -(n-4)'1(a°2-+11)
I (a)" + 3(n-4)"(n-6) "1 (1+a™%) 1"
25 11, 13, 21 from “X]" "Y1"
top
. Pe
31 7 from bottom "Tog Ln(s) -> "Tog Ln(s) — -c(9)"
-c{0)(a.s. Pe)"
: Pe
32 1 from top "Tog Ln(s) "log Ln(s)-—+ ~c(9)"
-c(6)(a.s. Pe)“
32 2 from top e <L e < I
32 8 from top e < e < "



